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Abstract

A new aldehyde 2,2’-[propane-1,3-diylbis(oxy)] dibenzaldehyde was synthesized from

refluxing 2-hydroxy acetophenone and 2-hydroxy 1,3-dichloropropanean in an alcoholic

medium. The compositions and properties of the new aldehyde compound were character-

ized by elemental analysis, FTIR, and nuclear magnetic resonance spectroscopy studies.

The extracted chitosan was made to react with a new aldehyde to form a Schiff base by a

suitable method. The effects of initial concentration of metal ions, exposure time, imine

weight, and pH on the adsorption of Cu(II), Cr(III), and Zn(II) metal ions were examined. An

adsorption batch experiment was conducted. The adsorption process followed a second-

order reaction and Langmuir model with qe 25 mg/g, 121 mg/g, and 26.31 mg/g for Cu(II),

Zn(II), and Cr(III) respectively. The Gibbs free energy showed a negative value and the

adsorption/desorption tests provided a high value 5 times.

Introduction

Heavy metal accumulation in an ecological community is a worldwide problem. The rising

concentration of heavy metals in drinking water poses a major threat to physical fitness and

the natural system. Heavy metals are one of the major significant polluters of the environment

[1]. Transition metal poisoning from industrial effluent is a serious issue. Many sectors,

including electroplate, metallurgical processes, pigments, mining, and the leather industry,

emit varying levels of transition metal ions. Zinc, cadmium, chromium, copper, lead, manga-

nese, and iron are common metal ions found in both natural and industrial effluent [2].

A variety of conventional approaches have been used. There is a plethora of options, differ-

ent methods through which transition metal ions may be removed from wastewater. Some of

the most common methods include membrane filtering, electrolysis, ion exchange, activated

carbon adsorption, and electrolysis. Chemical precipitation, for example, is another method.

Other concerns include secondary contamination; prohibited processing capacity, high cost,

poor selectivity, and energy consumption are all its drawbacks [3].

Due to its reliability and complexity, adsorption is the most economical and ecologically

beneficial method. Adsorption of heavy metal ions now comprises biosorbents from renewable

natural sources and modified forms [4]. To increase the inhibitory activity of chitosan,
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scientists modified its molecular structure [5]. A process was performed where chitosan amino

groups were combined with aldehyde derivatives to produce Schiff base [6].

Aromatic aldehyde derivatives are fundamental intermediates that are widely utilized for

the synthesis of important materials [7]. Schiff base are compounds with an azomethine group

that arise as the result of a reversible acid-catalyzed condensation reaction between primary

amine and carbonyl compounds, as described by Hugo Schiff in 1864 [8].

Gokila S. et al synthesized chitosan and Alginate nanocomposites by an ionic crosslinking

method, this new biosorbent can remove Cr ion from waste water [9]. Vivian L. et al synthe-

sized of three different imines, by functionalization of chitosan to form Schiff base using three

aldehydes. To uptake some heavy metals from water at basic pH’s [6]. Narjes N. et al, used cat-

ionic copolymerization technique to prepare A novel Schiff base on porous chitosan-glutaral-

dehyde /montmorrilonite nanoparticles modified with 3-aminopropyl triethoxysilane

nanocomposite with high thermal stability to remove Pb ion and Hg ion [10]. The magneti-

cally modified chitosan, MCS-PPIMB, was prepared by Shahraki S. et al, using aromatic ring-

rich in schiff base ligand. This new adsorbent was suitable candidate for Pb ion adsorption in

aqueous environments [11].

It was reported that chitosan Schiff bases have excellent chelation ability with heavy metal

ions, because it can act as a good binding site for many transition metals and therefore can

form stable coordination complexes [12,13]. In azomethine derivatives, the C = N linkage is

essential for biological activity; several azomethines were reported to possess remarkable anti-

bacterial, antifungal, anticancer, and diuretic activities. Schiff bases have wide applications in

food industry, dye industry, analytical chemistry, catalysis, fungicidal, agrochemical, and bio-

logical activities [2].

The purpose of the study was to increase the importance of the chemical modification of

chitosan through its functionalization with new aromatic aldehyde, by condensation of

(2-hydroxybenzaldehyde) and (3-dichloropropane) in the ratio (2:1) to get a new schiff base

with high adsorption capacity with huge specific surface area, excellent pore morphology,

selectivity and recycled and reused numerous times without losses of the adsorption activity.

The prepared adsorbent was characterized by Fourier Transform Infrared spectra (FTIR),

Field Emission Scanning Electron Microscopy (FESEM), Energy Dispersive Spectroscopy

(EDX), X-Ray Diffraction (XRD), and Nuclear magnetic resonance H-NMR. Contact time,

starting metal concentration, pH, temperature, adsorbent dosage, and selective adsorption

kinetic, thermodynamics, and reuse were examined.

Material and methods

Reagents

All reagents used were of analytical reagent grade stated. Chitosan (CS) (with DDA 64% from

IR chart) was extracted from shrimp shell were purchased from local market. Sodium hydrox-

ide (NaOH, 97%) was purchased from Scharlau. Hydrochloric acid (HCl, 37%) and Glacial

Acetic acid (CH3COOH, 99.8%) were purchased from Merck. CuSO4.5H2O (99%) and

ZnSO4.7H2O (99–100.5) were purchased from Sigma-Aldrich, Merck respectively.

Cr2(SO4)3.15H2O (99%) and 3-dichloropropane (98%) were purchased from Riedel-De Haen

AG. Na2CO3 (� 99.5%) and EDTA (99.4–100.6%) were purchased from BDH. absolute Etha-

nol and 2-hydroxybenzaldehyde were purchased from Sigma-Aldrich.

Chitosan extracted from shrimp shell

The conventional techniques were used to complete the chitosan extraction procedure. It

included the removal of demineralization, deproteination, and deacetylation. A short while
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later, the shrimp shells were cleaned, dried, and crushed to make them easier to eat. Then, the

crushed shells were dissolved in hot water containing 4% (w/v) sodium hydroxide to dissolve

proteins and sugars. It was done using 1% HCl for 24 hours, which demineralized the shells.

Finally, a 50% sodium hydroxide solution was added to the previous combination, then

warmed up at 100˚C for 2 hours to finish the reaction process. Following a thorough rinse

with running tap water and distilled water to neutralize the solution, a vacuum oven set to

60˚C was used to dried extracted chitosan [14,15].

Preparation of 2,2’-[propane-1,3-diylbis(oxy)] dibenzaldehyde

According to the modified method [16], a stirred solution of 2-hydroxybenzaldehyde (9.77 g,

0.08 mol) in 100 ml absolute ethanol was boiled in round bottle flask and stirred with a mag-

netic stirrer; then slowly, Na2CO3 (33.92 g, 0.32 mol) and 3-dichloropropane (5.16 g, 0.04 mol)

in ethanol (30 ml) was added dropwise. The mixture was refluxed for 8 h at 180–200˚C. The

flask was put in an ice bath. The precipitate was filtrated, dried, and recrystallized using chloro-

form/methanol solution (1:1) to give the white product (yield 85%, 115–117˚C).

Chitosan-Schiff base synthesis (imine)

The methods documented in the literature were used to produce the chitosan-Schiff base [17].

It was synthesized through a condensation process. About 1.0 g of chitosan powder was dis-

solved in 25 ml ethanol with 3 drops of acetic acid and vigorously shaken to produce an emul-

sion of chitosan. Additionally, 0.87 g of new aldehyde 2,2’-[propane-1,3-diylbis(oxy)]

dibenzaldehyde was dissolved in 25 ml ethanol and added to the Chitosan emulsions. Before

heating the contents for 12 h in a 60˚C underwater bath, both solutions were combined and

agitated for 30 min.

The orange product was filtered and dried after being rinsed with ethanol (2-(3-(2-((E)-

(((2R,3R,4R,5S,6S)-4-hydroxy-6-(hydroxymethyl)-2-methoxy-5-methyltetrahydro-2H-pyran-

3-yl) imino-methyl-phenoxy-propoxy-benzaldehyde).

Characterization of imine

The synthesized imine was characterized in a way that covers a large area. Fourier transfer

infrared spectra were carried out (Shimadzu IRAffinity–I FTIR spectrophotometer), the mor-

phologies of particles were observed using FESEM coupled with EDX, (TESCAN MIRA3

FEG-SEM, Czech Republic) at 15kV under low vacuum after coating with gold thin film, with

SE detector for EDX. and XRD patterns were recorded with an X-ray diffractometer using a

Cu Kα spectral line at 45 kV and 40 mA and a 2θ between 5 to 80˚. Finally, 1H-NMR (broker

AVANCENEO (400MHZ) spectrometer).

Adsorption procedure

The batch experiment was conducted to investigate the impact of dose using various amounts

of sorbent—0.01 g, 0.015 g, 0.02 g, 0.025 g, 0.03 g—with pH ranging from 3 to 11, The initial

ion concentration for Cu(II) and Cr(III) 5–100 mg/L and10–400 mg/L Zn(II); the contact

duration 5–300 min, and temperature 5–45˚C. The new adsorbents (0.02 g) were added to 10

ml of a heavy metal aqueous solution, which was then shaken at ambient temperature.

The residual concentration of heavy metal ions after adsorption became determined using a

FAAS, and the absorbance at 324.8 nm, 213.9 nm, and 357.9 nm for Cu(II), Zn(II), and Cr

(III), was observed respectively with a spectral bandwidth of 0.5 nm. The adsorption capacity
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utilizing the following Eq (1):

qe ¼
ðCi � CeÞV

M
ð1Þ

The qe ions have an equilibrium capacity of adsorption, which is described by the constant

concentration ratio of adsorbent and the initial concentration of ions. Additionally, Ci (mg/L),

and Ce (mg/L), the initial and final concentrations of metal ions, respectively, are used to indicate

the ion concentrations at the start and equilibrium of a reaction. The volume of the ion solution is

defined by the measurement V (L), and the mass of the adsorbent is defined by the M (g).

The Langmuir, Freundlich, and Temkin models have been used to estimate the adsorption

data for the mechanism of the adsorption process [18]. The Langmuir equation can be written

in the linear form Eq (2):

Ce
qe
¼

1

qmax KL
þ

Ce
qmax

ð2Þ

KL is the adsorption-related Langmuir constant (mg/g), and qmax maximum adsorption

capacity. Which may be related to changes in the reasonably normality and porosity of the

adsorbent that would lead to higher adsorption ability for a bigger surface area and porous vol-

ume. In describing the basic characteristics of the Langmuir isotherm, the separation factor RL

is a dimensionless constant as illustrated in Eq (3):

RL ¼
1

1þ KL Ci
ð3Þ

The separation factor RL, a dimensionless constant. The adsorption process unfavorable

When RL > 1, linear when RL = 1, favorable when 0< RL >1, and irreversible when RL = 0.

Meanwhile, the Freundlich isotherm has the following linear form as shown in Eq (4):

log qe ¼ log Kf þ
1

n
log Ce ð4Þ

Kf represents adsorption capacity (L/mg) and 1/n denotes adsorption intensity; it also

denotes the energy distribution and adsorbate site heterogeneity.

The linear forms of the Temkin isotherm may be expressed by Eq (5):

qe ¼ atþ 2:303 bt log Ce ð5Þ

The Temkin constant (bt) is related to the heat of sorption (J/mol) and the Temkin iso-

therm constant (at) (L/g).

The adsorption behaviour during biosorption was investigated using a pseudo-1st order

kinetic model and a pseudo-2nd order kinetic model in this research [19].

Eq 6 is the pseudo-1st order kinetic model:

log qe � qtð Þ ¼ log qe �
K1t

2:303
ð6Þ

The pseudo-2nd order kinetic model as explained by linear form Eq (7):

t
qt
¼

t
qe
þ

1

K2qe2
ð7Þ

where K1 is the pseudo-1st order kinetic adsorption rate constant (min-1) and K2 is the

pseudo-2nd order kinetic adsorption rate constant (g/mg min).
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Real sample preparation

The efficiency of the Schiff base was evaluated with a determination of Cu(II), Zn(II), and Cr

(III) ions in some supplicates. The study took a sample from the two types of nutritional sup-

plement tablets that bodybuilders take (Heavy metal H.M. and multivitamin M.V.). The heavy

metal content was digested using 1:3 HClO3 and HNO3. Then, 25 ml of deionized water (DW)

was added to dilute the sample. 10 ml of diluted sample was transferred into a tube and 0.02 g

of adsorbent was placed, then shaken using thermostat water bath shaker at an optimum con-

dition that was optimized previously. The supplement was applied on imine by batch adsorp-

tion and recovery tests and FAAS was used to calculate the heavy metal ions ratio.

Results and discussion

Aldehyde characterization

The new aldehyde, 2’-[propane-1,3-diylbis(oxy)] dibenzaldehyde was prepared in good yield

(85%) based on Williamson ether synthesis between 2-hydroxybenzaldehyde and 1,3 dichloro-

2-propanol.

The structure of the synthesized chemical was determined using FT-IR and 1H-NMR tech-

niques, as shown in Tables 1 and 2 respectively. In the IR spectrum of compound (1) Fig 1,

the appearance of broadband at 3460.3 cm-1 is attributed to the (OH) group, and the strong

band at 1678 cm-1 refers to the carbonyl group. The 1H-NMR spectrum of compound (1) (S1

Fig), as illustrated in Table 2 shows a signal at 4.26 ppm which refers to the hydroxyl group,

while a 4.31 ppm belongs to the methylene proton. A quintet at 4.55 ppm refers to CH- ali-

phatic protons, a multiplet at 7.0–7.8 ppm corresponds to the eight protons of the two aro-

matic rings, and a single signal at 10.48 ppm belongs to the proton of an aldehyde group.

Characterization of imine (Schiff base)

FTIR. FTIR spectra of chitosan, aromatic aldehyde, and imine are shown in Fig 2 the

stretching vibration of the OH and NH2 functional groups is attributed to the wide peak at

Table 1. Shows the FT-IR data of synthesized compounds 1.

2,2-(propane-1,3-diylbis(oxy)dibenzaldehyde.

OH str. (cm-1) C = O str. (cm-1) C-H Aliphatic str. (cm-1)

3460.3 1678.07 2877

2949

https://doi.org/10.1371/journal.pone.0274123.t001

Table 2. Shows the H1-NMR data of compound 1.

No δ/ppm Multiple. Intens. Assign

1 4.26 D 1H -OH

2 4.29–4.35 Dd 4H -OCH2-

3 4.55 Quintet 1H -CH-OH

4 7.0–7.8 M 8H Aromatic

5 10.48 S 2H -CHO

https://doi.org/10.1371/journal.pone.0274123.t002

PLOS ONE Rapid adsorption of heavy metals using extracted chitosan anchored with new aldehyde to form a schiff base

PLOS ONE | https://doi.org/10.1371/journal.pone.0274123 September 9, 2022 5 / 21

https://doi.org/10.1371/journal.pone.0274123.t001
https://doi.org/10.1371/journal.pone.0274123.t002
https://doi.org/10.1371/journal.pone.0274123


3570–3330 cm-1, whereas the stretching vibration of the (CH) group of the chitosan backbone

is assigned to the height at 2885cm-1. Other peaks associated with the amide group include

those at 1083 cm-1, 1150 cm-1, 1028 cm-1 (stretching vibration of the C-N bond), 1383 cm-1

(stretching vibration of the C-O bond), and the absorption peak at 1659 cm-1 [10,20]. The high

absorbance band at 1645cm-1 for chitosan -imine is due to the C = N vibration, which is typical

of the imine produced among the NH2 group of chitosan and the carbonyl group of aldehyde

[17]. Because the free aldehyde group is condensed along with a primary amine in the basic

chitosan monomer and produces imine, no peak was seen between 1720 cm-1 and 1740 cm-1

and 2947 cm-1 and 2877cm-1. It means that the C-H stretching of aldehyde bonded with the

N-H of chitosan. [11,17].
1H-NMR. The H-NMR signal chemical shifts of the studied Schiff base–imine 2-(3-(2-

((E)-(((2R,3R,4R,5S,6S)-4-hydroxy-6-(hydroxymethyl)-2-methoxy-5-methyltetrahydro-2H-

pyran-3-yl)imino)methyl)phenoxy)propoxy)benzaldehyde recorded in DMSO (S2 Fig) The

spectrum provides the following signals: phenyl as a multiplet at 6.8–8 δ, -N-CH2 at 4.5 δ, and

C-CH = N- proton at 9.8 ppm. This shifted occurrence in the spectrum on account of the high

electronegativity of fluoride in an aromatic ring [21–23].

FESEM. Sorbent particle geometry before and after adsorption using the FESEM (Field

Emission Scanning Electron Microscopy) to clarify the nature of the new imine adsorbent.

The adsorbent surface was uneven with various grooves, favourable for adsorption Fig 3A.

The significant change observed with imine Cu(II), Zn(II), and Cr(III) that had been more

rugged with spherical shape particles are recognized on the surface Fig 3B–3D.

Fig 1. Represents FT-IR spectrum 2,2’-(propane-1,3-diylbis(oxy)) dibenzaldehyde (compound 1).

https://doi.org/10.1371/journal.pone.0274123.g001
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Fig 2. FTIR for Chitosan, Aldehyde (Compound 1), and Imine.

https://doi.org/10.1371/journal.pone.0274123.g002

Fig 3. FESEM images of (a) Imine before adsorption (88.5 kx, 500 nm), (b) after adsorption of Cu(II) ion (100 kx, 500 nm), (c) after

adsorption of Zn(II) ion, (135 kx, 200 nm) and (d) after adsorption of Cr(III) ion (135 kx, 200 nm).

https://doi.org/10.1371/journal.pone.0274123.g003
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EDX. EDX result shows several compounds contained an imine- Schiff base Fig 4A Car-

bon and oxygen are the most dominant compounds. According to Fig 4B–4D, there is much

Cu(II), Zn(II), and Cr(III) respectively present in the EDX spectrum on the adsorbent surface.

This confirmed that the adsorption of these elements on the surface of the biomaterial was suc-

cessful done.

XRD. The crystallinity of the adsorbent is shown by X-ray diffraction; well-defined peaks

reflect the material’s crystalline character, while the hallowed peak represents the material’s

non-crystalline amorphous character. XRD patterns of Imine, Imine–Cu(II) ion, Imine–Zn

(II) ion, Imine–Cr(III) ion are presented in Fig 5. When comparing the XRD patterns of

imine loaded with Cu(II), Zn(II), and Cr(III) ions to that of the unloaded imine-Schiff base, it

is discovered that the XRD pattern of imine loaded has significantly changed with a decrease

in a crystalline structure. Consequently, it seems that the heavy metal ions preferentially

adsorb via chemisorption and only partly through physisorption [24].

Adsorption time–kinetic study

It was decided to study the adsorption kinetics studies for Cu(II), Zn(II), and Cr(III) on a

Schiff base were conducted with an initial concentration of 20 mg/L for Cu(II) ion and 50 mg/

L for Zn(II) and Cr(III). The adsorbent dosage of 0.02 g, pH = 8 for Cu(II) ion and pH = 6 for

Zn(II) and Cr(III) and 35˚C. The findings are given in Fig 6A. It appears that the adsorption

Cu(II)-imine ratio at the first 10 min showed 65%, then increased to 99% during 90 min due

to more active sites for adsorption, and showed no significant change from 100 to 300 min

because of occupation of the available adsorption sites. However, the zinc ion sees the light

from first 10 min 93%, became 96.3% after 70 min, and then maintained equilibrium. While

Fig 4. (a) EDX images of Imine before adsorption, (b-d) after adsorption of Cu(II), Zn(II), and Cr(III) onto Imine.

https://doi.org/10.1371/journal.pone.0274123.g004
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the adsorption rate was low during the first quarter of an hour for the Cr(III) ion, it rose after

half-hour, and reached equilibrium after 45 min with an adsorption ratio of 100% [25]. This is

attributed to the availability of large surface areas of the adsorbent. At these points, the equilib-

rium times were attained. After the plateau, the surface pores of the adsorbent became

enclosed and reach the maximum uptake capacity. After that point the uptake rate be slow

down of adsorption at this stage may be due to the agglomeration of metal ions on the surface

of the adsorbent [26]. Two kinetic models of pseudo-1st order and pseudo-2nd order were used

to investigate the process’s mechanism Fig 6B–6D. The details of the calculation rate constant

(k), adsorption capacity, and correlation coefficient (R2) are shown in Table 3 below. The cal-

culation equilibrium adsorption capacity of Cu(II), Zn(II), and Cr(III) from the pseudo 2nd

order model (10 mg/g, 9.7 mg/g, and 25 mg/g) were close to the experiment qe (9.9 mg/g, 9.7

mg/g, and 24.9 mg/g). This demonstrated that this model may be used to estimate adsorption

kinetics and the overall chemisorption has been a predominate mechanism by sharing or elec-

tron exchange between the imine surface and adsorbate ions [27].

Effect of adsorption conditions

pH effects. The impact of pH is investigated to identify the adsorption pH at which maxi-

mal metal removal occurs. Batch adsorption was evaluated with the initial concentration of 20

mg/L for Cu(II) ion and 50 mg/L for Zn(II) and Cr(III). The adsorbent dosage of 0.02 g and

35˚C. Hydrochloric acid or sodium hydroxide was used to adjust the pH from 3 to 11.

The highest adsorption affinities for imine towards Cu(II) ion occur at pH 8 while pH 6 for

Zn(II). At low pH less metal ion uptakes is observed due to the competitive adsorption H+ and

metal ions. While the results show high adsorption ratio for Cr(III) in a wide range between

5–11 with 100% Fig 7. The reason of this trend is that hydrogen ions compete with metallic

Fig 5. XRD spectra of Imine before and after Cu(II), Zn(II), and Cr(III) adsorption.

https://doi.org/10.1371/journal.pone.0274123.g005
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Fig 6. (a) The effect of contact time on the adsorption of Cu(II), Zn(II), and Cr(III) by Imine, (b)Pseudo-1st order adsorption onto Imine, (c) Pseudo-2nd order of

Cu(II) and Cr(III) onto Imine, and (d) Pseudo-2nd order for Zn(II) onto Imine.

https://doi.org/10.1371/journal.pone.0274123.g006
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ions for active sites on the surface of the natural sorbent; this behaviour is anticipated. Because

a tiny quantity of metal cations began to deposit as hydroxides at pH>9, metal ion retention

became virtually steady [2,28]. The pH value of 8 was selected for Cu(II) as the optimal pH for

this chelation [1,2] and pH 6 for Zn(II) and Cr(III) ions [29,30].

Metal concentration effects. The effect of metal ion concentration on the adsorption

parameters is a critical element to consider when applying an adsorbent in reality. This factor

investigated under pH = 8 for Cu(II) ion and pH = 6 for Zn(II) and Cr(III) with 0.02g and

35˚C. The variation in removal uptake and adsorption capacity towards Cu(II), Zn(II), and Cr

(III) ions was seen in the current study as a function of metal ion concentration, which was var-

ied in the experiment-from 10 to 100 mg/L for copper and chromium ion and from 10 to 400

mg/L for zinc ion. The reason for the different concentrations of zinc ions is that the adsorption

ratio remains 100% within this limit. The results are presented in Fig 8 It can be observed that

when metal ion concentrations were raised, the removal uptake declined steadily. For explain

this tendency, at lower concentrations, the ratios of available binding sites to the initial metal

ion concentrations were larger, while at higher concentrations, the saturation of the adsorption

sites occurred. This behaviour is attributed to less availability of surface-active sites [2,26].

Table 3. Kinetic study parameters of Cu(II), Cr(III) and Zn(II) ion adsorption of imine.

Adsorbents qe (mg/g) Pseudo 1st order kinetic parameter Pseudo 2nd order kinetic parameter

qcal (mg/g) K1 (min -1) R2 qcal (mg/g) K2 (g/mg.min) R2

Imine-Cu(II) 9.9 4.02 2.3 0.8964 10 0.02 0.9999

Imine-Zn(II) 9.7 1.39 0.0225 0.8276 9.7 0.015 0.9999

Imine-Cr(III) 24.9 15.1 2.95 0.6758 25 0.032 0.9991

https://doi.org/10.1371/journal.pone.0274123.t003

Fig 7. Curve of pH Effect for Cu(II), Zn(II), and Cr(III) adsorption on Imine.

https://doi.org/10.1371/journal.pone.0274123.g007
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Sorbent dose effects. The action of Schiff weight on heavy metal ions sorption was stud-

ied. As can be observed in Fig 9 the optimal weight for adsorbent was 0.02 g, which resulted in

99.7%, 97%, and 100% removal for Cu(II), Zn(II), and Cr(III) respectively. Initially, the

adsorption process increases as the adsorbent mass increases, but after an optimal dose is

achieved, it stays constant. Due to a greater number of surface area, pore size and volume, and

the availability of vacant sites, clearance efficiency is anticipated to rise as a consequence. Any

further addition of the adsorbent seemed to have no significant effect on adsorption, which

might be due to adsorption site overlapping because of adsorbent particle crowding [9,10].

Generally, 0.02 g was taken as an optimum quantity for this work.

Temperature effects. The temperature affects the mobility of molecules and ions in a

solution. This may be extended to ion adsorption since ions must be mobile to ’collide/inter-

act’ with the adsorbent and enhance adsorption, which is especially important in batch adsorp-

tion investigations [31]. Cu(II) ion shows high removal ratio at 35˚C, which can be decreased

with an increase in temperature. The decrease on the uptake of heavy metal ions with increase

in temperature may be explained as a result of increase in the average kinetic energy of the

metal ions; thus, making the attractive force between metal ions and polymer insufficient to

retain the metal ions at the binding site. This could lead to desorption or cause the metal ions

to bounce off the surface of the polymer instead of colliding and combining with it [32]. Sur-

prisingly, within this small temperature range, the sorption capacities hardly change with

increasing temperature; Cr(III) ion at all temperatures had the highest removal percentage of

up to 100%, and changing temperature had no effect on the ratio of adsorption of Cr(III) Simi-

lar findings have been reported by other workers Benettayeb A. et al [33] as well as Zn(II) ion.

Fig 8. Curve of initial concentration Effect for Cu(II), Zn(II), and Cr(III) adsorption on Imine.

https://doi.org/10.1371/journal.pone.0274123.g008
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Fig 9. The effect of adsorbent dosage on the adsorption Cu(II), Zn(II), and Cr(III) by Imine.

https://doi.org/10.1371/journal.pone.0274123.g009

Fig 10. Temperature effect of Cu(II), Zn(II), and Cr(III) adsorption on Imine.

https://doi.org/10.1371/journal.pone.0274123.g010
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On the other hand, the Zn(II) ion had a 96% ratio of adsorption at low temperature which

decreased to 94% when the temperature was increased to 25˚C; the ratio then increased to 96%

again when the temperature was higher than 35˚C Fig 10. However, the variation observed

between 5 and 45˚C gives a first indication of the negligible impact of temperature on sorption

performance [33].

Cu(II), Zn(II), and Cr(III) adsorption on Schiff base was examined at a temperature

between 278 and 318 K. With the help of the following equations, we can determine the free

energy change G (kJ/mol), the enthalpy change H (kJ/mol), and the entropy change s (kJ/mol

K) of a system [34]:

Kd ¼
qe
Ce

ð8Þ

lnKd ¼
DS
R
þ
DH
RT

ð9Þ

DG ¼ � RT lnKd ð10Þ

where R denotes the universal gas constant (8.314 J/mol K), T denotes the absolute tempera-

ture (K), and Kd is the adsorption distribution constant deduced from qe/Ce (mg/g). The

slope and intercept of the linear plot of ln Kd versus 1/T are used to get the values of ΔH and

ΔS. In contrast, the values of ΔG were determined using the equation above [35]. As can be

seen, the adsorption of Cu(II), Zn(II), and Cr(III) onto imine became more favorable as the

temperature increased, suggesting an endothermic adsorption mechanism as seen by the posi-

tive values of ΔH Table 4 The results indicate that chemisorption may be predominant. Fol-

lowing that, a positive value of ΔS implies a high degree of randomness at the interface

between the solid and the solution. The negative values of ΔG indicate that the adsorption of

heavy metal ions onto biosorbent occurred as a result of spontaneous adsorption [36].

Table 4. Thermodynamic parameters study for the adsorption of Cu(II), Zn(II) and Cr(III) ion adsorption on

Imine.

Metal ion T(K) ΔG (kJ/mol) ΔH(kJ/mol) ΔS (J/mol k)

Cu(II)

283 -2.03 + 133.01 + 468.98

298 -4.69

308 -1.59

318 -4.22

Zn(II)

278 -5.91 +21.098 +25.5

288 -6.34

298 -6.35

303 -6.6

308 -6.9

318 -6.92

Cr(III)

278 -9.01 +69.72 +298.2

288 -20.35

298 -21.08

308 -21.78

318 -22.47

https://doi.org/10.1371/journal.pone.0274123.t004
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Isotherm models’ study

The equilibrium adsorption isotherm is critical for characterizing the relationship between the

solution and the adsorbent and building an adsorption system [37]. Isotherm investigations

were carried out in batch mode, and the data were analyzed using three equilibrium models:

Langmuir, Freundlich, and Temkin Fig 11 The constants of the isotherms, which are deter-

mined from the slope and intercept of Eq (2) and Eq (3) for Langmuir, Eq (4) for Freundlich,

and Eq (5) for Temkin are presented in Table 5 As shown by the regression coefficients, the

experimental data was well-fitting. In the Langmuir, R2 was 0.9998, 0.9991, and 0.9996 for Cu

(II), Zn(II), and Cr(III) respectively. The Langmuir isotherm suggests that the adsorption

mechanism was monolayer adsorption. High adsorption ability can an indication that the sol-

ute and adsorbent have a higher affinity. Another possible explanation is that the active sites

are dealt with in an equal distribution on the surface and inside the adsorbent [19,27,35]. The

separation factor RL is favorable towards imine Cu(II), Zn(II) and Cr(III) ions with ranges

(0.185–0.0434), (0.240–0.0069), and (0.0035–0.0013) respectively.

Desorption and reuse

The capacity to be reabsorbed and reused is one of the main characteristics that make an

adsorbent useful and essential for improving process economics. The Schiff base adsorbents

Fig 11. Adsorption isotherm of Cu(II), Zn(II) and Cr(III) onto Imine (a) linear plot of Langmuir model, (b) linear plot of Freundlich isotherm model, and (c)

linear plot of Temkin Isotherm model.

https://doi.org/10.1371/journal.pone.0274123.g011

Table 5. Study of isotherm models correlation coefficients and constant for adsorption of Cu(II), Zn(II), and Cr(III) ion on imine.

Metal ion Langmuir Freundlich Temkin

Cu(II) qmax (mg/g) 25 1/n 0.1603 at 171.59

KL 0.44 Kf 16.81 bt 20.98

R2 0.9998 R2 0. 9058 R2 0.8653

RL (0.185–0.0434)

Zn(II) qmax (mg/g) 121 1/n 0.2276 at 7.8

KL 0.315 Kf 61.1 bt 14.76

R2 0.9991 R2 0.7159 R2 0.6296

RL (0.240–0.0069)

Cr(III) qmax (mg/g) 26.31 1/n 0.0872 at 20.313

KL 9.26 f 19.77 bt 1.775

R2 0.9996 R2 0.9737 R2 0.9756

RL (0.0035–0.0013)

https://doi.org/10.1371/journal.pone.0274123.t005
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have Cu(II), Zn(II), and Cr(III) adsorbed on their surface. The copper and zinc ions will be

next dehydrated and treated with 0.1 M EDTA solutions while 0.1M EDTA with 1M HCl (1:1)

will be used for chromium ion.

The adsorption/desorption tests are then repeated five times for Schiff base adsorption-

desorption periods, as shown in Fig 12 When used five times, the efficiency of imine was sig-

nificantly reduced after the third cycle, falling to 84%, 83%, and 72% for Cu(II), Zn(II), and Cr

(III) respectively. Furthermore, the capacity of the Schiff base had decreased to less than 67%

for Cu(II) and Zn(II) after the fifth period while it was less than 51% for Cr(III) ion [11,38,39].

Comparison with another study. The adsorption capacity of the imine used for removal

of the Cu(II), Zn(II), and Cr(III) ions was compared to those of other adsorbent materials

cited in the literature. The data compiled in Table 6 show the adsorption capacities obtained

from the Langmuir model.

Real sample application

To obtain controls for the study, shown in Table 7 samples were spiked with Cu(II), Zn(II),

and Cr(III) ions to supplement tablets. After the batch experiment, the recovery of Cu(II), Zn

(II), and Cr(III) ions in real and spiked samples varied from 97.84%–99.80%, 99.2%–99.7%,

and 98.4%–99.9%, respectively. Relative stander deviation was less than 1.32 for copper ion,

0.76 for zinc ion, and 1.2 for chromium ion with imine. The results support the sensitivity and

reliability of adsorbent toward spike and non-spike for preconcentration and determination of

these three ions in trace value. Statistical analysis showed that there was a significant difference

between the recovery of three ions Cu(II), Zn(II), and Cr(III) ions in real and spiked samples

(p< 0.05).

Fig 12. Reusability of imine for removal percent to Cu(II), Zn(II), and Cr(III).

https://doi.org/10.1371/journal.pone.0274123.g012
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Statistical analysis

IBM SPSS statistics (V. 23). T-Test was applied to analyze the collected data. A P-value

of< 0.05 was considered statistically significant.

Conclusion

Chitosan was effectively and covalently functionalized on the 2,2’-[propane-1,3-diylbis(oxy)]

dibenzaldehyde surface. A variety of spectroscopic methods were used to investigate the phy-

sico-chemical properties of the compound. Imine with a large surface area and small volume

removes metal ions Cu(II), Zn(III), and Cr(III) efficiently and swiftly. The approach of

Table 7. Determination of Cu(II), Zn(II), and Cr(III) ion in two supplements.

Adsorbent Samples Amount added

μg/mL

Amount found

μg/mL

RSD Recovery

%

Cu(II)

Heavy metal supplement 0

30

50

15

44.9

64.7

± 1.2

± 0.30

± 0.38

-

99.77

99.5

Multivitamine

Supplement

0

30

50

1

30.94

49.90

0

± 0.92

± 1.32

-

99.80

97.84

Zn(II)

Heavy metal supplement 0

30

50

70

99.97

119.07

0

±0.76

0.54

-

99.7

99.2

Multivitamine

Supplement

0

30

50

2

31.84

51.79

0

±0.001

±0.1

-

99.5

99.59

Cr(III)

Heavy metal supplement 0

30

50

5

34.79

54.97

± 1.2

± 0.30

± 0.38

-

99.4

99.9

Multivitamine

Supplement

0

30

50

0.5

30.24

49.74

0

± 0.92

± 1.012

-

99.1

98. 4

https://doi.org/10.1371/journal.pone.0274123.t007

Table 6. Comparison of Cu(II), Zn(II) and, Cr(III) adsorbent in different adsorbents materials.

Adsorbents Metal

ion

Adsorption capacity

(qmax)

(mg/g)

Reference

Poly (2-hydroxyethyl methacrylate-n-vinyl imidazole) [poly(HEMA-VIM)] -cryogel Cu(II)

Zn(II)

2.5

4.340

[40]

(SG-H2L) ditopic -zwitterionic Schiff base ligand H2L 1 onto a modified silica gel Cu(II) 41.31 [41]

5-methyl-2-thiophenecarboxaldehyde Schiff base-immobilised -SBA-15 Cr(III)

Zn(II)

37

32

[42]

Fe3O4@SiO2/Schiff base Cu(II)

Zn(II)

9.2

87

[30]

chitosan/attapulgite composites (CTS/ATP) Cr(III) 27.03 [43]

Schiff base ligands 3-methoxy salicylaldimine propyl triethoxysilane (MNS1), 5-bromo salicylaldimine propyl

triethoxysilane (MNS2)

Cu(II) 3.61 [44]

silicate–chitosan composite Cr(III) 0.89 [45]

Chitosan–imine

Cu(II)

Zn(II)

Cr(III)

25

121

26.31

This

study

https://doi.org/10.1371/journal.pone.0274123.t006
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continuous adsorption is the most cost-effective. Imine-Schiff base removal of heavy metal

ions is an innovative, quick, and cost-effective method based on the graphs and tables pre-

sented. The adsorption kinetics of heavy metals on adsorbent followed a pseudo-2nd order

model. The equilibrium findings agree well with the Langmuir adsorption model, indicating

monolayer coverage of heavy metal molecules at the imine-Schiff base’s outer surface where

Cu(II), Zn(II), and Cr(III) had a maximum sorption capacity, qmax, of 25 mg/g, 121 mg/g, and

26,31 mg/g respectively, according to the results. This heavy metal ion adsorption technique is

a dependable, less hazardous, cost-effective, and time-effective novel approach.
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