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ABSTRACT
Background: Obesity-induced glucose metabolism disorder is associated with

chronic, low-grade, systemic inflammation and is considered a risk factor for

diabetes and metabolic syndrome. Resveratrol (RES), a natural anti-inflammatory

compound, is observed to improve glucose tolerance and insulin sensitivity in obese

rodents and humans. This study aimed to test the effects of RES administration on

insulin signaling and the inflammatory response in visceral white adipose tissue

(WAT) caused by a high-fat diet (HFD) in mice.

Methods: A total of 40 wild-type C57BL/6 male mice were divided into four groups

(10 in each group): the standard chow diet (STD) group was fed a STD; the HFD

group was fed a HFD; and the HFD-RES/L and HFD-RES/H groups were fed a HFD

plus RES (200 and 400 mg/kg/day, respectively). The L and H in RES/L and RES/H

stand for low and high, respectively. Glucose tolerance, insulin sensitivity, circulating

inflammatory biomarkers and lipid profile were determined. Quantitative PCR and

Western blot were used to determine the expression of CC-chemokine receptor 2

(CCR2), other inflammation markers, glucose transporter 4 (GLUT4), insulin

receptor substrate 1 (IRS-1) and pAkt/Akt and to assess targets of interest involving

glucose metabolism and inflammation in visceral WAT.

Results: HFD increased the levels of total cholesterol, triglycerides, low-density

lipoprotein cholesterol and proinflammatory cytokines in serum, decreased the

high-density lipoprotein cholesterol level in serum, and induced insulin resistance

and WAT inflammation in mice. However, RES treatment alleviated insulin

resistance, increased the expressions of pAkt, GLUT4 and IRS-1 in WAT, and

decreased serum proinflammatory cytokine levels, macrophage infiltration and

CCR2 expression in WAT.

Conclusion: Our results indicated that WAT CCR2 may play a vital role in

macrophage infiltration and the inflammatory response during the development of

insulin resistance in HFD-induced obesity. These data suggested that administration

of RES offers protection against abnormal glucose metabolism and inflammatory

adaptations in visceral WAT in mice with HFD-induced obesity.
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INTRODUCTION
The global prevalence of obesity has increased rapidly in recent years, and the number

of overweight or obese adults worldwide is expected to reach 3.3 billion by 2030

(Kelly et al., 2008). The rapid increase in obesity worldwide will lead to an increasing

in related health complications, including insulin resistance, type 2 diabetes mellitus

(T2DM), nonalcoholic fatty liver disease and cardiovascular disorders. Accumulating

animal and human research evidence implicates obesity and related metabolic

disturbances as the major risk factors for the development of insulin resistance and T2DM

(Qatanani & Lazar, 2007). Obesity is a chronic, low-grade inflammation that increases

various inflammatory reactions related to body fat (Pradhan, 2007). White adipose

tissue (WAT), a very important endocrine organ, consists mainly of subcutaneous adipose

tissue (SAT) and internal adipose tissue. Internal adipose tissue makes up approximately

20% of the total body fat mass and mainly consists of visceral adipose tissue (VAT).

In obesity, inflammation can occur due to increased levels of chemokines (such as CCL2

and CXCL1) and inflammatory cytokines (such as tumor necrosis factor a (TNF-a)
and interleukin-6 (IL-6)) secreted from accumulated fat in hepatocytes and

adipocytes, causing insulin resistance (Kim et al., 2017; Xu et al., 2003). In obesity,

macrophage infiltration in adipose tissue was observed in both rodents and humans

(Fjeldborg et al., 2014; Harford et al., 2011; Michaud et al., 2012). Macrophages are

important immune cells, and the activation of macrophages could release various

cytokines that promote the development of insulin resistance (Park et al., 2016;

Zheng et al., 2015). The above studies indicate that reducing the levels of chemokines,

secreted inflammatory cytokines and macrophage infiltration in VATmay alleviate

obesity-induced insulin resistance and its progression.

CC-chemokine receptor 2 (CCR2), a receptor for monocyte chemoattractant proteins

(MCPs), plays a pivotal role in the entry of innate immune cells into tissue and

influences systemic insulin resistance and adipose tissue inflammation associated with

obesity in high-fat-fed murine models (Weisberg et al., 2006). Studies have demonstrated

that CCR2 deficiency could reduce the migration of macrophages in adipose tissue

(Bolus et al., 2015). Pharmacological inhibition of CCR2 can reduce inflammation in

adipose tissue, alter hepatic metabolism and ameliorate multiple diabetic parameters

in mouse models of T2DM and high-fat diet (HFD)-fed mice (Kim et al., 2015;

Sullivan et al., 2013). Moreover, deficiency of CCR2 in macrophages alleviates

inflammation of adipose tissue and the associated metabolic syndrome (abnormal

glucose tolerance, insulin sensitivity profiles and hepatic steatosis) in obese mice

(Kim et al., 2016). Resveratrol (RES, 3,4′,5-trihydroxystilbene) is a polyphenol mainly

found in grapes, mulberries and red wine, and it provides many health benefits including

cardioprotective and anti-inflammatory effects. RES inhibits monocyte CCR2 binding

activity and expression in a NO-, MAPK- and PI3K-dependent manner in THP-1

monocytes (Cullen et al., 2007). Furthermore, RES metabolites showed anti-inflammatory
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properties via regulating chemokines in a lipopolysaccharide-activated U-937

macrophage model (Schueller, Pignitter & Somoza, 2015). Recent studies demonstrated

that RES ameliorates inflammation and insulin resistance in murine models of obesity

induced by a HFD (Côté et al., 2015; Pan et al., 2015; Zhao et al., 2016). However, whether

RES treatment could inhibit macrophage infiltration and regulate insulin signaling in

insulin-sensitive WAT in obesity is still unknown.

Considering the key role of the innate immune system in obesity-induced

inflammation, the regulatory function of CCR2 on inflammation and the recruitment

of macrophages to insulin-sensitive tissues in response to HFD-induced obesity,

we investigated the role of CCR2 in abnormal glucose disorder and inflammation of

adipose tissue induced by HFD. We also determined whether RES administration would

alleviate inflammation and the effects of disordered glucose metabolism induced by HFD

treatment by inhibiting CCR2 expression and enhancing insulin sensitivity in VAT and

SAT in obese mice.

MATERIALS AND METHODS
Chemicals and reagents
Resveratrol (3,4,5-trihydroxy-trans-stilbene) was obtained from Sigma-Aldrich

(St. Louis, MO, USA). Total cholesterol (TC), triglycerides (TG), high-density lipoprotein

cholesterol (HDL) and low-density lipoprotein cholesterol (LDL) assay kits for estimation

of TG, cholesterol, HDL and LDL in serum were purchased from BIOSINO

Bio-technology and Science Inc. (Beijing, China). An insulin ELISA kit was obtained from

Bai Wo (Shanghai, China). TRIzol and the oligonucleotides for PCR were obtained

from Invitrogen, Inc. (Carlsbad, CA, USA), and a real-time quantitative PCR kit was

purchased from TAKARA Bio, Inc. (cat. RR037A and RR420A; Otsu, Shiga, Japan).

Mouse anti-b-actin antibody (cat. A5441) was obtained from Sigma-Aldrich (St. Louis,

MO, USA), rabbit anti-Akt (protein kinase B) (cat. 4691T), rabbit anti-phosphorylated

(p)-Akt (phosphorylated at Ser473) (cat. 4058T), rabbit anti-insulin receptor substrate 1

(IRS-1) (cat. 2390S) and rabbit anti-glucose transporter 4 (GLUT4) (cat. 2213S)

antibodies were purchased from Cell Signaling Technology (Billerica, MA, USA).

Rabbit anti-CCR2 antibody (cat. DF2711) and goat anti-rabbit IgG (H+L)-HRP (cat. S0001,

dilution, 1:5,000) and goat anti-mouse IgG (H+L)-HRP (cat. S0002, dilution, 1:5,000)

secondary antibodies were purchased from Affinity Biosciences, Inc. (Cincinnati, OH,

USA). All other chemicals were of the highest grade commercially available.

Animals and animal care
A total of 40 6-week-old male C57BL/6 mice (19–25 g) were purchased from the Vital

River Laboratory Animal Technology Co., Ltd. (Beijing, China). All animals were

maintained at 21 �C on a 12 h light/12 h dark cycle and were allowed access to food

and water ad libitum. The protocols and the use of animals were approved by and in

accordance with the Xinxiang Medical University Animal Care and Use Committee

(XXMU-2016-0007). The animals were treated humanely and with regard for alleviation

of suffering.
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Experimental design
After one week of acclimation, all mice were randomly divided into four groups (n = 10)

and treated for 18 weeks as follows: (1) the standard chow diet (STD) group was fed a

STD; (2) the HFD group was fed a HFD (41.26% of calories from fat); (3) the HFD-RES/L

group was fed a HFD and treated with RES (200 mg/kg/day); and (4) the HFD-RES/H

group was fed a HFD and treated with RES (400 mg/kg/day). The L and H in RES/L

and RES/H stand for low and high, respectively. The doses of RES treatment (200 and

400 mg/kg/day) are based on those used in previous studies (Ding et al., 2017;

Lagouge et al., 2006). The HFD intervention and RES treatment were started

simultaneously. RES was dissolved in 0.1 mL deionized water and administered to the

treatment groups daily (9:00 a.m.) by oral gavage, and the mice in the STD group and

HFD group were administered with 0.1 mL deionized water by oral gavage at the

same time. The RES and deionized water were administered seven consecutive days

per week for 18 weeks. The macronutrient contents of the STD and the HFD are shown

in Table 1, and the ingredient composition of the HFD was as follows (w/w): standard

chow, 60%; custard powder, 8%; lard, 12%; sugar, 12%; peanut powder, 6%; and milk, 1%

(Ding et al., 2014). The mice were weighed each week.

After 18 weeks of treatment, mice were sacrificed by intravenous pentobarbital

injection (20 mg/kg). Abdominal SAT and VAT (perirenal) were collected, weighed,

immediately frozen in liquid nitrogen and stored at -80 �C for future experiments.

The remaining SAT and VAT were fixed in a formaldehyde solution for histology and

immunohistochemistry. The SAT coefficient and VAT coefficient were calculated (SAT

weight and VAT weight � 100/body weight, respectively).

Blood glucose homeostasis and insulin resistance
After 17 weeks of treatment, the intraperitoneal glucose tolerance test (IPGTT) was

conducted in the mice as previously described (Marmugi et al., 2012). Briefly, mice

were fasted for 10 h, and glucose (1 mg/g body weight) was injected intraperitoneally

for IPGTT. Blood samples were collected from the tail vein and blood glucose

measurement was conducted with a commercial hand-held glucometer (Accu-Chek

Active; Roche, Shanghai, China) at the indicated time points (0, 15, 30, 60, and 120 min).

Additionally, the area under the curve (AUC), an index of glucose tolerance, was

calculated. The homeostasis model assessment for insulin resistance index (HOMA-IR)

was calculated using the formula HOMA-IR = (fasting serum insulin concentration) �
(fasting serum glucose concentration)/22.5 (Ding et al., 2014), and the insulin sensitivity

Table 1 The energy supply for the standard chow diet (STD) and the high-fat diet (HFD).

Fat (%) Carbohydrates (%) Protein (%) Total energy (kcal/g)

STD 13.68 64.44 21.88 3.29

HFD 41.26 39.61 19.13 4.59

Note:
STD, standard chow diet; HFD, high-fat diet.
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index (ISI) was calculated as follows: 1/ln (fasting serum insulin concentration � fasting

serum glucose concentration) (Wang et al., 2013).

Analysis of metabolic parameters
At the end of the treatment (18 weeks), blood was collected from mice that had been

fasted for 12 h. Serum was obtained after centrifugation (1,000�g for 10 min at 4 �C)
(Eppendorf 5810R, Hamburg, Germany). The levels of TG, TC, HDL and LDL in serum

were assayed using enzymatic colorimetric assays (BIOSINO Bio-technology and Science,

Inc., Beijing, China) according to the manufacturer’s instructions.

Measurement of serum cytokines, leptin, adiponectin and insulin
by ELISA
Serum insulin was determined using a commercial mouse ELISA kit (Bai Wo

Bio-technology, Shanghai, China). TNF-a, MCP-1 and IL-6 levels in serum were

measured by mouse ELISA kits (R&D Systems, Billerica, MA, USA) according to the

manufacturer’s protocols.

Immunohistochemistry
Subcutaneous adipose tissue and VAT were fixed overnight at room temperature in

formaldehyde solution (4%), dehydrated, and embedded in paraffin.

Immunohistochemistry for macrophage marker F4/80 in adipose tissue was performed

as described by the manufacturer’s instructions. Sections (5 mm) were incubated

overnight at 4 �C with rat anti-F4/80 antibody (cat. Ab16911, diluted 1:1,000; Abcam,

Cambridge, UK) and incubated for 1 h with the appropriate secondary antibody. Image-

Pro Plus version 6.0 software (Media Cybernetics, Silver Spring, MD, USA) was used to

perform the analysis.

Quantitative real-time PCR
Real-time PCR was performed using RNA extracted from SAT and VAT of the

experimental mice. RNA was isolated using TRIzol reagent (cat. 15596026; Invitrogen,

Carlsbad, CA, USA) according to the manufacturer’s instructions. Total RNA was then

converted into cDNA using a cDNA reverse transcription kit (TAKARA Bio Inc., Otsu,

Shiga, Japan). Real-time PCR was performed using the SYBR Green detection system

on an ABI PRISM 7900 machine (Applied Biosystems, Foster City, CA, USA) under the

same conditions: one cycle of 95 �C, 5 s; 40 cycles of 95 �C, 10 s and 57 �C, 30 s. Gene

expression levels were calculated using the 2-▵▵CT method, and b-actin was used as an

endogenous control gene. The sequences are listed in Table 2.

Western blot analysis
Subcutaneous adipose tissue and VAT were homogenized with RIPA protein extraction

reagent (cat. P0013B; Beyotime, Jiangsu, China) on ice. Equal quantities of protein

were loaded and separated on a 10% and 7.5% SDS–PAGE gels. After electrophoresis,

proteins were transferred to immobilon-P polyvinylidene difluoride membranes and

blocked with 5% nonfat milk. Then, the membranes were immunoblotted with different
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primary antibodies: CCR2 (dilution, 1:2,000), IRS-1 (diluted 1:1,000), GLUT4 (diluted

1:1,000), Akt (diluted 1:1,000), pAkt (phosphorylated at Ser473) (diluted 1:2,000) and

b-actin (diluted 1:10,000; Sigma-Aldrich, St. Louis, MO, USA). After the membranes were

washed, the immunoblots were incubated with a secondary antibody conjugated with

horseradish peroxidase, visualized with an ECL detection system (Syngen, Cambridge,

UK) and analyzed using ChemiDoc Quantity One software (Bio-Rad Laboratories,

Milan, Italy). b-actin was used as a loading control for CCR2, and pAkt was normalized

to Akt.

Statistical analyses
The data are shown as the mean ± SD. All statistical analyses were conducted using

SPSS13.0 (SPSS, Chicago, IL, USA). Repeated measures ANOVA, with time (week)

and diet (STD or HFD) as repeated measures were used to analyze body weight.

The Greenhouse–Geisser test was used to revise degrees of freedom when Mauchly’s test

of sphericity showed P < 0.05. The body weight gain, SAT coefficient, VAT coefficient,

serum TG, serum TC, serum HDL, serum LDL, serumMCP-1, serum TNF-a, serum IL-6,

AUC, ISI, HOMA-IR, and serum glucose at different time points in the IPGTT, as well as

mRNA and protein expression levels were analyzed for statistical significance by

one-way ANOVA followed by post hoc analysis (Bonferroni post-test). A value of P < 0.05

was considered significant.

RESULTS
Effects of RES treatment on body weight curve, body weight gain and
SAT/VAT coefficient
As shown in Fig. 1, after 18 weeks of treatment, the HFD-fed mice had significantly

increased body weight compared to that of the STD-fed mice (P < 0.01), and there was

no significant difference in body weight gain between the HFD group and the RES-treated

groups (P > 0.05). The SAT coefficient and VAT coefficient in the HFD-fed groups

were significantly higher than those in the STD-fed group (P < 0.01). RES treatment

Table 2 Primer sequences used for real-time PCR.

Gene Forward primer (5′–3′) Reverse primer (5′–3′)

CCR2 TCATCCACGGCATACTATCAACA GTGGCCCCTTCATCAAGCT

MCP-1 CCACTCACCTGCTGCTACTCA TGGTGACCTCTTGTAGCTCTCC

TNF-a CCCAGACCCTCACACTCAGATC GCCACTCCAGCTGCTCCTC

IL-6 CTGCAAGAGACTTCCATCCAGTT AGGGAAGGCCGTGGTTGT

F4/80 CTTTGGCTATGGGCTTCCAGTC GCAAGGAGGACAGAGTTTATCGTG

GLUT4 CCCTGTTACCTCCAGGTTG CCTTGCCCTGTCAGGTATGT

IRS-1 GCCAATCTTCATCCAGTTGC CATCGTGAAGAAGGCATAGG

b-actin TTCGTTGCCGGTCCACACCC GCTTTGCACATGCCGGAGCC

Note:
CCR2, CC-chemokine receptor 2; MCP-1, monocyte chemo-attractant protein 1; TNF-a, tumor necrosis factor a; IL-6,
interleukin-6; GLUT4, glucose transporter 4; IRS-1, insulin receptor substrate.
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significantly decreased the SAT coefficient in the HFD-fed mice (P < 0.05). However,

RES treatment did not affect the VAT coefficient in the HFD-fed mice (P > 0.05).

Effects of RES treatment on glucose homeostasis in mice
To assess the effects of RES treatment on glucose tolerance in HFD-fed mice,

we measured blood glucose levels at different time points during the IPGTT after the

17-week treatment. As shown in Fig. 2, the blood glucose levels of the HFD group

displayed a marked increase compared with those of the STD group at all time points

and compared with those of the HFD-RES/L group and HFD-RES/H group at 0, 15

and 30 min (P < 0.01). The AUC was significantly increased in the HFD groups vs. that

in the STD group (P < 0.01). Moreover, the AUC was significantly decreased in the

RES-treated groups when compared to that in the HFD group (P < 0.01 or P < 0.05).

Compared to those in the STD group, significantly increased HOMA-IR values

(P < 0.01) and significantly decreased insulin sensitivity were observed in the HFD-fed

groups (P < 0.01). Furthermore, compared to those in the HFD group, significantly

decreased HOMA-IR values (P < 0.05) and increased ISI were observed in the HFD-

RES/H group (P < 0.05).

Figure 1 Effects of RES treatment on body weight curve, body weight gain and subcutaneous/

visceral adipose coefficients of mice in response to resveratrol treatment. (A) Body weight curve;

(B) Body weight gain; (C) SAT coefficient; (D) VAT coefficient. aa, P < 0.01 vs. the STD group; b, P < 0.05

vs. the HFD group. Time�� indicates exposure duration. Diet�� indicates the variety of diet. Time �
diet�� indicates the interaction effect between treatment duration and variety of diet. Data are expressed

as the mean ± SD. Full-size DOI: 10.7717/peerj.5173/fig-1
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Effects of RES treatment on serum metabolic parameters
Figure 3 shows the serum metabolic parameters and hepatic lipid levels after HFD

treatment and RES administration. The TG, TC and LDL levels in serum of the HFD-fed

groups were significantly higher than those in the STD group (P < 0.01). Furthermore,

decreased serum HDL was observed in the HFD-fed groups compared to that in the STD

group (P < 0.01). In addition, RES (400 mg/kg/day) treatment significantly decreased the

TG and TC levels in serum of the HFD-fed mice (P < 0.01 or P < 0.05). Compared to those

in the HFD group, significantly increased serum HDL levels and decreased LDL levels

were observed in the RES-treated groups (P < 0.01 or P < 0.05). No significant differences

in TG, TC, HDL and LDL levels in the serum were observed between the HFD-RES/L

group and HFD-RES/H group (P > 0.05).

Effects of RES treatment on serum cytokines
As shown in Fig. 4, the levels of serum MCP-1, TNF-a and IL-6 in the HFD-fed

groups were markedly increased compared to those in the STD group (P < 0.01).

RES (400 mg/kg/day) treatment decreased the serum MCP-1, TNF-a and IL-6 levels

in the HFD groups (P < 0.05 or P < 0.01). However, the low dose of RES

(200 mg/kg/day) treatment only decreased the serum MCP-1 level in HFD-fed

mice (P < 0.05).

Figure 2 Effects of resveratrol treatment on glucose homeostasis in mice. (A) Blood glucose during

IPGTT after 17-week treatment; (B) AUC of IPGTT; (C) HOMA-IR; (D) Insulin sensitivity index.

Full-size DOI: 10.7717/peerj.5173/fig-2
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Effects of RES treatment on mRNA and protein expression of a
macrophage marker in SAT and VAT
We used immunohistochemistry and real-time PCR with the macrophage marker F4/80

to assess the infiltration of total macrophages in SAT and VAT (See Fig. 5). Significantly

increased F4/80 mRNA and protein expression in SAT and VAT were observed in the

HFD groups when compared to that in the STD group (P < 0.01). Compared to that in the

HFD group, the mRNA and protein expression of F4/80 was significantly decreased in

RES-treated mice (P < 0.05).

Effects of RES treatment on mRNA expression in SAT and VATof mice
As shown in Fig. 6, we determined the effect of RES administration on the mRNA

expression of inflammatory cytokines (CCR2, MCP-1, TNF-a and IL-6), GLUT4 and

IRS-1 in SAT and VAT. Levels of CCR2, MCP-1, TNF-a and IL-6 in SAT and VAT were

significantly increased in the HFD groups compared to those in the STD group (P < 0.01).

RES administration significantly decreased the mRNA levels of CCR2, MCP-1 and IL-6

in SAT in the HFD mice compared to that in the HFD mice (P < 0.01 or P < 0.05).

Moreover, RES administration significantly decreased the mRNA levels of CCR2, MCP-1

and TNF-a in VAT in the HFD mice (P < 0.01 or P < 0.05). In contrast, the mRNA

Figure 3 Effects of resveratrol treatment on serum metabolic parameters. (A) Serum TG; (B) Serum

TC; (C) Serum HDL; (D) Serum LDL. aa, P < 0.01 vs. the STD group; b, P < 0.05 and bb, P < 0.01 vs. the

HFD group. The data are represented as the mean ± SD. Full-size DOI: 10.7717/peerj.5173/fig-3
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expression levels of GLUT4 and IRS-1 in SAT and VAT were markedly decreased in the

HFD groups compared to those in the STD group (P < 0.05). The mRNA expression

of GLUT4 in SATwas significantly increased by RES administration (P < 0.01 or P < 0.05).

Furthermore, the mRNA expression of GLUT4 and IRS-1 in VAT was also markedly

increased by RES administration (P < 0.05).

Effects of RES treatment on protein expression levels in SAT and VAT
in mice
Changes in protein expression of CCR2, GLUT4, IRS-1 and pAkt were measured using

Western blot analysis (see Fig. 7). CCR2 protein expression was markedly increased in

SAT and VAT in the HFD group compared to that in the STD group (P < 0.05).

Figure 4 Effects of resveratrol treatment on serum cytokines. (A)MCP-1; (B) TNF-a; (C) IL-6. a, P< 0.05

and aa, P < 0.01 vs. the STD group; b, P < 0.05 and bb, P < 0.01 vs. the HFD group. The data are represented as

the mean ± SD. Full-size DOI: 10.7717/peerj.5173/fig-4

Figure 5 Effects of resveratrol treatment on mRNA and protein expression levels of a macrophage

marker in SATand VAT. (A) Immunohistochemistry staining of F4/80 (total macrophages) in SAT and

VAT; (B) quantitative expression of F4/80 (total macrophages) is shown as relative density in SAT and

VAT; (C) the mRNA expression of F4/80 in SAT and VAT. Original magnification is �200 (scale bar =

100 mm). aa, P < 0.01 vs. the STD group; b, P < 0.05 vs. the HFD group. The data are represented as the

mean ± SD. Full-size DOI: 10.7717/peerj.5173/fig-5
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RES administration significantly decreased CCR2 protein expression in SAT and VAT of

the HFD groups (P < 0.01 or P < 0.05). Compared to the STD group, decreased protein

expression of IRS-1 and GLUT4 in SAT and VAT in the HFD groups was observed

(P < 0.05), and RES administration significantly increased expression of IRS-1 and

GLUT4 in SAT and VAT (P < 0.01 or P < 0.05). Furthermore, the protein expression

of IRS-1 in the HFD-RES/H group was higher than that in the other three groups

(P < 0.01 or P < 0.05). In addition, the results showed that the protein expression of

pAkt in SAT in the HFD group was lower than that in the STD group (P < 0.01), and the

protein expression of pAkt in SAT in the HFD-RES/H group was higher than that in in

the HFD group (P < 0.01). Similarly, the protein expression of pAkt in SAT in the

HFD-RES/H group was higher than that in the HFD group (P < 0.01).

DISCUSSION
Our study indicates that CCR2 in WATmay play a critical role in macrophage infiltration

and the inflammatory response during the development of insulin resistance in HFD-

induced obese mice. Our study further demonstrated that RES administration could

reverse insulin resistance, decrease CCR2 expression in SAT and VAT, and reduce

inflammation and macrophage infiltration of SAT and VAT, thus increasing insulin

signaling molecules (such as IRS-1, GLUT4 and pAkt) in HFD-induced obese mice.

Macrophage infiltration into adipose tissues is characteristic of chronic inflammation

associated with obesity. Recently, chemokine receptors (such as CCR2) have been

proposed to be attractive targets for antiobesity. They interact with their ligands,

Figure 6 Effects of resveratrol treatment on the target mRNA expression in SAT and VAT.

(A) The mRNA levels of inflammatory cytokines (CCR2, MCP-1, TNF-a and IL-6); (B) the mRNA

levels of GLUT4 and IRS-1 in SAT; (C) the mRNA levels of inflammatory cytokines (CCR2,MCP-1, TNF-a
and IL-6) in VAT; (D) the mRNA levels of GLUT4 and IRS-1 in VAT. a, P < 0.05 and aa, P < 0.01 vs. the STD

group; b, P < 0.05 and bb, P < 0.01 vs. the HFD group. The data are represented as the mean ± SD.

Full-size DOI: 10.7717/peerj.5173/fig-6
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increasing inflammatory cells in adipose tissue, and further contribute to chronic

inflammation and insulin resistance in obesity (Ota, 2013). Increasing evidence has shown

that CCR2 could promote the macrophage recruitment and infiltration of tissue in the

pathogenesis of insulin resistance (Huh et al., 2017; Kanda et al., 2006). Thus, we studied

the role of CCR2 in SAT and VAT during the development of insulin resistance related

to obesity. Consistent with the increased expression of serum inflammatory cytokines

(such as MCP-1, TNF-a and IL-6) in obese mice, we demonstrated that the expression

of CCR2 and macrophage infiltration in SAT and VAT were significantly increased in

diet-induced obese mice. This was also observed in other studies of WAT in diet-induced

obese rodent models (Kim et al., 2017; Weisberg et al., 2006). In vitro, RES inhibited the

mRNA and protein expression in CCR2 of THP-1 monocytes (Cullen et al., 2007). Here,

we found that concomitant with a decrease in CCR2 expression and total macrophage

F4/80 in SAT and VAT, proinflammatory cytokines in serum and mRNA levels of

Figure 7 Effects of resveratrol treatment on the protein expression of CCR2, IRS-1, pAkt (phosphorylation at Ser 473) and GLUT4 in SATand

VAT. (A) Western blots of CCR2 and insulin signaling molecules in SAT; (B) Western blots of CCR2 and insulin signaling molecules in VAT; (C–F)

CCR2, IRS-1, pAkt and GLUT4 protein expression levels in SAT; (G–J) CCR2, IRS-1, pAkt and GLUT4 protein expression levels in VAT. a, P < 0.05

and aa, P < 0.01 vs. the STD group; b, P < 0.05 and bb, P < 0.01 vs. the HFD group; c, P < 0.05 vs. the HFD-RES/L group. The data are represented as

the mean ± SD. Full-size DOI: 10.7717/peerj.5173/fig-7
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inflammatory cytokines in WAT were significantly reduced in RES-treated obese mice.

These results suggest that CCR2 expression decreased by RES treatment may play a

vital role in the reduced migration of total macrophages and subsequent inflammation

in adipose tissues.

In population experiments, whether RES administration could improve glucose

metabolism disorder is inconclusive. Studies performed in patients with T2DM (Bhatt,

Thomas & Nanjan, 2012) and healthy obese men (Timmers et al., 2011) observed the

beneficial effects of RES administration for three months and four weeks, respectively,

on systemic insulin sensitivity. However, another study conducted in normal-weight,

healthy individuals did not demonstrate improved glucose metabolism after RES

administration for six weeks (Ghanim et al., 2010). These contradictory results indicate

that RES treatment may have a beneficial effect on glucose metabolism disorders in obese

individuals rather than normal-weight individuals, and excess adipose tissues may be

the target for RES for alleviating disordered glucose mechanisms in individuals. In our

study, we observed that RES administration significantly reduced the AUC, improved

HOMA-IR and increased insulin sensitivity in HFD-induced obese mice, which suggests

that RES improved glucose intolerance and glucose homeostasis. In corroboration with

our findings, some rodent studies have also reported that RES treatment ameliorated

insulin resistance in HFD animals for eight weeks (Chen et al., 2011; Haohao et al., 2015).

Long-term IL-6 or TNF-a treatment inhibits the expression of GLUT4 and IRS-1 in

adipose tissue (Hotamisligil et al., 1996; Rotter, Nagaev & Smith, 2003), and in obese

patients with T2DM, lower levels of GLUT4 and IRS-1 in VAT were observed

(Georgescu et al., 2011; Lancha et al., 2015). In addition, glucose disposal in WAT is

affected by misleading insulin signaling via a reduction in the PI3K/pAkt signaling

pathway (Muthusamy et al., 2010). The above results indicate that inflammatory cytokines

contribute substantially to driving the abnormal insulin signaling cascade of WAT in

obesity, leading to a worsening of whole-body insulin resistance and glucose intolerance.

Our results demonstrated that long-term RES administration alleviated abnormal

insulin signaling cascades in WATof HFD-induced obese mice by increasing the levels of

IRS-1 and GLUT4 and enhancing the phosphorylation level of the Akt protein. In line

with our findings, Jimenez-Gomez et al. (2013) also found that chronic administration

of RES exerts an anti-inflammatory effect and improves adipose insulin signaling in

adipose tissue of high-fat, high-sugar diet-fed rhesus monkeys. Moreover, improved

insulin resistance via inhibition of TNF-a and TNF-a-mediated inflammation by RES

treatment were observed in 3T3-L1 adipocytes (Zhang, Du & Meng, 2013) and in primary

human adipocytes (Chuang et al., 2010). In this paper, we showed that RES administration

for 18 weeks markedly decreased the SAT coefficient and prevented dyslipidemia in

HFD-fed mice. In agreement with our study, Chen et al. (2017) also reported that RES

(400 mg/kg/day) treatment for three months provided protection against diet-induced

dyslipidemia in C57BL/6 mice. Studies have demonstrated that RES treatment has fat

mobilization and antiobesity effects in rodents (Baile et al., 2011), and also significantly

reduced the body weight gain of female Wistar rats and ovariectomized female Wistar

rats (Sharma, Sharma & Thungapathra, 2017). In this study, we observed that the RES
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intervention did not significantly reduce the body weight of mice; however, we

detected a trend of reduced body weight in mice treated with RES.

CONCLUSION
In conclusion, our results indicate that RES administration could increase CCR2

expression in WAT, alleviate inflammation and macrophage infiltration to improve the

expression of classical markers of the insulin signaling cascade in SAT and VAT, and

maintain glucose metabolic homeostasis in diet-induced obese mice. Thus, the current

study highlights the potential clinical utility of RES administration in attenuating

macrophage-induced inflammation in adipose tissue and preventing obesity-related

metabolic diseases.
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