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The blood vessel density in a cancerous tissue sample may represent increased levels of tumor growth. However, identifying blood
vessels in the histological (tissue) image is difficult and time-consuming and depends heavily on the observer’s experience. To
overcome this drawback, computer-aided image analysis frameworks have been investigated in order to boost object identification
in histological images. We present a novel algorithm to automatically abstract the salient regions in blood vessel images.
Experimental results show that the proposed framework is capable of deriving vessel boundaries that are comparable to those
demarcated manually, even for vessel regions with weak contrast between the object boundaries and background clutter.

1. Introduction

Computer-aided diagnosis (CADx) for high-throughput tis-
sue banks and digitized histological (tissue) images has
shown promise for relieving pathologists’ workload by
assisting in differentiating cases of benign and difficult-to-
diagnose suspicious tumor areas [1–5]. The CADx system
is expected to improve clinical practice [1, 2] and the per-
formance of human observers as they interpret histological
images [3–5]. For example, the qualitative evaluation of
the spatial distribution of vessels surrounding tumors may
represent the increased levels of angiogenesis (the growth
of new capillary blood vessels) in tumor growth [6–9].
To investigate the increased levels of tumorigenicity (the
ability to give rise to tumors), the blood vessel density
in a cancerous tissue sample can be determined by using
immunohistochemical (IHC) staining methods. However,
the interpretation of the histopathological image is relatively
difficult and time-consuming, and the identification of blood
vessels depends heavily on the observer’s experience.

To overcome this drawback, computer-aided image anal-
ysis frameworks have been widely and intensively investi-
gated in order to boost the performance of object iden-
tification in histological images [1]. Generally, a clinical
decision support system starts with quality control and ends
with predictive modeling for several cancer endpoints [10].
Nevertheless, it remains impractical to apply these computer-
aided diagnostic algorithms in clinical applications. The
primary difficulty lies in quantitatively characterizing the
histological images, given the variety of imaging methods
and disease-specific textures.Therefore, a pressing need exists
for a computer-aided image analysis approach to quantify
the useful factors for angiogenesis: area, spatial distribution,
and density of blood vessels. Blood vessel region abstrac-
tion is a crucial step for achieving this goal. However, the
development of robust algorithms for the automated analysis
of blood vessel images has many challenges, including an
extensive variation in blood vessel structure and features and
missing blood vessel boundaries caused by weak contrast,
background clutter, and stain contamination.
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Figure 1: Immunostained vessel images.

Based on the image analysis methods used for blood
vessel quantification, our proposed framework includes two
main components:

(1) An image filtering algorithm that uses color, lumi-
nance, and spatial variations in pixel intensities in
order to make a visual search more efficient.

(2) An image segmentation algorithm that incorporates
the global feature information derived frommeasure-
ments of pixel intensities into the curve evolution and
the curvature flow component.

One important advantage of using image filtering over a
segmentationmethod is the ability to improve the accuracy of
image segmentation; the operator canmore easily distinguish
the location of the vascular area. For instance, some variations
in staining and scanning conditions, such as image acqui-
sition protocols, capturing-device properties, and lighting
conditions, can reduce the accuracy of the quantifications,
rendering them unusable.

Further, the structure and morphology of blood vessel
images can be complicated, as shown in Figures 1(a) and 1(b).
Traditional vessel image analysismethods [11–13]were unable
to accurately detect the location of blood vessels. Therefore,
we propose an image filtering algorithm allowing foreground
(i.e., vessel) regions to be easily detected.

In this paper, we present a novel algorithm for automat-
ically abstracting the blood vessel image that highlights the
blood vessel regions and reduces the texture noise of the
nonvessel regions. We examine the Gaussian color model of
the original image to extract the large-scale layer and use
the normalized color of the original color layer to extract
the detailed layer. We then recombine the color layer of the
original image, the large-scale layer, and the detailed layer to
produce an image with two properties: salient blood vessel
regions and a homogeneous background. Finally, we abstract
this image using luminance quantization to generate the
visually important blood vessel regions.

For vessel image quantification, the proposed image
segmentation algorithm consists of two steps. In the first step,
a region-based active contourmethod, namely, the graph par-
titioning active contours (GPAC) method, is used to derive
a preliminary result. The GPAC incorporates global feature

information into the curve evolution and the curvature flow
component. Because misclassification is often inevitable in
the GPAC segmentation of blood vessel images, owing to
the weak contrast between the object boundaries and the
background clutter, the second step further improves the
segmentation accuracy using statistical intensity information.
The essential concept of the second step is to employ local
adaptive thresholding to discriminate between the subvessel
regions formed in the first step and the background. It
alleviates the interference caused by other structures within
the subvessel regions, while preserving or introducing only
tolerable distortion to the properties of the vessel objects of
interest.

The remainder of this paper is organized as follows:
We present the proposed framework in Section 2, discuss
the results obtained from experiments in Section 3, and,
finally, conclude the paper in Section 4. (Note: An earlier
version of this work was presented as a conference paper [14].
This journal version extends the previous work with more
concrete examples of complete theories, experiments, and
comparisons.)

2. Materials and Methods

Three non-small cell lung-cancer cell lines, CL1-0 transfect,
VEGF isoform 189, and A549, were used. All of them were
cultured with the ATCC complete growth medium RPMI
1640, within a combination of 2mM L-glutamine, 1.5 g/L
sodium bicarbonate, 4.5 g/L glucose, 100U/mL penicillin
G sodium, 100 𝜇g/mL streptomycin sulfate, and 10% fetal
bovine serum, in a humidified atmosphere consisting of 5%
CO
2
in air at 37∘C. Immunohistochemical analysis of the

cryostat sections and quantitative analysis of the blood vessel
densities of tumor samples were performed. An anti-CD31
mouse monoclonal antibody (clone MEC 13.3, PharMingen)
was used in the analysis. The proposed heuristic framework
for histological vessel image analysis, based on the image
filtering and segmentation algorithms, is detailed in the
following sections.

2.1. Automatic Immunostained Vessel Image Filtering Algo-
rithm. An algorithm for blood vessel abstraction [14] which
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Figure 2: Flowchart of our proposed image filtering algorithm.

was based on computing salient maps of blood vessel regions
was proposed. Our approach proceeded as follows. First, we
examined the stain adhered to the objects, using the normal-
ized color on the color layer of the original image, to extract
the detail of the blood vessel regions. This procedure could
reduce the texture noise due to large structural variations in
the biological image. Second, in order tomaintain the pattern
distributions, we used bilateral filtering to smooth the first
component of theGaussian colormodel and emphasize sharp
features.Thus, we could preserve the blood vessel regions and
simultaneously enhance their sharpness by reconstructing
the detailed and large-scale layers. An overview of the
complete algorithm is summarized in Figure 2.

Due to platform illumination variations in image acquisi-
tion, Niblack’s adaptive thresholding method was performed
to remove the light bias [15]. The basic concept of Niblack’s
method is to build a threshold surface 𝑇, based on the local

mean 𝑚 and standard deviation 𝑠 of gray values, computed
over a small neighborhood around each pixel in the form of

𝑇 = 𝑚 + 𝑘 ⋅ 𝑠, (1)

where 𝑘 is a negative constant.This method tends to produce
the distribution of the light illumination. As a result, the light
bias was reduced by dividing the intensity of the original by
the threshold surface.The definition of the intensity and color
channels is a linear weighted combination of 𝑅, 𝐺, and 𝐵 for
intensity estimation [16]:

𝐼 =
𝑅

(𝑅 + 𝐺 + 𝐵)
𝑅 +

𝐺

(𝑅 + 𝐺 + 𝐵)
𝐺 +

𝐵

(𝑅 + 𝐺 + 𝐵)
𝐵. (2)

The intensity distribution of blood vessel regions was
heterogeneous and the background of the original image
was also cluttered. Therefore, using perceptual uniform color
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Figure 3: Overview of our proposed segmentation system.

spaces in such images was necessary. We transformed the
original RGB image into the Gaussian color space [17] using
the following:

[
[
[

[

𝐸

𝐸
𝜆

𝐸
𝜆𝜆

]
]
]

]

= (

0.06 0.63 0.27

0.3 0.04 −0.35

0.34 −0.6 0.17

)
[
[

[

𝑅

𝐺

𝐵

]
]

]

. (3)

For human color vision, the first of three components
𝐸, 𝐸
𝜆
, and 𝐸

𝜆𝜆
of the Gaussian color model, measured by the

Taylor expansion of the Gaussian weighted spectral energy
distribution at 𝜆

0
≃ 520 nm and scale 𝜎

𝜆
≃ 55 nm, was

used as an input for large-scale calculation. The invariant
𝐶
𝜆

= 𝐸
𝜆
/𝐸 (the object’s reflectance property, independent

of viewpoint, surface orientation, illumination direction, or
illumination intensity) was represented using normalized
color to obtain the detailed layer of the original image.

After acquiring the normalized color, we used a bilateral
decoupling procedure [16] to decompose the image into
layers corresponding to the sharp details within the blood
vessel regions. The bilateral filter [18] combined domain and
range filtering by replacing the pixel value with a weighted
average of similar (weight 𝑟 on the pixel difference) and
nearby (weight 𝑠 on the spatial location) pixel values. The
objective of the bilateral filter was to group perceptually
similar colors together and preserve only the perceptually
visible edge. Given an image 𝑓(⋅), the output 𝐽(⋅) of the
bilateral filter for a pixel 𝑥 was

𝐽
𝑥
=

1

𝑘 (𝑥)
∑

𝑛∈Ω

𝑠 (𝑛 − 𝑥) 𝑟 (𝑓
𝑛
− 𝑓
𝑥
) 𝑓
𝑛 (4)

with normalization

𝑘 (𝑥) = ∑

𝑛∈Ω

𝑠 (𝑛 − 𝑥) 𝑟 (𝑓
𝑛
− 𝑓
𝑥
) . (5)

We used a combination of the bilateral filters of the
normalized color to deduce the detailed layer.The large-scale
layer was derived from a single iteration of a bilateral filter
of the first component of the Gaussian color model.Then, we
recombined the image using the element-by-element product
of the color layer of the original image, the large-scale layer,
and the detailed layer.

In order to abstract the blood vessel regions in the image
obtained in the previous step, we modeled the visually salient
regions by luminance quantization as follows [19]:

𝑄(𝑠, 𝑞, 𝜅
𝑞
) = 𝑞nearest

+
Δ𝑞

2
tanh (𝜅

𝑞
⋅ (ℎ (𝑠) − 𝑞nearest)) ,

(6)

where 𝑄(⋅) is the pseudoquantized image, Δ𝑞 is the bin
width, 𝑞nearest is the bin boundary closest to ℎ(𝑠), and 𝜅

𝑞
is

a parameter controlling the sharpness of the transition from
one bin to another. The result of our approach is shown in
Figures 2(h) and 9.

2.2. Histological Image Segmentation Algorithm. The main
stages of the proposed segmentation scheme are as follows:
(1) the graph partitioning active contours (GPAC) method
[20]; (2) color space transform and preprocessing; (3) Otsu’s
clustering method [21]; (4) aspect ratio test and refinement;
and (5) validation. Figure 3 shows the overview diagram of
the proposed segmentation scheme.

2.2.1. Graph Partitioning Active Contours Methods. Themain
objective of graph-based segmentationmethods is to seek the
best partition of the affinity graph, denoted as G, in which
every image pixel is regarded as a graph node and every
possible pairwise relation of image pixels is represented as a
graph edge. The GPAC method [20] is a variational frame-
work for pairwise-similarity-based segmentation which has
an important characteristic called stability. This means it
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Figure 4: Four different spatiochromatic patterns. (a) Type 1; (b) Type 4; (c) Type 2; (d) Type 3.

Table 1: Five different region types derived according to their
spatiochromatic patterns.

Type 1 Type 2 Type 3 Type 4 Type 5
Vessel (white) All Almost Half Few None
Surrounding
tissue (gray) None Few Half Almost All

usually converges to the same result despite varying curve
initializations and noise. Partitioning was used to derive the
approximation of vessel regions in the image as an input
of local adaptive thresholding while reducing computational
efforts.

2.2.2. Color Space Transform and Preprocessing. The intensity
distribution of blood vessel regions was heterogeneous and
the background of the original image was also cluttered.
Therefore, using perceptual uniform color spaces in such
images was necessary. As a result, we applied the transfor-
mation of the original RGB image into the YCbCr color
space. Because of platform illumination variations in image
acquisition, the process of image contrast enhancement using
the sigmoid function in a spatial domain was used to correct
the light bias.

2.2.3. Threshold Selection. Otsu’s method [21] is a bimodal
clustering technique based on intensity estimation for the
analysis of histogram distribution. Subvessel regions formed
in the first step are discriminated from the background by
minimizing the within-class variance of the regions formed
by thresholding.

2.2.4. Aspect Ratio Test and Refinement. Five different region
types are derived, as shown in Table 1, according to their
spatiochromatic patterns, as shown in Figure 4. The aspect
ratio test comprises three criteria for distinguishing Type 3

regions from other type patterns. The definitions of these
criteria are listed below.

Criterion 1. If the vessel-candidate region is Type 5 (i.e., all
gray and no white tissue), then it will become part of the
background (i.e., SAR = 1), thus eliminating unnecessary
calculations.

Criterion 2. Calculate the surrounding area ratio (SAR) for
each vessel-candidate region:

SAR =
surrounding tissue

its vessel-candidate areas
, (7)

where the surrounding tissue represents the gray part of the
vessel-candidate area, which includes both gray and white
areas.

Criterion 3. Calculate the area image ratio (AIR) for each
vessel-candidate region:

AIR =
its vessel-candidate areas

image size
. (8)

The aspect ratio test was conducted in order to identify
the Type 3 pattern (i.e., half gray and half white). The
relative vessel region is then arranged for the refinement step
procedure, as shown in Figure 5.

2.2.5. Validation. Our collaborating assistant manually cal-
culated the vessel numbers in the images; we consider this
to be the ground truth. We compared her numbers with the
automatically generated numbers as follows:

error =
Number (computer XOR GT)

Number (GT)
× 100%, (9)

where computer is the region number (based on the automat-
ically detected border) and ground truth (GT) was defined
above.
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Figure 6: Synthetic vascular image. The unfiltered source image (a) was outlined manually to annotate (b). We created the unfiltered target
image (c); then the filter learned from (a) and (b) was applied to (c) to get (d). The result is shown in (d).

3. Results and Discussion

3.1. Automatic Immunostained Vessel Image Filtering Algo-
rithm. To create the synthetic vascular images with different
complex vessel samples, we used “image analogies” [22] that
effectively apply the statistics of a labeled image (Figure 6(a))
to a new unlabeled image (Figure 6(c)). Specifically, a syn-
thetic vascular image (Figure 6(d)) was created by coating
the given vessel samples (Figure 6(b)) with a labeling of the
components of the vessel images. The experimental results of
the synthetic vascular images in Figure 7 showed that filtering
images within the nonvessel regions could improve the image
segmentation accuracy using fuzzy 𝑐-means clustering, as
shown in Figure 8, and preserve the vessel regions as well.
We applied the three-class fuzzy 𝑐-means clustering to the
synthetic vascular images and considered the first clustering
as vessel pixels. The clustering error is defined as

error =
Area (computer XOR GT)

Area (GT)
× 100%, (10)

where computer is the binary image obtained by filling the
image segmentation by fuzzy 𝑐-means clustering, and the
ground truth (GT) is obtained from Figure 6(c).

The experimental results of salient blood vessel region
detection and abstraction using our method, shown in Fig-
ure 9, showed that the sharpness of the blood vessel borders

was enhanced and the details of the blood vessel regions were
also preserved. For instance, Figure 10(a) shows a detailed
layer from Figure 2(a) with low contrast in the blood vessel
regions while the background regions have high contrast and
texture noise. The result of our proposed filtering method
showed that our approach could increase the contrast in
the blood vessel regions and also reduce the noise in the
background regions, as shown in Figure 10(b).

In our experiment, if themargin of the blood vessel region
was quite thin—for example, when the blood vessel cavity
is surrounded by only a few blood vessel wall areas, as in
Figure 10(c)—the final abstraction, as shown in Figure 10(d),
would regard the cavity as background. This problem is
currently under study, using machine learning techniques.
In practice, we have gained promising abstraction results on
a wide range of complex blood vessel images, as shown in
Figure 9.

3.2. Histology Image Segmentation Algorithm

3.2.1. Calculation Results. Figures 11(a) and 11(c) show the
segmentation results. Figures 11(b) and 11(d) show the anno-
tated locations of the blood vessels, as provided by the expert.
It can be observed in Figure 11(a) that the blood vessel regions
in the upper right with lower contrast are relatively difficult
to identify, while the background regions have high contrast
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Figure 7: Synthetic vascular images. Abstraction results: original images (left), reconstructed images of the color layer of the original images,
large-scale, and detailed layers (median), and salient blood vessel region abstraction from our proposed filtering method (right).
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(a)

(b)

(c)

Figure 9: Abstraction results: original images (a); reconstructed images of the color layer of the original images, large-scale, and detailed
layers (b); and salient blood vessel region abstraction from our proposed method (c).

(a) (b) (c) (d)

Figure 10: (a) Detail from Figure 2(a) with low contrast in the blood vessel regions. (b) Result of our proposed method with salient blood
vessel regions. (c) Detail from Figure 2(a) with the cavity of the blood vessel surrounded by a few blood vessel wall areas. (d) Result of our
proposed method with broken regions.

and texture noise.The result showed that our approach could
delineate the major parts of the blood vessel regions and still
do well in the blood vessel regions with the cavity, which is
surrounded by few blood vessel wall areas.

3.2.2. Comparison of Results. Figure 12 compares the results
of the proposed segmentation method with different spati-
ochromatic conditions. The results after applying the aspect
ratio test were much better in some conditions in terms
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Figure 11: Calculation results. ((a), (c)) The boundaries are generated by our algorithm; ((b), (d)) those in apple dots are from the observer.
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of the relationships between color style and vessel regions.
Clearly, the proposed algorithm can better demarcate the
blood vessel regions.

4. Conclusion

This paper provides a framework for automatically detecting
and abstracting blood vessel regions using color, luminance,

and other details from the original image. Currently, we
are exploiting various unsupervised classifications to deal
with the problem caused by a cavity in the blood vessel
regions and are focusing on the implementation of a fully
automated, objective, computer-based image analysis tool for
the quantification of blood vessel images. We demonstrated
that the implemented tool can calculate the vessel number
and its area.The produced results were highly correlated with
the human visual counts, conducted by an assistant from
our department. Our next step is the exploration of various
image textural features to achieve further quantification and
automation in the assessment of vessel images.
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