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Background: Multiparametric MRI (mp-MRI) combined with machine-aided approaches have shown high accuracy and sen-
sitivity in prostate cancer (PCa) diagnosis. However, radiomics-based analysis has not been thoroughly compared with
Prostate Imaging and Reporting and Data System version 2 (PI-RADS v2) scores.
Purpose: To develop and validate a radiomics-based model for differentiating PCa and assessing its aggressiveness com-
pared with PI-RADS v2 scores.
Study Type: Retrospective.
Population: In all, 182 patients with biopsy-proven PCa and 199 patients with a biopsy-proven absence of cancer were
enrolled in our study.
Field Strength/Sequence: Conventional and diffusion-weighted MR images (b values = 0, 1000 sec/mm2) were acquired
on a 3.0T MR scanner.
Assessment: A total of 396 features and 385 features were extracted from apparent diffusion coefficient (ADC) images and
T2WI, respectively. A predictive model was constructed for differentiating PCa from non-PCa and high-grade from low-grade
PCa. The diagnostic performance of each radiomics-based model was compared with that of the PI-RADS v2 scores.
Statistical Tests: A radiomics-based predictive model was constructed by logistic regression analysis. 70% of the patients
were assigned to the training group, and the remaining were assigned to the validation group. The diagnostic efficacy was
analyzed with receiver operating characteristic (ROC) in both the training and validation groups.
Results: For PCa versus non-PCa, the validation model had an area under the ROC curve (AUC) of 0.985, 0.982, and 0.999
with T2WI, ADC, and T2WI&ADC features, respectively. For low-grade versus high-grade PCa, the validation model had an
AUC of 0.865, 0.888, and 0.93 with T2WI, ADC, and T2WI&ADC features, respectively. PI-RADS v2 had an AUC of 0.867 in
differentiating PCa from non-PCa and an AUC of 0.763 in differentiating high-grade from low-grade PCa.
Data Conclusion: Both the T2WI- and ADC-based radiomics models showed high diagnostic efficacy and outperformed
the PI-RADS v2 scores in distinguishing cancerous vs. noncancerous prostate tissue and high-grade vs. low-grade PCa.
Level of Evidence: 3
Technical Efficacy: Stage 2
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Prostate cancer (PCa) is one of the most common malig-
nant neoplasms and the second leading cause of cancer-

related death among older males in Western developed

countries.1 The incidence is also rising annually in China,
and morbidity and mortality have imposed heavy burdens on
families and society.2 Thus, the early differentiation and
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grading of PCa are critical in patient management and the
evaluation of long-term survival.

Serum prostate-specific antigen (PSA) and digital rectal
examination (DRE) are considered the most commonly used
PCa screening methods. Although PSA-based screening is rea-
sonably sensitive, it is nonspecific, leading to a high false-
positive rate and a risk of overtreatment. Among other limita-
tions, DRE cannot usually distinguish between PCa and
benign prostatic hyperplasia (BPH).3,4 Multiparametric mag-
netic resonance imaging (mp-MRI) combined with anatomical
sequences (T1- and T2-weighted imaging; T1WI and T2WI)
and functional sequences (diffusion-weighted imaging [DWI],
dynamic contrast-enhanced [DCE], magnetic resonance spec-
troscopy [MRS]) can provide valuable information for PCa dif-
ferentiation, local staging, and risk classification.5–10

In 2012, the Prostate Imaging and Reporting and
Data System version 1 (PI-RADS v1) was described to pro-
mote standardized reporting criteria for the interpretation
of mp-MRI scans in the assessment of PCa, including clin-
ical indications for prostate mp-MRI, minimal and optimal
imaging acquisition protocols, and a structured category
assessment system.11 In 2015, PI-RADS v2 was released
with simplified terminology and mp-MRI report content.
Compared to v1, the new version highlighted the impor-
tance of T2WI and DWI sequences, which are more easily
obtainable than DCE and MRS.8 Encouraging reports on
the role of PI-RADS v2 in the diagnosis and progress eval-
uation of PCa have been published and confirmed to
improve diagnostic accuracy from 60–90% in the differen-
tiation of PCa.12–17

However, in PI-RADS, subjectivity and interobserver
variability has been notable.16,18 Radiomics,19,20 the extraction
of multiple quantitative imaging features from medical images,
has attracted much attention. With automatic feature extrac-
tion algorithms, imaging data can be converted to high-
dimensional mineable data and provide valuable information
for assessing the diagnosis and prognosis of various disorders.21

Numerous radiomics features combined with machine-learning
approaches could address the above-mentioned disadvantages
of subjectivity and variability, making the interpretation of
mp-MRI more objective and quantitative.21,22

Currently, machine-aided approaches have shown high
accuracy and sensitivity in discriminating PCa from noncan-
cerous prostate tissues and in differentiating between cancers
with different Gleason scores (GSs),23–26 but a full compari-
son of the diagnostic performance of radiomics-based
machine-learning analysis methods and PI-RADS scores has
not been fully researched. Thus, the purpose of this study
was to investigate the potential utility of radiomics-based
machine-learning approaches to differentiate malignant tissue
from benign tissue and assess cancer aggressiveness, as well as
to compare the diagnostic capabilities based on radiomics ver-
sus PI-RADS v2 scores.

Materials and Methods
This retrospective study was approved by the Institutional
Ethical Committee of our hospital, which waived the require-
ment for written informed consent.

Patient Cohort
We searched the network information system records between
December 2014 and March 2017 in our hospital to identify suit-
able patients who met the following inclusion criteria: 1)
ultrasound-guided prostate biopsy and pathologically confirmed
PCa with GSs; 2) 3T prostate mp-MRI examination; and 3) no
prior prostate surgery, biopsy, radiation therapy, or endocrine ther-
apy before MRI examination. The exclusion criteria were as fol-
lows: i) small tumor volume (maximum diameter <5 mm); ii)
pathological biopsy prompted lesions that could hardly be delin-
eated on MRI (those whose cancer location precluded segmentation
of normal structures); and iii) the presence of imaging artifacts
making the segmentation of cancer lesions impossible or incomplete
mp-MRI information, such as missing images. The final study pop-
ulation consisted of 182 PCa patients and 199 patients without
any histological evidence of cancer. Details of patient selection are
shown in Fig. 1.

MRI Data Acquisition
All scans were performed using a 3.0T MRscanner (Philips Intera
Achieva, Best, Netherlands) with a 32-channel body phased array
coil as the receiving coil. Scan sequences included sagittal T2WI,
axial T2WI, T1WI, DWI (b values of 0 and 1000 sec/mm2) and
DCE. Supplementary Table 1 summarizes the details of the imag-
ing sequence parameters, including the sequence type, repetition
time / echo time (TR/TE), section thickness, field of view
(FOV), and matrix. ADC maps were calculated on a designated
workstation.

Eligible Patients

(n=213)

too small tumor volume (maximum

diameter <5 mm) (n=9)

Pathology-MRI mismatched (n=19)

imaging artifacts(n=1) or incomplete 

information of mp-MRI (n=2)

final study population

(n=182)

Low-grade PCa

(n=40)

High-grade PCa

(n=142)

FIGURE 1: Flow diagram of patient selection.
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Region of Interest (ROI) Delineation on T2WI and
ADC Images
Only T2WI and ADC images were considered in our study due to
the availability and emphasis in PI-RADS v2. The study workflow
was divided into three steps: manual segmentation, ROI merger, and
feature extraction.

For consistency between ROIs in both T2WI and ADC
images, all depicted ROIs were strictly delineated with the same cri-
teria and visually validated by the same expert. Manual segmentation
and ROI merging were carried out in consensus by two radiologists
(W.Z. with 15 years of experience and G.W. with 9 years of experi-
ence in prostate MRI) using a newly developed software package
(Artificial Intelligence Kit, v. 2.0.1, GE Healthcare, China). This
software was developed by the GE Healthcare team and can inte-
grate the processes of feature extraction, feature selection, and model
establishment.

The ROIs were depicted along the boundaries of the lesion
layer by layer in reference to the pathological findings of the biopsy
(as shown in Fig. 2). Given the importance of heterogeneity analysis,
ROIs should include areas of bleeding, necrosis, cystic tissue, and
calcification but avoid the urethra, ejaculatory duct, verumontanum,
seminal vesicles, and other normal anatomical structures. For multi-
focal PCa, if all lesions have the same biopsy GS, we outlined the
ROI at each level manually until all the lesions were sketched; if the
pathological GSs were different, we only selected the highest GS

areas for sketching and inducted these patients into the high-grade
group. The lower GS areas were not included in the ROI because
the boundaries were often difficult to define clearly on MRI. Thus,
our analysis was only focused on the high GS partition, and the PI-
RADS score was also evaluated for this area. Finally, we identified
381 ROIs, 182 for cancerous and 199 for noncancerous tissue.

Feature Extraction, Feature Selection, and Model
Establishment
Four types of features (first-order statistics, gradient-based histogram
features, second-order Haralick textures, and form factor parameters)
for a total of 396 features were extracted from ADC images, and
385 features were extracted from T2WI images, as shown in Supple-
mentary Table 2. The whole process of feature extraction was per-
formed using Artificial Intelligence Kit software.

Not all of the extracted features would be useful for differen-
tial diagnosis; thus, we adopted a series of methods for dimensional-
ity reduction and feature selection to identify the optimal set of
features to differentiate cancer vs. normal prostate tissues as well as
PCa with different GSs. To reduce overfitting or selection bias in
our radiomics model, analysis of variance (ANOVA), Kruskal–Wallis
test, univariate logistic, and least absolute shrinkage selection opera-
tor (LASSO) were used to explore the informative features that cor-
related best with histopathology; Spearman was defined to reduce
the redundancy of the features, in which features with high

FIGURE 2: ROI delineation of noncancerous tissue and low- and high-grade PCa. (a,d,g: T2WI images; b,e,h: ADC images; c,f,i:
pathological images.)
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correlation were removed; random forest was applied to sort the fea-
tures based on their importance to the classifier, which helped us to
pick the most important features.27–29 At last, the 10 most signifi-
cant features were investigated to construct a radiomics model. If fea-
ture numbers were less than 10 after Spearman analysis, random
forest was not applied. The number of features after each feature
selection step is shown in Supplementary Table 3.

To distinguish cancerous from normal prostate tissue, the
patients were stochastically divided into two groups: 70% of the
patients were assigned to the training group (n = 266) for establish-
ing the predictive model, and the remaining patients were assigned
to the validation group (n = 115) for evaluating the predictive
model. In distinguishing low-grade (GS ≤6) from intermediate/high-
grade (GS ≥7) tumors, the number of patients with low-grade PCa
was much smaller than the number of patients with high-grade PCa,
and the sample imbalance would have an adverse impact on the per-
formance of a classifier, resulting in a high accuracy but low specific-
ity and sensitivity. Thus, we used the synthetic minority
oversampling technique (SMOTE) to generate a sample from the
joint weighting of multiparametric features. Similarly, 70% of the
patients were assigned to the training group (n = 56), and the
remaining patients were assigned to the validation group (n = 28). A
predictive model was constructed from selected features in the train-
ing group using a generalized linear model with logistic regression
for classification analysis based on the features extracted from ADC
and T2WI images separately and in combination.

PI-RADS Evaluation
Three radiologists (with 10, 5, and 3 years of experience in

prostate MRI diagnosis; T.C., J.M., and Y.G., respectively) were
responsible for image interpretation but did not participate in the
previous process of ROI delineation. During the image evaluation,
the investigators were blinded to all clinicopathological information
and scored in strict accordance with the PI-RADS v2 scoring criteria
(on a scale of 1–5) independently.30

STATISTICAL ANALYSIS. Kendall’s W test was performed to
calculate the interreader concordance coefficient of the PI-
RADS scores obtained by the three radiologists.

The validation data were used to verify the diagnostic
efficacy of the predictive models, and the differences between
the predictive models vs. PI-RADS v2 scores in identifying
benign vs. malignant PCa and low- vs. intermediate/high-
grade PCa were analyzed with receiver operating characteristic
(ROC) curves. With the maximum Youden index as the criti-
cal value, the diagnostic sensitivity (SEN), specificity (SPE),
and overall accuracy (ACC) were calculated. P < 0.05 was
considered statistically significant. The statistical analysis was
performed with Statistical Package for the Social Sciences
(SPSS, https://www.ibm.com/products/spss-statistics).

Results
Patient Characteristics
The clinical and tumor characteristics of the selected patients
are presented in Table 1. A total of 182 patients with cancer

foci and 199 patients without any histological evidence of
cancer were identified.

The overall interreader consistency was good for PI-
RADS scores among the three readers (Kendall’s W = 0.956,
P < 0.001), as shown in Supplementary Table 4.

Feature Selection and Radiomics Model
Establishment
We selected nine features from T2WI images, ten features
from ADC images, and six features from T2WI and ADC
images combined to classify candidates as either cancerous or
noncancerous, as well as ten features from T2WI, ADC, and
T2WI&ADC images for tumor grading. The relative feature
importance computed by the random forest of all extracted
features is shown in Figs. 3–4. The logistic regression model
was established by incorporating the 1) T2WI features, 2)
ADC features, 3) T2WI&ADC features, and 4) PI-RADS
scores.

PCa vs. Non-PCa Classification
The efficacy of using the features extracted from T2WI and
ADC images, both individually and combined, in the differ-
entiation of PCa from noncancerous tissue is shown in
Table 2 and Fig. 5. In the training group, the AUC, accuracy,
specificity, and sensitivity were 0.989, 0.966, 0.945, and
0.986 based on the T2WI model, 0.998, 0.989, 0.984, and
0.993 based on the ADC model, and 0.999, 0.989, 0.992,
and 0.986 based on the T2WI&ADC model, respectively. In

TABLE 1. Clinical Characteristics of the Patient Cohort

PCa Non-PCa

Number of patients 182 199

Mean age (y) [range] 74 [56–90] 68 [55–88]

PSA (ng/ml)

PSA≤10 31 109

10<PSA≤20 34 57

PSA>20 117 33

Gleason score (n, %)

6 40 (22%) —

7 62 (34%) —

8 38 (21%) —

9 32 (18%) —

10 10 (5%) —

PCa: prostate cancer; PSA: prostate-specific antigen.
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the validation group, the AUC, accuracy, specificity, and sen-
sitivity were 0.985, 0.948, 0.982, and 0.917 based on the
T2WI model, 0.982, 0.983, 0.964, and 1.000 based on the
ADC model, and 0.999, 0.991, 0.982, and 1.000 based on
the T2WI&ADC model, respectively. After combining all the

features together, the AUC increased to 0.999, slightly higher
than that for T2WI or ADC features alone. Comparing the
differences in the performance of the radiomics-based model
and PI-RADS scores, each radiomics-based model outper-
formed the PI-RADS scores, as shown in Fig. 5.

FIGURE 3: The importance of features extracted from T2WI, ADC, and T2WI&ADC images to distinguish PCa from noncancerous
patients is shown in A–C, respectively.
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Low-Grade (GS ≤6) vs. High-Grade (GS >7) PCa
Classification
The performance of the radiomics model without any sample
augmentation and with sample augmentation by the SMOTE
method is shown in Tables 3 and 4 for the training and vali-
dation groups, respectively. Without sample augmentation,

the AUC, accuracy, specificity, and sensitivity of the T2WI,
ADC, T2WI&ADC classifiers was relatively high in the train-
ing group but low in the validation group. When using sam-
ples augmented by the SMOTE method, the performance of
the classifiers in the validation group improved significantly.
The accuracy of classifiers for differentiating low-grade from

FIGURE 4: The importance of features extracted from T2WI, ADC, and T2WI&ADC images to distinguish high- from low-grade PCa is
shown in A–C, respectively.
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high-grade PCa improved from 0.618 without sample aug-
mentation to 0.808 with SMOTE sampling on T2WI, from
0.673 to 0.850 on ADC, and from 0.709 to 0.867 on
T2WI&ADC. The Youden index improved from 0.512 to
0.617 on T2WI, from 0.281 to 0.700 on ADC, and from
0.507 to 0.730 on T2WI&ADC with oversampling. In addi-
tion, when combining all the features of T2WI and ADC
together, the AUC value increased to 0.930, which is higher
than that of T2WI (0.865) or ADC (0.887) alone. Compar-
ing the differences in the performance of the radiomics-based
model and PI-RADS scores, the performance of the PI-RADS
score classifiers, which have an AUC of 0.763, was much
worse than that of the radiomics feature classifiers, as shown
in Fig. 6.

Discussion
In this study we developed a radiomics-based machine-
learning model for PCa differentiation and aggressiveness
assessment and compared its diagnostic efficacy with that of
PI-RADS v2 scores. By extracting many quantitative image

features and efficiently selecting features, T2WI and ADC
radiomics models based on logistic regression were estab-
lished. When the models were trained with validated data,
they retained high performance in terms of accuracy, sensitiv-
ity, specificity, and AUC for achieving the correct diagnosis
and aggressiveness assessment and even outperformed the PI-
RADS v2 scores, illustrating the power of the radiomics-based
machine-learning models in highly effective classification.

A number of studies have used radiomics analysis to
automate PCa diagnosis and risk stratification.19,20 Gao
et al31 utilized an artificial neural network (ANN) classifier to
detect PCa using quantitative features extracted from DWI.
The diagnostic prediction reached high accuracies (89.7% for
the peripheral zone [PZ] and 91% for the transition zone
[TZ]) and specificity (94.8% for the PZ and 94.1% for the
TZ) while maintaining acceptable sensitivity (80.4% for the
PZ and 82.7% for the TZ). Sidhu et al26 derived histogram
parameters from ADC, T2WI, and early postcontrast T1WI
to detect PCa in the TZ, and the combination of kurtosis
and entropy could reach an AUC of 86%. Cameron et al32

presented a quantitative radiomics model using morphology,

TABLE 2. Diagnostic Results for PCa vs. Non-PCa Classification in the Training and Validation Groups

Training group Validation group

Sequence T2WI ADC T2WI&ADC T2WI ADC T2WI&ADC

AUC 0.989 0.998 0.999 0.985 0.982 0.999

ACC 0.966 0.989 0.989 0.948 0.983 0.991

SPE 0.945 0.984 0.992 0.982 0.964 0.982

SEN 0.986 0.993 0.986 0.917 1.000 1.000

AUC: area under the curve; ACC: accuracy; SPE: specificity; SEN: sensitivity.

FIGURE 5: ROC curves for radiomics-based ADC, T2WI, and ADC&T2WI model and PI-RADS score performance in distinguishing PCa
vs. non-PCa in the training and validation groups, respectively.
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asymmetry, physiology, and size (MRPS) features to detect
PCa and showed 87% accuracy, 86% sensitivity, and 88%
specificity. Duda et al25 reported that the best classification
accuracies were 81.00% for T1WI, 97.39% for T2WI, and
96.88% for DWI.

In general, T2WI and ADC are the most common
sequences selected by investigators for radiomics
research.33–35 In addition, the PI-RADS v2 scoring system
increases the diagnosis weight of T2WI and ADC and reduces
the diagnosis weight of DCE.8 Therefore, we chose to derive
radiomics features from T2WI and ADC only for this study,
and our results show that the diagnostic performance of the
radiomics-based model to separate cancerous and noncancer-
ous tissues in the prostate is better than that previously
reported.33–35 The diagnostic efficacy of the radiomics models
based on either sequence (T2WI or ADC) alone reached a
very high level, and the diagnostic efficacy of the comprehen-
sive sequence-based radiomics model slightly increased. Possi-
ble explanations may be as follows. First, compared to
established radiomics models,33–35 our study applied
improved feature selection. We adopted a variety of
approaches to filter features gradually, which guaranteed that
all the selected features were valuable for the classification.

Furthermore, the patients themselves incorporated in our
study differed significantly, which means standard patient
population with prostate cancer, and that may lead to the
high diagnostic efficacy required for further verification. In
this way, we believe that the diagnostic efficacy of both the
T2WI- and ADC-based radiomics models can reach high
levels and that more sophisticated sequences are not so neces-
sary in some patients, which would help to simplify our scan-
ning solution.

PCa of different pathological levels exhibits differences
in internal cellular components, fluid contents, collagen
levels, and fibromuscular stroma, among other features.
High-grade PCa is poorly differentiated and characterized by
high cellularity and decreased extracellular space. Low-grade
tumors have at least some remaining glandular structures,
which preserve some intercellular space.35,36 These differences
in histopathological features could be reflected through quan-
titative analysis by radiomics approaches. Many studies have
shown that texture parameters extracted from T2WI and
ADC images can distinguish high- from low-grade PCa with
a diagnostic level reaching more than 80%.23,37,38 However,
these research methods only extract a few texture features,
and the feedback information is relatively limited. In this

TABLE 4. Diagnostic Results for GS 6 vs. GS≥7 PCa Classification in the Validation Group With and Without
Oversampling

Method 40/142 samples (no augmentation) 200/200 samples (SMOTE augmentation)

Sequence T2WI ADC T2WI&ADC T2WI ADC T2WI&ADC

AUC 0.682 0.609 0.777 0.865 0.887 0.930

ACC 0.618 0.673 0.709 0.808 0.850 0.867

SPE 1.000 0.583 0.833 0.800 0.900 0.900

SEN 0.512 0.698 0.674 0.817 0.800 0.833

Youden index 0.512 0.281 0.507 0.617 0.700 0.730

TABLE 3. Diagnostic Results for GS 6 vs. GS≥7 PCa Classification in the Training Group With and Without
Oversampling

Method 40/142 samples (no augmentation) 200/200 samples (SMOTE augmentation)

Sequence T2WI ADC T2WI&ADC T2WI ADC T2WI&ADC

AUC 0.869 0.850 0.921 0.867 0.889 0.931

ACC 0.811 0.748 0.858 0.829 0.850 0.868

SPE 0.857 0.893 0.929 0.779 0.879 0.886

SEN 0.798 0.707 0.838 0.879 0.821 0.850

Youden index 0.655 0.600 0.767 0.658 0.700 0.736
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study, we not only extracted a large number of radiomics
signatures but also screened the most validated features to
establish a model for assessing the diagnostic efficacy in
classifying high- and low-grade PCa. It must be explained
that, due to the unequal number of high- and low-grade
patients, we adopted the SMOTE method, which generates
samples from the joint weighting of features for oversam-
pling to balance samples. Without sample augmentation,
the established model would have some bias in classifica-
tion. This method was also certified by Fehr et al24; their
study showed that random switching frequency-space vector
modulation (RSF-SVM) with SMOTE achieves the highest
accuracy for classifying GS 6 versus GS ≥7, and GS 3 + 4
versus GS 4 + 3 PCa. Accordingly, our study shows that
the performance of the radiomics-based model in the vali-
dation group was significantly improved with SMOTE sam-
ple augmentation.

The radiomics-based models with T2WI, ADC, or
T2WI&ADC features outperformed the PI-RADS scores
for PCa differentiation and aggressiveness evaluation, which
is consistent with previous studies. Gao et al31 extracted
several texture features from DWI and compared the
computer-aided diagnosis model with DWI scores from PI-
RADS v2; the CAD-predicted AUCs were higher than the
AUCs of the DWI scores. Wang et al39 also indicated that
a radiomics-based machine-learning approach can help to
improve the predictive performance of PI-RADS scores.
The interpretation of the PI-RADS score according to each
image feature for PCa diagnosis is subjective and highly
reader-dependent, while our radiomics-based model is quan-
titative and relatively objective and achieves a higher diag-
nostic efficiency than PI-RADS scores. These encouraging
results suggest that radiomics approaches are promising
techniques for optimizing the existing routine workflow for

PCa diagnosis and aggressiveness evaluation, making it
more reliable and reproducible.

There are several limitations in our study. First, all patho-
logical results were biopsy-proven and lacked further validation
with radical prostatectomy specimens. Histological-radiological
matching was performed by experienced radiologists based on
the biopsy site and MR images, which was an inevitable source
of bias. Nevertheless, we manually segmented and delineated
ROIs with two radiologists in consensus, trying our best to
reduce the deviation. Furthermore, our study did not distin-
guish between peripheral and transitional PCa because, in
some cases, PCa occurred in both zones. Further research
should include a larger study population and treat peripheral
and transitional PCa differently. Additionally, although our
research extracted partial data to validate the radiomics-based
models, other external validation cohorts should also be
included to test the reproducibility in future studies.

In conclusion, a combined approach of radiomics-based
feature extraction and machine learning was developed in this
study to differentiate malignant from benign prostate tissue
and assess PCa aggressiveness, and the diagnostic capability of
the radiomics-based models and PI-RADS scores was com-
pared. The diagnostic performance of our T2WI or ADC
radiomics-based models was high, and the comprehensive
diagnostic efficacy was slightly increased. The efficacy of the
radiomics-based model was better than that of PI-RADS
scores.
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