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SUMMARY

Full-length transcript reconstruction has a pivotal role in RNA-seq data analysis. In
this research, we present a new genome-guided transcriptome assembly algo-
rithm, namely Tiglon, which integrates multiple alignments of different mapping
tools and builds the labeled splice graphs, followed by a label-based dynamic
path-searching strategy to reconstruct the transcripts. We evaluate Tiglon on a
simulated dataset and 12 real datasets under theHisat2 and Starmappings. The re-
sults indicate that the integrating techniques of Tiglon exhibit great superiority
over the state-of-the-art assemblers, including StringTie2 and Scallop, depending
on Hisat2 alignments, Star alignments, or the merged alignments of both. Espe-
cially, Tiglon is significantly powerful in recovering lowly expressed transcripts.

INTRODUCTION

RNA-seq, as a powerful technology for transcriptome analysis, is extensively used worldwide. Especially

during the past five years, this technology has transitioned from research to clinical use (Phillips et al.,

2020), which sheds light on the study of complex diseases related to abnormal splicing events or differential

expression levels such as cancers. Moreover, it provides the opportunity to view the complexity of eukary-

otic transcriptomes, identify the expressed transcripts, and quantify their expression abundance precisely

at a whole transcriptome level (Marguerat and Bähler, 2010; Ozsolak and Milos, 2010; Wang et al., 2009;

Wilhelm and Landry, 2009). One of the most critical steps for RNA-seq data analysis is accurately assem-

bling the tremendous amount of sequencing reads into full-length transcripts, which is quite a computa-

tionally challenging task.

The explosive growth of RNA-seq data has been driving the development of algorithms for transcriptome as-

sembly.Quite a few algorithms have beendeveloped for assembling RNA-seq reads into full-length transcripts.

They are usually categorized into two strategies, de novo and genome-guided. De novo assemblers usually

attempt to find overlaps between the RNA-seq reads and employ an extension technique to reconstruct the

full-length transcripts. Such an approach is usually used where the reference genome is unavailable; therefore,

this strategy mostly produces highly fragmented and error-prone transcripts. The state-of-the-art de novo as-

semblers includeTransLiG (Liu et al., 2019), BinPacker (Liu et al., 2016a), Bridger (Changet al., 2015), Trinity (Mac-

ManesandEisen, 2013),ABySS (Simpsonet al., 2009), SOAPdenovo-Trans (Xie et al., 2014), and IDBA-Tran (Peng

et al., 2013). On the contrast, if a high-quality reference genome is available for model species, such as human,

genome-guided assemblers such as StringTie2 (Kovaka et al., 2019), StringTie (Pertea et al., 2015), Scallop (Shao

and Kingsford, 2017), TransComb (Liu et al., 2016b), TransBorrow (Yu et al., 2020b), Cufflinks (Trapnell et al.,

2010), CLASS2 (Song et al., 2016), iPAC (Yu et al., 2020a), Traph (Tomescu et al., 2013), CEM (Li and Jiang,

2012), IsoLasso (Li et al., 2011), andBayesembler (Maretty et al., 2014) canbeemployed. Suchapproachesgener-

ally first use the aligners such asHisat2 (Kimet al., 2019), Hisat (Kim et al., 2015), Star (Dobin et al., 2013), Tophat2

(Kim et al., 2013), Tophat (Trapnell et al., 2009), SpliceMap (Au et al., 2010), MapSplice (Wang et al., 2010), or

GSNAP (Wu and Nacu, 2010) to map the RNA-seq reads to the reference genome. Then, based on the align-

ments, a splice graphmodel is built for eachgene locus, followedbyemployingdifferent computationalmodels

to generate transcript-representing paths via traversing the graph. Genome-guided approaches usually show

much higher accuracy than thede novoones.Moreover, a number of tools are also developed tomerge assem-

blies from multiple RNA-seq samples, such as the merge mode of StringTie2 (Kovaka et al., 2019) and TACO

(Niknafs et al., 2017).

To the best of our knowledge, none of the current assemblers is specifically designed for integrating align-

ments generated by different mapping tools, which is of great significance practically. As shown in the IGV
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snapshot (Figure 1), the annotated transcript ‘‘XR_929,880.3’’ in NCBI RefSeq from human reference

genome GRCh38 is captured by the RNA-seq sample SRA: SRR307911 (NCBI SRA accession code). In

the region, we can see that both the Hisat2 and Star (two of the best current aligners) alignments cover

the whole exons of this transcript, but neither of them covers the entire junctions. Consequently, assem-

blers depending on only one aligner cannot recover this transcript, which is actually reconstructed by

the proposed Tiglon algorithm. It suggests that integrating alignments of different aligners would be a

helpful and meaningful strategy for transcriptome assembly.

In this research, we introduce Tiglon, an elaborately designed genome-guided transcriptome assembly

approach that integrates mappings produced by different aligners. Taking advantage of different align-

ments, Tiglon builds a new graph model, namely labeled splice graph, in which each node corresponds

to an exon, and each edge corresponds to a junction, and Tiglon further labels the edges (junctions)

with 1 and 2, where label 2 indicates that they are captured by all the employed aligners and label 1 other-

wise. In addition, label 2 further categorizes into 2+ and 2-, where 2 + means that the captured reads of

different aligners are exactly the same and 2- otherwise. Next, based on the labeled splice graph, Tiglon

employs a newly developed labeled-based dynamic path extension program to recover the expressed

transcripts accurately.

Tested on a simulated dataset and 12 real datasets (8 from Homo sapiens samples and 4 from Mus mus-

culus samples), the integrating techniques of Tiglon demonstrate significantly superior over the best cur-

rent approaches, including StringTie2 and Scallop that depends on Hisat2 alignments, Star alignments, or

the merged alignments of the two ones mentioned above, and StringTie2-Merge (the –merge mode of

StringTie2). For instance, on the eight tested H. sapiens datasets, Tiglon averagely reconstructed 9.51%

more correct transcripts than StringTie2-Merge, 11.25%–13.68% more than StringTie2 and Scallop de-

pending on the merged alignments, and 19.82%–25.61% more than StringTie2 and Scallop depending

on Hisat2 or Star alignments. More critically, Tiglon exhibits significant superiority over others in recovering

lowly expressed transcripts. On the eight H. sapiens samples, Tiglon correctly recovered 22.57%–53.48%

Figure 1. An IGV snapshot shows that the reference transcript named ‘‘XR_929,880.3’’ of human genome GRCh38 is covered by reads from RNA-

seq sample SRA: SRR307911

The exons of this transcript are all captured by both Hisat2 and Star mappings, while its first junction is not captured by Star mapping, and its fifth junction is

not captured by Hisat2 mapping. Depending on only one aligner, StringTie2 and Scallop cannot recover this transcript, while Tiglon recovers it by inte-

grating both alignments.
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more lowly expressed transcripts than StirngTie2-Merge, 29.73%–89.05%more than Scallop and StringTie2

depending on the merged alignments, and 51.93%–161.18% more than StringTie2 and Scallop depending

on only one aligner.

RESULTS

Tiglon is a transcriptome assembly approach that takes advantage of multiple alignments generated by

different mapping tools. In this study, we first focused on the performance comparison between Tiglon

and two of the best and representative assemblers StringTie2 and Scallop, depending on the Hisat2 align-

ments, Star alignments, and themerged alignments of both. Additionally, we evaluated the performance of

Tiglon that was run with multiple aligners or with only one aligner, and we also compared Tiglon with two of

our previous algorithms TransBorrow and iPAC. Based on the comparing results, the integrating strategy of

Tiglon exhibited superior performance on both simulated and real datasets. The common comparison

criteria used in this study were that a reference transcript is considered to be correctly identified if and

only if its intron chain is exactly matched with an assembled transcript, and this matched assembled tran-

script is regarded as correctly assembled. And, we used the Cuffcompare tool in the Cufflinks package

(Trapnell et al., 2010) to detect the correctly assembled transcripts. The accuracy of an assembler is

measured by the number of correctly assembled transcripts and precision, the percentage of correctly

assembled transcripts out of all the predicted ones. The versions of reference genome and transcriptome

for the H. sapiens and M. musculus samples used in this research are GRCh38/hg38 and GRCm38/mm10,

respectively, which were downloaded from the UCSC Genome Browser.

Performance evaluation on simulated dataset

In this study, we used RNA-seq data simulator RSEM (Li and Dewey, 2011) to generate a simulated dataset

that contained �52 million 100-bp length paired-end reads. The parameters of the simulation model were

learned from the real human RNA-seq dataset with the NCBI SRA accession code of SRR7536920. Next, we

mapped the simulated reads to the reference genome by using Hisat2 and Star. We subsequently used the

samtools merge (Li et al., 2009) to generate the merged alignments based on the mapping results of the

two aforementioned aligners. We ran Tiglon with alignments generated by both aligners as its input, while

ran StringTie2 and Scallop with the alignments of each aligner and the merged alignments as their input,

denoted as StringTie2+Hisat2, StringTie2+Star, StringTie2+MergedAlignments, Scallop + Hisat2,

Scallop + Star, and Scallop + MergedAlignments. In addition, we ran StringTie2 in the mode –merge

with the assemblies produced by StringTie2+Hisat2 and StringTie2+Star as its input to generate a unified

set of transcripts, denoted as StringTie2-Merge.

First, we evaluated the performance of each assembler by precision and the number of correctly assembled

transcripts. Testing results on the simulated dataset showed that Tiglon performed the best, which correctly

reconstructedmuchmore transcripts, while kept the highest precision. Concretely, the correctly assembled

transcripts of Tiglon reached 22,928, versus 20,630 for StringTie2-Merge, 20,654 for StringTie2+

MergedAlignments, 20,277 for Scallop + MergedAlignments, while 18,800 for StringTie2+Hisat2, 19,267

for StringTie2+Star, 18,786 for Scallop + Hisat2, and 19,463 for Scallop + Star. Broadly, by making

strategic use of the alignments of both aligners, Tiglon recovered 11.1% more correct transcripts than

StringTie2-Merge, 11.01% more than StringTie2+MergedAlignments, 13.1% more than Scallop +

MergedAlignments, while 17.8%–22% more than StringTie2 and Scallop depending on different aligners

(Figure 2A and Table S2). Comparison results showed that Tiglon also achieved the highest precision of

64.01%, versus StingTie2-Merge of 56.40%, StringTie2+MergedAlignments of 56.87%, Scallop +

MergedAlignments of 36.81%, StringTie2+Hisat2 of 58.94%, StringTie2+Star of 58.82%, Scallop + Hisat2

of 52.86%, and Scallop + Star of 41.60%. On these grounds, Tiglon showed superior performance among

all the compared assemblers regardless of the number of correctly assembled transcripts or precision.

Besides, we further calculated the F-score, a harmonic mean of recall and precision (calculated as 2*pre-

cision*recall/(precision + recall)) to evaluate the overall performance of each assembler, where the recall

means the fraction of correctly identified reference transcripts in the ground truth. On the simulated data-

set, Tiglon obtained an F-score of 0.480, a significant increase over StringTie2-Merge of 0.428,

StringTie2+MergedAlignments of 0.430, Scallop + MergedAlignments of 0.353, StringTie2+Hisat2 of

0.410, StringTie2+Star of 0.412, Scallop + Hisat2 of 0.394, and Scallop + Star of 0.365, which demonstrated

that Tiglon had a more remarkable capability to balance the recall and precision (Figure 2B and Table S2).
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Generally speaking, it is more difficult to reconstruct transcripts with relatively low expressions, while lowly

expressed ones may play important roles in organisms. We then evaluated the ability of assemblers in

recovering transcripts with different expression levels. As did by Shao et al. in their evaluation of Scallop

(Shao and Kingsford, 2017), we first sorted the expressed transcripts according to their expression abun-

dances. Then, all the expressed transcripts were equally divided into three parts, which corresponded to

low, middle, and high expressed ones. Finally, we computed the number of correctly identified transcripts

in each part for each assembler. The results revealed that Tiglon consistently outperformed all the others in

recovering transcripts of different expression levels (Figure 2C and Table S15). Particularly for the lowly ex-

pressed ones, Tiglon correctly recovered 30.11% more than StringTie2-Merge, 19.08% more than

StringTie2+MergedAlignments, 58.06% more than Scallop + MergedAlignments, and 40%–108% more

than StringTie2 and Scallop depending on different aligners.

Based on the above comparison, it is concluded that by integrating alignments produced by Hisat2 and

Star, Tiglon achieved the best performance among the tested assemblers. Especially, Tiglon reconstructed

significantly more expressed transcripts than the others.

Performance evaluation on the real datasets

Because the expressed transcripts and their expression abundances are precisely known for the simulated

dataset, tests on the simulated data are persuasive. However, simulation cannot capture the entire features

of real biological datasets, so evaluation on real datasets is of great significance to further verify the assem-

bling performance in real applications. Different from the simulated dataset, the ground truth of real data-

sets is difficult to know. Nonetheless, it is generally safe to assume that an assembler is more accurate if it

recovers more known annotated transcripts (Kovaka et al., 2019). In this study, all the transcripts (NCBI

RefSeq in GTF format) of the species H. sapiens and M. musculus downloaded from the UCSC Genome

Browser were set as the ground truth. And, eight H. sapiens RNA-seq samples H1–H8 and four

M. musculus RNA-seq samples M1–M4 were collected to evaluate the performance of the assemblers.

All these datasets were downloaded from NCBI Sequence Read Archive (SRA); the accession codes for

the H. sapiens samples were SRA: SRR307911, SRA: SRR387662, SRA: SRR10517380, SRA: ERR2403203,

SRA: SRR307903, SRA: SRR315323, SRA: SRR315334, and SRA: SRR7536920, and for the M. musculus sam-

ples were SRA: DRR205674, SRA: DRR205677, SRA: ERR3320855, and SRA: ERR3320871. The detailed

description of these datasets can be found in Table S1. We then evaluated the assemblers on the 12

real datasets in terms of the same criteria as we did on the simulated dataset. The results exhibited that

Tiglon consistently achieved the best performance on all the 12 real datasets.

Figure 2. Performance evaluation on the simulated dataset

(A) Precision and the number of correctly assembled transcripts of the assemblers on the simulated dataset.

(B) F-score of the assemblers on the simulated dataset.

(C) Comparisons of detected transcripts with low, middle, and high expression levels on the simulated dataset. The abbreviation ST is for StringTie2, SC for

Scallop, and MA for MergedAlignments.
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Performance evaluation on the H. sapiens samples

We first mapped the eight H. sapiens RNA-seq samples to the reference genome by using Hisat2 and Star,

respectively, followed by generating the merged alignments for each sample, and we subsequently ran the

assemblers. The results showed that Tiglon reached consistently and significantly a higher number of

correctly assembled transcripts and precision than all the other assemblers on all the tested datasets

(Figure 3).

Specifically, the correctly recovered transcripts on the eight samples of Tiglon ranged from 13,244 to

20,489, with an average of about 17,377, versus 12,278–18,112 for StringTie2-Merge with an average of

15,831, 12,429–17,857 for StringTie2+MergedAlignments with an average of 15,584, 11,397–17,371 for

Scallop + MergedAlignments with an average of 15,251, 10,369–16,671 for StringTie2+Hisat2 with an

Figure 3. Performance evaluation on the eight Homo sapiens samples H1–H8

(A) Precision and the number of correctly assembled transcripts of the assemblers on the eight samples.

(B) Average F-score of the assemblers on the eight samples. The error bars show the SD (the same for other panels).

(C) The average number of correctly assembled transcripts with different expression levels by the assemblers on the eight samples. The abbreviation ST is for

StringTie2, SC for Scallop, and MA for MergedAlignments.
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average of 13,834, 11,116–16,469 for StringTie2+Star with an average of 14,303, 9993–16,531 for Scallop +

Hisat2 with an average of 13,802, and 10,653–16,750 for Scallop + Star with an average of 14,470. On the

whole, averaged on the eight tested datasets, Tiglon reconstructed 9.51% more correct transcripts than

StringTie2-Merge, 11.25% more than StringTie2+MergedAlignments, 13.68% more than Scallop +

MergedAlignments, 25.32% more than StringTie2+Hisat2, 21.21% more than StringTie2+Star, 25.61%

more than Scallop + Hisat2, and 19.82% more than Scallop + Star (Figure 3A and Tables S3–S10).

The high number of correct transcripts assembled by Tiglon was not at the cost of its precision. In terms of

precision, Tiglon still kept the highest on all the tested samples. The average precision of Tiglon on the

eight samples reached about 41.27%, while 35.89% for StringTie2-Merge, 32.03% for StringTie2+-

MergedAlignment, 26.90% for Scallop + MergedAlignments, 36.31% for StringTie2+Hisat2, 36.31% for

StringTie2+Star, 30.47% for Scallop + Hisat2, and 29.77% for Scallop + Star. Overall, Tiglon showed an

average improvement of 13.67%–53.44% over the other approaches (Figure 3A and Tables S3–S10).

Furthermore, we calculated the F-score for each assembler, and Tiglon remained in its best performance.

Averaged on the eight samples, the F-score of Tiglon reached 0.1701, which was about 10.67%–28.08%

higher than the other approaches (Figure 3B and Tables S3–S10).

After that, we evaluated the ability of the assemblers in reconstructing transcripts with different expression

levels. Although we cannot know the expression abundance for the ground truth, we used the well-known

abundance estimator Kallisto (Bray et al., 2016) to quantify the eight RNA-seq samples. Based on the esti-

mated abundance, we classified transcripts into three parts corresponding to low, middle, and high expres-

sion levels as we did on the simulated dataset. Comparing among these assemblers, Tiglon consistently

achieved the highest number of correctly assembled transcripts on different expression levels upon all

the tested samples (Figure 3C and Tables S16–S23). What’s more, Tiglon exhibited a significant

superiority over all the others in producing transcripts with low expression levels. On the eight samples,

Tiglon correctly recovered 22.57%–53.48% more lowly expressed transcripts than StirngTie2-

Merge, 29.73%–62.48% more than StringTie2+MergedAlignments, 40.71%–89.05% more than Scallop +

MergedAlignments, 67.65%–135.38% more than StringTie2+Hisat2, 51.93%–87.11% more than

StringTie2+Star, 68.20%–161.18% more than Scallop + Hisat2, and 59.28%–116.55% more than Scallop +

Star.

Performance evaluation on the M. musculus samples

We then evaluated the performance of Tiglon on the four M. musculus samples. We first mapped the four

M. musculus RNA-seq samples to the reference genome and generated the merged alignments, and then

ran the assemblers depending on the alignments. As expected, Tiglon actually demonstrated the best per-

formance (Figure 4).

On the four M. musculus samples, the correctly assembled transcripts of Tiglon achieved 14,450–17,683

with an average of 16,153, which was 4.74% higher than StingTie2-Merge, 4.28% higher than

StringTie2+MergedAlignments, 14.01% higher than Scallop + MergedAlignments, and 12.72%–17.51%

higher than StingTie2 and Scallop depending on aligners. Evaluation in terms of precision, Tiglon again

performed better. To be specific, Tiglon reached an average precision of 51.71% with the range

from 50.44% to 52.73% on the four samples, versus average precision 44.42% for StringTie2-Merge,

37.75% for StringTie2+MergedAlignments, 31.11% for Scallop + MergedAlignments, 44.31% for

StringTie2+Hisat2, 43.64% for StringTie2+Star, 35.27% for Scallop + Hisat2, and 34.16% for Scallop +

Star. Overall, Tiglon exhibited an average improvement of 16.40%–66.19%% over the other approaches

(Figure 4A and Tables S11–S14).

We also computed the F-score. Averaged on samples, the F-score of Tiglon reached about 0.2341, which

was 7.45% higher than StringTie-Merge, 12.19% higher than StringTie2+MergedAlignments, 21.85%

higher than Scallop +MergedAlignments, and 14.17%–24.86% higher than StringTie2 and Scallop depend-

ing on different aligners (Figure 4B and Tables S11–S14).

As did in theH. sapiens samples, we next evaluated the performance of recovering transcripts with different

expression levels. The comparison showed that Tiglon outperformed all the others regardless of expres-

sion levels on all the four tested samples. Especially in terms of recovering lowly expressed transcripts,
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Tiglon demonstrated an improvement of 25.36%–39.91% over StringTie2-Merge, 19.65%–45.05% over

StringTie2+MergedAlignments, 55.40%–96.11% over Scallop + MergedAlignments, 67.74%–98.69% over

StringTie2+Hisat2, 56.12%–79.09% over StringTie2+Star, 126.85%–154.34% over Scallop + Hisat2, and

108.64%–139.58% over Scallop + Star (Figure 4C and Tables S24–S27).

Performance evaluation on additional samples

With so many public RNA-seq samples available, in addition to the above evaluation, we further ran the

assemblers on additional 38 real RNA-seq samples, with 28 from the species of H. sapiens and 10 from

theM. musculus (Table S1 record the accession code and description of these samples). On all these addi-

tional tests, Tiglon consistently exhibited the best performance with significant improvements in both the

number of correctly assembled transcripts and precision over all the other approaches (Figures S1–S4).

Performance comparisons between running tiglon with multiple aligners and with only one

aligner

Tiglon is specifically designed for integrating multiple alignments to assemble full-length transcripts,

where the alignments are generated by different mapping tools. To show the advantages of Tiglon’s inte-

grating technics (here denoted as Tiglon + Hisat2&Star), we further ran Tiglon with the alignments gener-

ated by only one aligner (Hisat2 or Star) as its input on the eight H. sapiens samples H1–H8, and four

M. musculus samples M1–M4, denoted as Tiglon + Hisat2 and Tiglon + Star. We compared Tilgon + Hi-

sat2&Star with Tiglon + Hisat2 and Tiglon + Star, and the results demonstrated that Tiglon + Hisat2&Star

performed significantly better no matter in terms of precision or the number of correctly assembled tran-

scripts. Averaged on the eight H. sapiens samples, Tiglon + Hisat2&Star showed an improvement of 6.47%

Figure 4. Performance evaluation on the four Mus musculus samples M1–M4

(A) Precision and the number of correctly assembled transcripts of the assemblers on the four samples.

(B) Average F-score of the assemblers on the four samples. The error bars show the SD (the same for other panels).

(C) The average number of correctly assembled transcripts with different expression levels by the assemblers on the four samples. The abbreviation ST is for

StringTie2, SC for Scallop, and MA for MergedAlignments.
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and 6.91% on precision, and 16.11% and 13.98% on the number of correct transcripts over Tiglon + Hisat2

and Tiglon + Star. And, on the four M. musculus samples, the improvements were 9.19% and 7.26%, and

12.17% and 10.05%, respectively (Figures S5–S6 and Tables S3–S14).

Comparing tiglon with our previous algorithms TransBorrow and iPAC

We then compared Tiglon with our previous algorithms, TransBorrow (Yu et al., 2020b) and iPAC (Yu et al.,

2020a), both were single aligner-based assemblers, where TransBorrow that employed a borrowing strat-

egy was run by taking the assemblies of StringTie2 and Scallop as its input, and iPACwas run with its default

setting. We evaluated the performance on the eight H. sapiens samples H1–H8, and the four M. musculus

samples M1–M4 under Hisat2 and Star alignments. It is worth mentioning that TransBorrow and iPAC

cannot be run with the merged alignments produced by samtools merge. The comparing results exhibited

that the proposed multiple aligner-based Tiglon algorithm outperformed both TransBorrow and iPAC

significantly. For instance, averaged on the eight H. sapiens samples, Tiglon correctly recovered 12.2%

and 8.5% more transcripts than TransBorrow + Hisat2 and TransBorrow + Star, and 16.1% and 14.0%

more than iPAC + Hisat2 and iPAC + Star, while in terms of precision, Tiglon averagely showed an improve-

ment of 4.02%–4.26% over TransBorrow and 6.47%–6.91% over iPAC depending on Hisat2 or Star align-

ments (see Figures S7, S8 and Tables S3–S14 for details).

Additional tests

It is worthmentioning that, in this research, we used Hisat2 and Star to produce the alignments for the RNA-

seq samples, where Star was run with its default settings, while Hisat2 was run with the option –dta (in the

Hisat2 manual, it means ‘‘reports alignments tailored for transcript assemblers’’). Here, we further used the

default settings (without the option –dta) of Hisat2 to generate the alignments. Based on the new produced

Hisat2 default alignments and the aforementioned Star alignments, we made the test on the samples

H1–H8 and M1–M4 once again, and the testing results exhibited a similar performance trend where Tiglon

consistently kept the superior performance (Figure S7).

Comparison of consumptions of computing resources

All the assemblers were run on the same server with 768 GB of memory and a 32-core CPU. On all the tested

datasets, Tiglon ran a little slower than StringTie2 and Scallop, and it costed more memory than StringTie2,

which was almost the same as Scallop. For example, on the first dataset H1, which contains 41 million

paired-end reads, the running time of StringTie2 was 18 and 17 min based on Hisat2 and Star, respectively,

19 and 19 min for Scallop, and 46 min for Tiglon that ran with the alignments produced by both aligners in

parallel. For memory usage, StringTie2 costed the least memory of no more than 1 GB. In contrast, the two

assemblers Scallop and Tiglon exhibited a similar trend, with the maximum memory usage of 5–9 GB for

Scallop and approximately 8 GB for Tiglon. Overall, Tiglon is not the most economical in running time

and memory usage; even so, it is quite acceptable for practical use.

DISCUSSION

We present Tiglon, a new genome-guided assembler that integrates multiple alignments of different map-

ping tools to reconstruct transcripts. Wemainly focused on the performance comparison between the pro-

posed Tiglon and two of the extremely popular and extensively used assemblers StringTie2 and Scallop,

depending on the alignments of Hisat2, Star, and themerged alignments of both. Based on the test results,

Tiglon demonstrated a significant superiority in performance on both simulated and real biological data-

sets. Its advantages may be attributed to 1) integrating alignments of different aligners and building the

labeled splice graph capture more splicing junctions than the traditional approaches, which base on

only one aligner 2) extracting much more reliable paired paths depending on the labeled splice graph,

and 3) the newly developed labeled-based dynamic path-searching techniques for extracting all the tran-

script-representing paths over the labeled splice graphs. These unique ingredients make the Tiglon algo-

rithm not only highly sensitive but also remarkably precise.

Moreover, we compared Tiglon with two of our previous algorithms TransBorrow and iPAC, where iPAC

utilized the phasing graph model, and TransBorrow employed a borrowing strategy (make use of the as-

sembly results of other algorithms). These two assemblers are designed from different angles to generate

the assemblies. However, both are not compatible with the merged alignments produced by different

aligners. The proposed Tiglon algorithm, which is designed for integrating multiple alignments, exhibits
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better performance. That is to say, taking multiple alignments into consideration would be a helpful strat-

egy for transcriptome assembly. We hope it would open up new ideas for the researchers to develop better

algorithms. From our perspectives, a combination of the proposed integrating strategy and the borrowing

strategy that used in the TransBorrow algorithm would be an interesting attempt to improve the assembly

accuracy. We will definitely explore this in our future work.

Although the current version of Tiglon exhibits significant advantages, there is still room for further im-

provements in the future. For instance, the current version is not compatible with long-read RNA-seq data-

sets (e.g., Pacific Biosciences [PacBio] or Oxford Nanopore Technologies [ONT]). In the future version, we

will attempt to solve the problem.

To the best of our knowledge, Tiglon is the first genome-guided transcriptome assembler that is specif-

ically designed to integrate alignments of different mapping tools to build the labeled splice graph and

to extract more reliable paired paths. Tiglon employs a dynamic programming algorithm to recover the

transcripts by making strategic use of the label information. The software has been developed to be

user-friendly. It is expected to play a crucial role in discoveries of transcriptome studies using RNA-seq,

especially in complicated human diseases related to abnormal splicing events and expression levels,

such as cancers.

Limitations of the study

We introduce a new tool designed to deliver better performance in transcriptome assembly. The current

version of Tiglon does not have an option for annotation-guided assemblies, i.e., where the known tran-

script annotations are used to guide the assembly procedure. Such annotation-guided assembly is sup-

posed to achieve higher accuracy. We intend in our future work to focus not only on the usage of the

sequence alignment but also on the usage of other information, such as the known annotations, and

even the assembly results of other tools.
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REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Fastq files for RNA-seq of H1 Sequence Read Archive (SRA) in NCBI SRA accession: SRR307911

Fastq files for RNA-seq of H2 Sequence Read Archive (SRA) in NCBI SRA accession: SRR387662

Fastq files for RNA-seq of H3 Sequence Read Archive (SRA) in NCBI SRA accession: SRR10517380

Fastq files for RNA-seq of H4 Sequence Read Archive (SRA) in NCBI SRA accession: ERR2403203

Fastq files for RNA-seq of H5 Sequence Read Archive (SRA) in NCBI SRA accession: SRR307903

Fastq files for RNA-seq of H6 Sequence Read Archive (SRA) in NCBI SRA accession: SRR315323

Fastq files for RNA-seq of H7 Sequence Read Archive (SRA) in NCBI SRA accession: SRR315334

Fastq files for RNA-seq of H8 Sequence Read Archive (SRA) in NCBI SRA accession: SRR7536920

Fastq files for RNA-seq of M1 Sequence Read Archive (SRA) in NCBI SRA accession: DRR205674

Fastq files for RNA-seq of M2 Sequence Read Archive (SRA) in NCBI SRA accession: DRR205677

Fastq files for RNA-seq of M3 Sequence Read Archive (SRA) in NCBI SRA accession: ERR3320855

Fastq files for RNA-seq of M4 Sequence Read Archive (SRA) in NCBI SRA accession: ERR3320871

Fastq files for RNA-seq of S1 Sequence Read Archive (SRA) in NCBI SRA accession: SRR545723

Fastq files for RNA-seq of S2 Sequence Read Archive (SRA) in NCBI SRA accession: SRR534291

Fastq files for RNA-seq of S3 Sequence Read Archive (SRA) in NCBI SRA accession: SRR8767255

Fastq files for RNA-seq of S4 Sequence Read Archive (SRA) in NCBI SRA accession: SRR307905

Fastq files for RNA-seq of S5 Sequence Read Archive (SRA) in NCBI SRA accession: SRR8759122

Fastq files for RNA-seq of S6 Sequence Read Archive (SRA) in NCBI SRA accession: SRR315326

Fastq files for RNA-seq of S7 Sequence Read Archive (SRA) in NCBI SRA accession: SRR315330

Fastq files for RNA-seq of S8 Sequence Read Archive (SRA) in NCBI SRA accession: SRR8867129

Fastq files for RNA-seq of S9 Sequence Read Archive (SRA) in NCBI SRA accession: SRR8867125

Fastq files for RNA-seq of S10 Sequence Read Archive (SRA) in NCBI SRA accession: SRR8767256

Fastq files for RNA-seq of S11 Sequence Read Archive (SRA) in NCBI SRA accession: SRR7478767

Fastq files for RNA-seq of S12 Sequence Read Archive (SRA) in NCBI SRA accession: SRR7536918

Fastq files for RNA-seq of S13 Sequence Read Archive (SRA) in NCBI SRA accession: SRR10517375

Fastq files for RNA-seq of S14 Sequence Read Archive (SRA) in NCBI SRA accession: SRR10517379

Fastq files for RNA-seq of S15 Sequence Read Archive (SRA) in NCBI SRA accession: SRR10517374

Fastq files for RNA-seq of S16 Sequence Read Archive (SRA) in NCBI SRA accession: SRR8315697

Fastq files for RNA-seq of S17 Sequence Read Archive (SRA) in NCBI SRA accession: SRR8315695

Fastq files for RNA-seq of S18 Sequence Read Archive (SRA) in NCBI SRA accession: SRR7047912

Fastq files for RNA-seq of S19 Sequence Read Archive (SRA) in NCBI SRA accession: SRR8867128

Fastq files for RNA-seq of S20 Sequence Read Archive (SRA) in NCBI SRA accession: SRR8588656

Fastq files for RNA-seq of S21 Sequence Read Archive (SRA) in NCBI SRA accession: SRR10611961

Fastq files for RNA-seq of S22 Sequence Read Archive (SRA) in NCBI SRA accession: SRR10039475

Fastq files for RNA-seq of S23 Sequence Read Archive (SRA) in NCBI SRA accession: SRR6013560

Fastq files for RNA-seq of S24 Sequence Read Archive (SRA) in NCBI SRA accession: ERR3639847

Fastq files for RNA-seq of S25 Sequence Read Archive (SRA) in NCBI SRA accession: ERR3639846

Fastq files for RNA-seq of S26 Sequence Read Archive (SRA) in NCBI SRA accession: ERR3639851

Fastq files for RNA-seq of S27 Sequence Read Archive (SRA) in NCBI SRA accession: ERR3639849

Fastq files for RNA-seq of S28 Sequence Read Archive (SRA) in NCBI SRA accession: SRR8759124

(Continued on next page)
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead con-

tact, Ting Yu (yutingsdu@163.com).

Materials availability

No unique reagents were generated in this study.

Data and code availability

Tiglon is implemented in C++ and is freely available as open-source software at https://github.com/

yutingsdu/Tiglon-v.1.1.git. The simulated data set can be downloaded from https://sourceforge.net/

projects/tiglon/files/SimulatedDataset/. The assembled results of each assembler were also uploaded to

website https://sourceforge.net/projects/tiglon/files/Datasets/. The reference genome of the Homo sapi-

ens (version: GRCh38/hg38) and Mus musculus (version: GRCm38/mm10) were downloaded from the

UCSC Genome Browser at https://hgdownload.soe.ucsc.edu/goldenPath/hg38/chromosomes/ and

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Fastq files for RNA-seq of S29 Sequence Read Archive (SRA) in NCBI SRA accession: ERR3502071

Fastq files for RNA-seq of S30 Sequence Read Archive (SRA) in NCBI SRA accession: SRR11114714

Fastq files for RNA-seq of S31 Sequence Read Archive (SRA) in NCBI SRA accession: SRR11171673

Fastq files for RNA-seq of S32 Sequence Read Archive (SRA) in NCBI SRA accession: SRR11171674

Fastq files for RNA-seq of S33 Sequence Read Archive (SRA) in NCBI SRA accession: DRR205676

Fastq files for RNA-seq of S34 Sequence Read Archive (SRA) in NCBI SRA accession: DRR205678

Fastq files for RNA-seq of S35 Sequence Read Archive (SRA) in NCBI SRA accession: ERR3320877

Fastq files for RNA-seq of S36 Sequence Read Archive (SRA) in NCBI SRA accession: ERR3320873

Fastq files for RNA-seq of S37 Sequence Read Archive (SRA) in NCBI SRA accession: SRR203276

Fastq files for RNA-seq of S38 Sequence Read Archive (SRA) in NCBI SRA accession: ERR3320869

Human reference genome, GRCh38/hg38 Genome Reference Consortium https://hgdownload.soe.ucsc.edu/goldenPath/hg38/

chromosomes/

Mouse reference genome, GHCm38/mm10 Genome Reference Consortium https://hgdownload.soe.ucsc.edu/goldenPath/mm10/

chromosomes/

Human reference transcriptome,

hg38.ncbiRefSeq.gtf

Genome Reference Consortium http://genome.ucsc.edu/cgi-bin/hgTables

Mouse reference transcriptome,

mm10.ncbiRefSeq.gtf

Genome Reference Consortium http://genome.ucsc.edu/cgi-bin/hgTables

Software and algorithms

Tiglon This paper https://github.com/yutingsdu/Tiglon-v.1.1.git

StringTie2 Kovaka et al. (2019) https://github.com/gpertea/stringtie/releases/tag/v2.1.4

Scallop Shao and Kingsford (2017) https://github.com/Kingsford-Group/scallop/releases/

tag/v0.10.2

iPAC Yu et al. (2020a) https://sourceforge.net/projects/transassembly/files/

Trans-Borrow Yu et al. (2020b) https://sourceforge.net/projects/transcriptomeassembly/

files/TransBorrow/

RSEM Li and Dewey (2011) http://deweylab.github.io/RSEM/

Hisat2 Kim et al. (2019) https://github.com/DaehwanKimLab/hisat2/releases/tag/

cba6e8cb

Star Dobin et al. (2013) https://github.com/alexdobin/STAR/releases/tag/2.5.3a

Samtools Li et al. (2009) http://sourceforge.net/projects/samtools/files/samtools/
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https://hgdownload.soe.ucsc.edu/goldenPath/mm10/chromosomes/, respectively. And the transcrip-

tome (NCBI RefSeq in GTF format) of the species Homo sapiens and Mus musculus were downloaded

from http://genome.ucsc.edu/cgi-bin/hgTables. And the accession code and description of all the RNA-

seq samples used in this study were detailed in Table S1. Besides, the running command for each tool

can be found in a shell script from https://sourceforge.net/projects/tiglon/files.

Any additional information required to reanalyze the data reported in this article is available upon request

from the primary contact.

METHOD DETAILS

By combining multiple alignments of different mapping tools, Tiglon constructs a new graph model,

namely the labeled splice graph, which integrates the paired-end and sequence depth information gener-

ated by different alignments effectively. Based on the labeled splice graph, Tiglon extracts more reliable

paired-end paths, and each paired-end path is given a label as well, followed by a label-based dynamic

programming path searching strategy to reconstruct the transcripts (See Figure S10 for the flowchart of

Tiglon algorithm).

Building labeled splice graphs

Tomake full use of the alignments produced by different mapping tools, we first build the traditional splice

graph based on each aligner and then merging them into the so-called the labeled splice graph.

Building splice graphs depending on alignments of each aligner in parallel

First, based on alignments of RNA-seq reads to the reference genome, we cluster the reads into different

gene loci. The exon-exon splicing junctions are derived from those junction reads. Then for each gene lo-

cus, we build the traditional splice graph G = (V, E), in which each node v corresponds to an exon and each

edge e corresponds to a splicing junction between two exons. Moreover, the edges and nodes are

weighted by the number of reads supporting them. It is worth mentioning that we heuristically remove rela-

tively low-weight edges or nodes that may be caused by sequencing errors or unreasonably aligns

After the splice graph is built, the sequence depth information will be projected onto the nodes and edges

of the splice graph as their weights. Generally, the weight of each node is defined as the average coverage

of the aligned reads to it, and the weight of every edge is defined as the number of spliced reads that span

it. Note that if a read is aligned tomultiple sites, supposeN, the contribution of this read is recorded as 1/N.

However, there may be quite a number of spurious splicing junctions in the splice graphs caused by

sequencing errors or mapping errors. We heuristically remove edges and nodes with relatively low weight

via the following criteria. 1) An edge with its weight less than 1 (noting that if a read is aligned to N sites, the

contribution of this read is 1/N) then it may correspond to a sequencing or mapping error. 2) If there is a

node with several out- (or in-) edges, such that one of them has a much smaller weight than the total

out- (or in-) weights (less than 0.1), then it probably represents a spurious splicing junction. 3) If the weight

of an out- (or in-) edge is less than 3% of the total in- (or out-) edges, then it is considered as a spurious

splicing junction. 4) If the weight of an edge is less than 2% of the average edge weight of the correspond-

ing splice graph, then we will also remove this edge. 5) If the weight of a single node (a node that is without

incoming edges and outgoing edges) is less than 10, the node is regarded as a false positive.

In theory, most splicing events in the expressed transcripts can be captured by the edges in the splice

graphs, and the sequencing depth information is appropriately used for the graph as the node and

edge weights. However, based on the alignments generated by only one aligner, a large number of

spurious (or missing) nodes and splicing junctions in the splice graphs may be caused by the mapping er-

rors (As an example in Figure 1, neither Hisat2 nor Star mappings captured the whole junctions of an an-

notated transcript). Moreover, a large number of paired paths (paths in the graph supported by the

paired-end reads) extracted from the traditional splice graph are not reliable. Thus, it is knotty to accurately

recover all the expressed transcripts based on the inaccurate splice graph generated using only one

aligner. However, via fully integrating the traditional splice graphs produced by different aligners, more

accurate splice graphs can be constructed, named the labeled splice graphs.
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Merging splice graphs of each aligner to generate the labeled splice graph

Suppose that we getN aligners to generate the alignments, and for each gene locus, we denote the splice

graph generated based on the aligner i ði % NÞ asGi = (Ei, Vi), and for each edge ei ˛ Ei, we denote the set

of reads that support ei as Rei. The labeled splice graph GL = (EL,VL) is generated by merging the splice

graphs Gi for i ˛ ½1; N�, in which the nodes and edges represent all the nodes and edges appearing in

Gi (i ˛ ½1; N�). Then we label GL in the following ways, for each edge e in GL, if d j ˛ ½1;N� such that e ;

Ej, then we label e with 1; otherwise, we label it with 2. In addition, for the edge e ˛ EL with label 2, if there

exist i and j (i; j ˛ ½1; N�; and i s j) such that Rei s Rej, we further label it with 2-, otherwise we label it with

2+. Afterwards, the weights of the edges of the labeled splice graph are assigned as the average weights of

the edges appearing in each Gi for i % N.

Extracting labeled paired paths

To make full use of the paired-end information for guiding more accurate transcript assembly, we extract

reliable labeled paired paths from each labeled graph.

First, for each gene locus, we generate a set of paired paths for each aligner i, denoted as PPi, which is

achieved by the following ways. For each paired-end read r1 and r2, based on the mappings of aligner i,

if r1 spans a path p1 = nj1/nj2/ . /njk, r2 spans a path p2 = nj’1/nj’2/ . /nj’q in graph GL, and p1

and p2 share a compatible sub-path pin = nm1/nm2/ . /nms satisfying k + q - s R 3, then the paired

path p is generated by connecting the two paths p1 and p2 via the shared compatible path pin, where

the compatible sub-path means the same sub-path at the right (left) terminal of p1 and the left (right) ter-

minal of p2, and the shared sub-path contains at least one edge of the labeled splice graph (see Figure S11

for an example). After all the paired-end reads mapped to GL are processed, we obtain a set PPi of all

paired paths depending on the aligner i. And it is worth mentioning that different paired-end reads may

generate the same paired path. Therefore, for each path p ˛ PPi , we denote Rpi as the set of paired-end

reads to generate p, and the number of paired-end reads that generate each paired path is regarded as

the coverage of the path, denoted as cov(p).

After generating the paired path set PPi along with paired-end reads set Rpi of each p ˛ PPi for each aligner

i, we set PPL = Ui ˛ ½1; N�PPi be the paired path of the labeled splice graph. Then we label each paired path

in PPL as how we label each edge e ˛ EL which is described in Merging splice graphs of each aligner to

generate the labeled splice graph.

Employing a new label-based dynamic programming path extraction algorithm

Theoretically, the expressed transcripts of a gene correspond to a path cover in the labeled splice graph.

Moreover, each labeled paired path corresponds to a segment of an expressed transcript and should be

covered by at least one predicted transcript. To achieve this goal, we strategically use the label information

and the reliable labeled paired paths in the labeled splice graph and employ a new labeled-based dynamic

programming algorithm that is similar to our previous study (Yu et al., 2021) to generate the transcript-rep-

resenting path cover over each labeled graph. In detail, we recover the expressed transcripts by the

following steps.

Step1. Choosing a seed and generate a subgraph from the seed

A seed is an edge or a paired path in the labeled splice graph that can further grow into a full-length tran-

script-representing path. Choose an unused paired path of label 2+ with the largest weight as the seed. If

such kinds of paired paths do not exist or they have been all included in the assembled transcripts, the seed

will be chosen in the following order: paired paths with label 2-, edges with label 2+, edges with label 2-,

paired paths with label 1 or edges with label 1. Paired paths or edges with label 2 mean that they are

captured by multiple aligners. That is, they are more likely to be true positives, and such seeds will grow

into expressed full-length transcripts with higher probability.

Suppose the chosen seed be S = vk/vk+1/./vl for a paired path or S = vk/vl for an edge.We extend it

to all the right (left) neighbors of node vk (vl) and keep extending until all the neighbors encounter a node

without out- (in-) edges, then a subgraph GS of GL is generated from the chosen seed.
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Step2. Extending paths via label-based dynamic programming

We expect to find the most highly expressed transcripts from the extended subgraphGS, which is achieved

by using a dynamic programming algorithm. The idea behind the dynamic programming algorithm is to

progressively discover the path of higher weight from the seed to every other edge.

We first add an origin (destination) node to the subgraph GS by connecting it to all the nodes without in-

(out-) edges, and set the weights and labels of the newly added edges to be N and 1, respectively.

Suppose that the edges in GS are ordered by topological sort. Without loss of generality, we number

them as 0, 1, 2 . N. For each edge i = v/w in GS, where v and w are the endpoints of edge i, we denote

In_edges(i) as the set of in-coming edges of node v, Out_edges(i) the set of out-going edges of node w,

and weight(i) the coverage of edge i.

Assume that the edge vk/vk+1 in the seed S (note that S= vk/vk+1/ . /vl for a paired path seed or

S = vk/vl for an edge seed) corresponds to edge m and the edge vl-1/vl in the seed S corresponds to

edge n (note that if the seed is an edge then m = n, otherwise m<n).

The algorithm maintains two variables Expi and Prei (Suci) for edge i from n to N (from m to 0), where Expi

represents an upper bound on the highest expression of the path from the seed to edge i and Prei (Suci) is

the predecessor (successor) edge of i. The dynamic programming algorithm starts with Expm = cov(S), Expn

= cov(S), Expi = N (i<m or i>n), and Prei = null for i>=n, Suci = null for i<=m.

For i from n+1 to N, choose an edge i’ of label 2+ with the largest Expi’ from In_edges(i) (if there doesn’t

exist edges with label 2+, then choose the edge i’ in the following order: edges with label 2-, edges with

label 1). And then set Expi to bemin{weight(i), Expi’} and Prei to be i’. For i from m-1 to 1, we use the same

way to set Expi and Suci.

Starting at the edge of the largest Exp linked with the destination (origin) and extending backward (for-

ward) based on the tag Pre (Suc) until reaching the seed S, the highest expressed transcript ph in graph

GS is recovered (see Figure S12 for an example).

Step3. Updating labeled splice graph and repeating the procedure

Defining fmin as the minimum edge weight in the extended path ph, we update the weight weight(e) to be

weight(e)-fmin for each edge e in ph, and if weight(e) is equal to 0 after updating, we’ll set its label to be 1.

Repeat the path extraction procedure Step1 to Step 3, until all the edges in graphGL have been covered by

the predicted transcripts. Finally, a transcript-representing path cover is obtained, where all the paired

paths have been covered by the assembled transcripts.
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