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Abstract:  Research has failed to resolve the dilemma 
experienced by localized prostate cancer patients who 
must choose between radical prostatectomy (RP) and 
external beam radiotherapy (RT). Because the Charlson 
Comorbidity Index (CCI) is a measurable factor that affects 
survival events, this research seeks to validate the poten-
tial of the CCI to improve the accuracy of various predic-
tion models. Thus, we employed the Cox proportional 
hazard model and machine learning methods, including 
random forest (RF) and support vector machine (SVM), to 
model the data of medical records in the National Health 
Insurance Research Database (NHIRD). In total, 8581 indi-
viduals were enrolled, of whom 4879 had received RP and 
3702 had received RT. Patients in the RT group were older 
and exhibited higher CCI scores and higher incidences of 
some CCI items. Moderate-to-severe liver disease, demen-
tia, congestive heart failure, chronic pulmonary disease, 
and cerebrovascular disease all increase the risk of overall 
death in the Cox hazard model. The CCI-reinforced SVM 
and RF models are 85.18% and 81.76% accurate, respec-
tively, whereas the SVM and RF models without the use 
of the CCI are relatively less accurate, at 75.81% and 
74.83%, respectively. Therefore, CCI and some of its items 

are useful predictors of overall and prostate-cancer-spe-
cific survival and could constitute valuable features for 
machine-learning modeling.

1  Introduction
Localized prostate cancer is one of the most common 
male cancers and has led to unavoidable cancer death 
and impairment of quality of life [1, 2]. Current evidence 
has already demonstrated that great controversy exists 
regarding the treatment options for localized prostate 
cancer. Radical prostatectomy (RP) is associated with the 
lowest cancer-specific mortality in observational studies 
[3, 4], but selection bias exists. The selection bias means 
that patients with low comorbidity tend to undergo RP, 
whereas patients with high comorbidity are recommended 
to receive external beam radiotherapy (RT) [3, 4]. Rand-
omized trials have demonstrated no significant differences 
between patients undergoing RP and patients undergoing 
RT in overall and cancer-specific survival. In addition, no 
differences are exhibited in long-term quality of life (QoL) 
for patients undergoing RP versus those undergoing RT [4]. 
Currently, the shared decision-making process has been 
made part of standard practice in medical decision man-
agement for localized prostate cancer. However, patients 
who must choose their treatments encounter a dilemma 
when they have information regarding only the reported 
statistical cancer outcomes and posttreatment QoL but are 
unable to take personal characteristics into consideration 
[3, 4]. Integrating cancer characteristics, comorbidity, and 
cancerous outcomes into a machine-learning model, and 
obtaining a predictive result might represent a solution to 
the dilemma. 

Machine-learning modeling could be employed as a 
powerful tool for addressing the problem of treatment-re-
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lated decisions for patients with prostate cancer. In the 
past 20 years, an increasing number of new, powerful 
algorithms and computer science advances have made 
the modeling of big medical data possible. The machine 
learning models formulated using big medical data 
enable individualized predictions of clinical outcomes. 
Several instances of this have already occurred in the 
areas of oncology outcome prediction. Algorithms, such 
as support vector machine (SVM), random forest (RF), arti-
ficial neural network, and decision tree algorithms, have 
been applied for modeling with acceptable accuracy [5]. 
Kourou et al. indicated that a small sample size represents 
the most common research limitation for applications of 
machine learning in past decades [5]. Furthermore, after 
reviewing the literature thoroughly, they also concluded 
that the dataset quality and careful feature selection are 
also crucial for effective machine learning and accurate 
prediction. Relatively few references currently utilize 
machine learning algorithms for prostate cancer research 
[6, 7]. Two studies have employed machine learning to 
maximize the detection accuracy of prostate cancer. The 
absence of research focusing on machine learning pre-
dictions of localized prostate cancer outcomes may be a 
result of the long survival times following treatment. The 
longer the duration of disease-free survival is, the greater 
the chances are that non-prostate-cancerous factors, such 
as comorbidity and accidents, constitute the primary 
determinants of survival. In addition to cancerous char-
acteristics, therefore, this research investigates the effects 
of non-prostate-cancerous factors for modeling long-sur-
vival cancers.

The Charlson Comorbidity Index (CCI) [8] serves as 
a valuable, measurable indicator for improving predic-
tion accuracy with machine learning models for long life 
expectancy cancers. The CCI has been recognized as influ-
ential in relation to the clinical outcomes for localized 
prostate cancer. Park et al. declared CCI to be a prognostic 
factor for RP outcomes [9]. Lee et al. demonstrated that 
CCI is a major prognostic factor for long-term survival after 
RP [10]. Later, Rajan et al. denied the effect of comorbid-
ity on cancer-specific survival in prostate cancer patients 
[11]. However, they all found comorbidity to be a reliable 
predictor for overall survival. Comorbidity has also been 
proven to represent a strong predictor of overall survival 
for patients treated with radiotherapy. Jespersen CG et al. 
demonstrated that the choice of treatments for localized 
prostate cancer is affected by comorbidity [12]. Therefore, 
CCI is not only a factor that influences survival but is also 
an indicator for treatment options.      

Taiwan’s National Health Insurance Research Data-
base (NHIRD), created in 1998, is an excellent resource for 

medical research because of the compulsory enrollment 
involved in Taiwanese national health insurance. The 
medical expense records of more than 99% of Taiwan’s 
population are included in the NHIRD. The NHIRD cur-
rently provides 78 databases openly accessible, including 
59 health databases, 5 social databases, and 14 welfare 
databases. The first to 14th database contents include 
health insurance–related data files relating to ambulatory 
patients, inpatients, pharmacy information and medical 
care orders, and cause-of-death data. As part of the 
NHIRD, the Taiwan Cancer Registry (TCR) was created by 
the Department of Health to collect cancer epidemiological 
data from 1996 onwards comprehensively. TCR has become 
an indispensable resource for Taiwan cancer research. 
Using the NHIRD, Wang’s work surveyed second primary 
malignancy risk after radiotherapy for patients with rectal 
cancer [13]. Researchers used the NHIRD to prove that the 
survival of lung cancer is affected by a common comorbid-
ity, chronic renal insufficiency [14]. A type of Chinese herb 
was demonstrated to improve the survival of lung cancer 
with this database [15]. Wei et al. also used the NHIRD 
to clarify the effects of the comorbidity chronic kidney 
disease on the mortality risk of lung cancer patients [14]. 
Yang et al. recognized that CCI is a good predictor for 
NHIRD patients with lung cancer using a Cox regression 
model (16). Successively, fine results have been reported 
in NHIRD-related literature relating to breast cancer [17, 
18] and hepatoma [19]. Prostate cancer–related issues with 
NHIRD have also been published [20-22]. However, these 
studies related to prostate cancer have not focused on can-
cerous recurrence or death. The big data of NHIRD have 
also been analyzed by various researchers using machine 
learning modeling. Hu et al. used the NHIRD to conduct 
machine learning predictions regarding return visits 
for pediatric patients to the emergency department [23]. 
Wang et al. utilized machine learning classifiers for the 
prediction of brain metastasis of lung cancer for patients 
from the NHIRD [24]. Some research has aimed to validate 
comorbidity data, such as acute myocardial infarction or 
stroke, and death data. High consistency among these 
data has been observed [25-27]. Thus, data derived from 
the NHIRD should be extremely suitable for the machine 
learning modeling of prostate cancer survival. 

To our knowledge, no machine learning models have 
been able to predict localized prostate cancer outcomes. 
Although CCI has been proven to represent a significant 
prognostic factor for treatment outcome of localized pros-
tate cancer, few studies have taken the CCI into account 
when building machine learning models. This study 
focused mainly on building a CCI-reinforced machine 
learning model for the prediction of different treatment 
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outcomes. Thus, the purposes of this study were 1) to use 
data extracted from the NHIRD to compare the cancer 
outcomes for patients with localized prostate cancer who 
have undergone RP versus patients with localized prostate 
cancer who have undergone RT, 2) to analyze the factors 
that influence cancer-specific and overall survival, and 3) 
to observe the effects of the CCI on the improvement of 
prediction ability (and thus to determine whether the CCI 
represents a significant factor in cancer outcomes).

2  Materials and methods 

2.1  Search for target population in database

This research was a retrospective study targeting patients 
with localized prostate cancer who had undergone RP or 
RT. Both ICD9 (185) and ICD-10 (C61) were used to iden-
tify patients with prostate cancer in the NHIRD from 
2008 to 2015. To search for clinical T1N0M0, and T2N0M0 
patients, the TCR database was incorporated to obtain 

information on the initial clinical stages of patients. The 
next step was using the radical prostatectomy procedure 
code (79403B, 79410B) and order codes for external beam 
radiation therapy (36015B, 36002B, 36005B, 36012B, 
36019B) to search for patients who had received RP or RT 
as their initial definite treatment. Individuals with incom-
plete data on clinical stages, histological grading, or radi-
otherapy start-date, for example, were excluded. Patients 
whose recurrence statuses were recorded as “uncertain” 
or whose radiation modality was marked “unknown or 
other than external beam radiation therapy” in the TCR 
database were also excluded. The flow chart for the study 
population retrieved from NHIRD appears in Figure 1. 
The demographic statistical comparison between the RP 
group and the RT group is as seen in Table 1.         

2.2  Data collection and definition of 
variables

Various meaningful variables are extracted from the 
medical expense records and Cancer Registry records of 

Figure 1: Flow chart of subjects searching
This figure demonstrates whole procedure for establishing our target population. The dataset of target population was extracted from the 
outpatient expense file, hospitalization expense file, TCR file and death cause file of NHIRD.
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Table 1: Demographic features among treatment groups.

Variables
OP

Different Treatment

RT p-value

No. (%) of patients 8581 4879 3702

Age 65.79 74.1 <.0001*

T-stage 1A 88(1.80) 128(3.46) <.0001*

1B 96(1.97) 156(4.21)

1C 1512(30.99) 936(25.28)

2A 994(20.37) 617(16.67)

2B 580(11.89) 420(11.35)

2C 1609(32.98) 1445(39.03)

Grade 1 481(9.86) 539(14.56) <.0001*

2 1903(39.00) 1361(36.76)

3 2495(51.14) 1802(48.68)

Connective tissue disease 98(2.07) 63(1.70) 0.2995

Mild liver disease 166(3.40) 105(2.84) 0.158

Ulcer disease 839(17.20) 544(14.69) 0.0018*

Congestive heart failure 171(3.50) 214(5.78) <.0001*

Peripheral vascular disease 117(2.40) 115(3.11) 0.0451*

Chronic pulmonary disease 629(12.89) 593(16.02) <.0001*

Cerebrovascular disease 371(7.60) 410(11.08) <.0001*

Diabetes 1079(22.12) 657(17.75) <.0001*

Diabetes with end organ damage 4548(93.22) 3457(93.38) 0.7607

Moderate or severe renal disease 229(4.69) 199(5.38) 0.1507

Metastatic solid tumor 130(2.66) 51(1.38) <.0001*

Hemiplegia 27(0.55) 38(1.03) 0.0123*

Solid tumor without metastasis 289(5.92) 300(8.10) <.0001*

Myocardial infarct 44(0.90) 45(1.22) 0.1554

Dementia 47(0.96) 97(2.62) <.0001*

Moderate or severe liver disease 3(0.06) 0(0) 0.1313
Any malignancy, including lymphoma and leukemia, 
except malignant neoplasm of skin 256(5.25) 270(7.29) 0.0003*

AIDS/HIV 1(0.02) 0(0) 0.8447

Overall mortality 88(1.80) 325(8.78) <.0001*

F/U TIME 4.11 4.17 0.2517

Prostate cancer specific mortality 24(0.49) 79(2.13) <.0001*

Patients with CCI Score equal to 0 2073(42.49) 1779(48.06) <.0001*

1 1346(27.59) 746(20.15)

2 571(11.70) 404(10.91)

3 321(6.58) 241(6.51)
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4 203(4.16) 191(5.16)

5 127(2.60) 126(3.40)

6+ 238(4.88) 215(5.81)

CCI Average 　 1.36 1.42 <.0001*

Grade 1: Gleason score 2~5; Grade 2: Gleason score 6,7; Grade 3: Gleason score 8~10
*: Statistically significant, p<0.05 

Table 1 continued: Demographic features among treatment groups.

Table 2: Hazard ratios of features in Cox proportional Hazard model

Variables
Cox models

Overall survival CCI only Overall survival CCI item Specific survival CCI only Specific survival CCI item

Cancerous Characteristic variables

HR 95%HR p-value HR 95%HR p-value HR 95%HR p-value HR 95%HR p-value

Age 1.066 1.05-1.08 <.0001 1.058 1.04-1.07 <.0001 1.047 1.01-1.07 0.0023 1.04 1.01-1.07 0.0037

T-stage  (ref. = 1A)

1B 1.157 0.54 2.45 0.2798 1.239 0.58-2.63 0.5775 2.922 0.35-24.35 0.3216 1.775 0.23-1.24 0.2811

1C 0.697 0.36-1.34 0.3923 0.72 0.37-1.39 0.3296 1.829 0.24-13.53 0.5545 2.125 0.28-15.96 0.5756

2A 0.748 0.38-1.45 0.6994 0.785 0.40-1.53 0.4786 2.157 0.28-16.07 0.4532 2.032 0.26-15.56 0.4639

2B 0.875 0.44-1.77 0.4872 0.929 0.47-1.83 0.8314 2.118 0.27-16.11 0.4686 1.564 0.21-11.55 0.4949

2C 0.796 0.41-1.51 0.2798 0.833 0.43-1.59 0.5803 1.597 0.21-11.70 0.645 1.775 0.6614

Grade   (ref. = 1)

2 4.657 1.71-12.67 0.0026 4.496 1.65-12.24 0.0033 92.. 0 0.9792 10.. 0 0.9798

3 6.78 2.51-18.28 0.0002 6.463 2.39-17.44 0.0002 23.. 0 0.9778 2... 0 0.9785
Different treatment
(ref. = RT) 2.672 2.03-3.50 <.0001 2.693 2.04-3.54 <.0001 3.144 1.85-5.33 <.0001 3.194 1.88-5.41 <.0001

Comorbidity items

CCI     (ref. = 0)

1 1.461 1.10-1.94 0.0088 0.79 0.46-1.34 0.3872

2 1.816 1.32-2.49 0.0002 1.188 0.66-2.13 0.5634

3 2.015 1.40-2.91 0.0002 0.868 0.38-1.96 0.7345

4 2.455 1.68-3.59 <.0001 1.368 0.63-2.96 0.4263

5 2.108 1.32-3.37 0.0018 0.486 0.11-2.02 0.3216

6+ 2.767 1.94-3.95 <.0001 1.864 0.96-3.60 0.0645

Connective tissue disease 0.76 0.358-1.61 0.4761 0 0 0.9861

Mild liver disease 1.488 0.96-2.30 0.0757 1.95 0.84-4.49 0.1167

Ulcer disease 1.132 0.89-1.43 0.3052 1.13 0.69-1.84 0.6207

Congestive heart failure 2.172 1.63-2.88 <.0001 1.69 1.88-3.22 0.1107
Peripheral vascular 
disease 0.941 0.56-1.55 0.814 0.815 0.25-2.59 0.729

Chronic pulmo-
nary disease 1.644 1.32-2.03 <.0001 1.18 0.73-1.89 0.4907
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every single patient in our target population. These vari-
ables could be categorized into cancerous characteristic 
variables, comorbidity variables, and cancerous outcome 
variables. Cancerous characteristic variables include age, 
clinical T stage, histological grade, initial definite treat-
ment, and duration of follow-up. The cancer data are 
obtained from the TCR file. Comorbidity variables [28] are 
composited by recording the presence or absence of the 
following conditions, including myocardial infarction, 
congestive heart failure, peripheral vascular disease, 
cerebrovascular disease, dementia, chronic pulmonary 
disease, rheumatic disease, mild liver disease, diabe-
tes without chronic complication, diabetes with chronic 
complication, hemiplegia or paraplegia, renal disease, 
any malignancy, including lymphoma and leukemia, 
except malignant neoplasm of skin, moderate or severe 
liver disease, metastatic solid tumor, AIDS/HIV, and the 
CCI. We obtained the status of every comorbidity item 
with ICD-9 code screening of every comorbidity contained 
in the CCI in the outpatient department and hospitaliza-
tion expense database. The cancerous outcome variables, 
including overall survival time and cancer-specific sur-
vival time, were retrieved from the cause-of-death file. The 
aforementioned data were analyzed and modeled in the 
following sections. 

The demographic and cancer characteristics are listed 
and compared in Table 1, such as comorbidities and can-
cerous outcomes among treatment groups extracted from 
the NHIRD. The chi-square test was used for categori-
cal outcomes, and the independent t test was used for 
numeric outcomes.

2.3  Establish significant causal factors for 
cancerous outcomes with the Cox Hazard 
regression model 

We stratified all patients according to their T stage, grade, 
initial definite treatment, and CCI, and we compared the 
cancer-specific survival and overall survival using the 
Kaplan–Meier method (Figure 2). The significant causal 
factors were identified for recurrence-free survival, 
disease specific survival, and overall survival time using 
a Cox hazard regression model (Table 2).    

2.4  Comparison of machine learning models 
with and without CCI 

Machine learning models, including RF and SVM, were 
adopted for the prediction of cancer outcomes. To prove 

Cerebrovascular disease 1.5 1.05-1.73 0.019 1.197 0.69-2.05 0.5143

Diabetes 1.105 1.85-1.42 0.4354 0.774 0.44-1.34 0.361
Diabetes with end organ 
damage 1.092 0.75-1.57 0.6421 0.969 0.40-2.29 0.9429

Moderate or severe renal 
disease 1.35 0.96-1.9 0.0802 2.02 1.07-3.8 0.0283

Metastatic solid tumor 1.75 0.95-3.22 0.0718 3.87 1.65-9.09 0.0019

Hemiplegia 0.828 0.33-2.03 0.681 0.467
Solid tumor without 
metastasis 1.792 0.88-3.63 0.1058 0.734 0.10-5.33 0.7602

Myocardial infarct 0.805 0.35-1.83 0.6055 0.53 0.07-3.90 0.533

Dementia 1.874 1.26-2.78 0.0018 1.716 0.40-7.35 0.7527
Moderate or severe liver 
disease 36.78 0.96-1.90 0.0004 0 0 0.9988

Any malignancy, includ-
ing lymphoma and leu-
kemia, except malignant 
neoplasm of skin

0.692 0.32-1.47 0.3408 0.89 0.10-7.35 0.9142

AIDS/HIV 0 0 0.9706 0 0 0.9982

The RP and RT groups were pooled together. The factors which significantly affect the prostate-cancer-specific survival and overall survival 
are identified with Cox regression model.
Grade 1: Gleason score 2~5; Grade 2: Gleason score 6,7; Grade 3: Gleason score 8~10
*: Statistically significant, p<0.05 

Table 2 continued: Hazard ratios of features in Cox proportional Hazard model
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that CCI would enhance the predictive ability of a machine 
learning model, we created the models using two stages. 
The first stage was training models with cancerous char-
acteristic factors and follow-up durations as the inputs for 
the model and with cancerous outcomes as the outputs 
for the model. The only difference in the second stage was 
the addition of comorbidity variables along with the other 
input variables in stage one of the model, as seen in Table 
3. The parameters for the setting of every algorithm were 

all by default. Three new data sets were constructed with 
the ratios of 1:1, 1:2, 1:3, to make up the imbalanced classes 
of cancer outcomes [29]. Five-fold cross validation was 
then applied to these three datasets. The mean accuracy, 
mean AUC, and mean kappa value feature in Table 4. 

Table 3: List of variable used in machine learning modeling for overall survival prediction 

Variables
Machine learning models for overall survival
RF
With CCI

RF
Without CCI

SVM
With CCI

SVM
Without CCI

Cancerous Characteristic variables

Age (yr) X X X X

T-stage X X X X

Grade X X X X
Different treatment X X X X
Duration of follow up (yr) X X X X
Comorbidity items

CCI X X

Connective tissue disease X X

Mild liver disease X X

Ulcer disease X X

Congestive heart failure X X

Peripheral vascular disease X X

Chronic pulmonary disease X X

Cerebrovascular disease X X

Diabetes X X

Diabetes with end organ damage X X

Moderate or severe renal disease X X

Metastatic solid tumor X X

Hemiplegia X X

Solid tumor without metastasis X X

Myocardial infarct X X

Dementia X X

Moderate or severe liver disease X X
Any malignancy, including lymphoma and leu-
kemia, except malignant neoplasm of skin X X

AIDS/HIV X X
Overall death Y Y Y Y

This table lists the feature selection during modeling. X represents variables which was put at the input site of machine learning model. Y 
represents variables put at the output site of machine learning model. 
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Table 4: Predictive ability of machine learning models

Overall death
RF SVM

1:1 1:2 1:3 1:1 1:2 1:3

With comorbidity as independent variables

Accuracy 0.8000 0.8095 0.8262 0.8518 0.7958 0.8116

Sensitivity 0.8500 0.6047 0.4198 0.8182 0.5213 0.3186

Specificity 0.7500 0.9157 0.9595 0.8133 0.9316 0.9777

Kappa 0.6000 0.5512 0.4480 0.6315 0.4955 0.3724

Without comorbidity as independent variables

Accuracy 0.7483 0.7324 0.8024 0.7527 0.7621 0.7837

Sensitivity 0.7027 0.5571 0.3690 0.7660 0.5312 0.1971

Specificity 0.7945 0.8182 0.9451 0.7391 0.8763 0.9810

Kappa 0.4969 0.3823 0.3721 0.5052 0.4314 0.2369

The CCI- reinforced and CCI absent RF and SVM models were built. We evaluated the ability of model with accuracy, sensitivity, specificity 
and kappa.  

Accumulated Mortality Events Curves

Figure 2: Accumulated mortality events curve, stratified initial definite treatment, grade, stage and years
Mortality events are significantly higher in high grade, RT group.
Grade 1: Gleason score 2~5; Grade 2: Gleason score 6,7; Grade 3: Gleason score 8~10
*: Statistically significant, p<0.05
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2.5  Software

SAS version 9.4 was used for data extraction, data pre-
processing from the NHIRD, and Cox regression analysis. 
The R studio 3.5.1 was used as a platform to implement the 
machine learning models. Several R packages were used, 
including randomForest for RF modeling, e1071 for SVM 
modeling, pROC and caret for calculating accuracy and 
kappa, and survival and survminer for Kaplan–Meier.  

3  Results
In total, 8581 patient’s records were included in the 
study: 4879 who had received radical prostatectomies 
(the RP group) and 3702 who had received radiotherapy 
(the RT group). As seen in Table 1, RP group members 
received fewer diagnoses of congestive heart failure 
(171(3.50%) in RP vs 214(5.78%) in RT, p < 0.0001), periph-
eral vascular disease (117(2.40) vs 115(3.11), p = 0.0451), 
chronic pulmonary disease (629(12.89) vs 593(16.02), p < 
0.001), cerebrovascular disease (371(7.60) vs 410(11.08), 
p < 0.0001), hemiplegia (27(0.55) vs 38(1.03), p = 0.0123), 
and dementia (47(0.96) vs 97(2.62), p < 0.0001), any malig-
nancy (256(5.25) vs 270(7.29)) as well as lower CCI scores 
(1.36 vs 1.42, p < 0.0001), less overall death (88(1.80) vs 
325(8.78), p < 0.0001), and prostate cancer–specific death 
(24(0.49) vs 79(2.13), p < 0.0001). However, exceptions also 
occurred. We observed that more patients had ICD-9 codes 
for ulcer disease (839(17.20) vs 544(14.69)), diabetes mel-
litus without complications (1079(22.12) vs 657(17.75), p < 
0.0001), and metastasis solid tumor (130(2.66) vs 51(1.38), 
p < 0.0001) in the RP group. Our data also revealed that 
the RP and RT groups included equal incidences of any 
severity of liver disease, diabetes mellitus with compli-
cations, ulcer disease, connective tissue disease, and fol-
low-up time.           

The Cox proportional hazard model was established, 
as shown in Table 2. The CCI was stratified into seven levels 
equivalent to CCIs of 0, 1, 2, 3, 4, 5, and 6 or more. Com-
pared with patients with CCI0, Patients with CCI1, CCI2, 
CCI3, CCI4, CCI5, and CCI6+ had statistically significantly 
higher risk of overall death, with the hazard ratios 1.461, 
1.816, 2.015, 2.455, 2.108, and 2.767. Grade, initial definite 
treatment, and age also played significant roles in the risk 
of overall death. Among CCI items, moderate-to-severe 
liver disease together with dementia, congestive heart 
failure, chronic pulmonary disease, and cerebrovascular 
disease were significantly associated with higher overall 
risk of death. Conversely, the patients classified as CCI1, 

CCI2, CCI3, CCI4, CCI5, and CCI6+ had statistically nonsig-
nificant risks for prostate cancer-specific death compared 
with patients classified as CCI0. Grade and initial definite 
treatment were significantly associated with higher risk 
of prostate cancer–specific mortality. Metastatic solid 
tumors followed by moderate-to-severe renal disease 
would increase the risk of prostate cancer–specific death. 
The accumulated survival event curves stratified with age, 
initial definite treatment, grade, and CCI were plotted. The 
Kaplan–Meier test revealed that the RP group, low grade 
groups, and low CCI groups were statistically significantly 
associated with fewer overall mortality events (Figure 2).

Because the CCI and its items were highly corre-
lated with the overall mortality rather than with prostate 
cancer–specific mortality, we created models with and 
without CCI and the related items to predict the overall 
numbers of deaths instead of prostate cancer–specific 
deaths. The overall mortality in our dataset was 413, so we 
had to downsample the relatively larger group of patients 
who survived until the end of the follow-up period with 
the numbers 413, 826, and 1239 according to the previ-
ously designed ratios of 1:1, 1:2, and 1:3. The CCI-reinforced 
SVM model with a 1:1 sampling ratio yielded the best accu-
racy and kappa (0.8518, 0.6315) for prediction of overall 
numbers of deaths. SVM without CCI yielded a less accu-
rate model with a smaller kappa value (0.7581, 0.5164). 
The same phenomenon was observed in the case of an RF 
model. The CCI-reinforced RF model had higher accuracy 
and kappa (0.80, 0.60) than the RF model without CCI had 
(0.7483, 0.4946). Different downsampling ratios for the 
survival groups did not affect the accuracy or kappa sig-
nificantly, as ratios of 1:1, 1:2, and 1:3 selected. (Table 4) 

4  Discussion
Patient selection for RP or RT is an art for urologists and 
patients. According to the popular clinical guidelines fol-
lowed by most urologists in Taiwan, flow charts in NCCN 
clinical practice guidelines for prostate cancer 2010 [30] 
recommended that RPs are more suitable for localized 
prostate cancer patients with life expectancies of more 
than 10 years. This is because risks associated with RP are 
higher than those for radiotherapy during the procedure. 
RP also yields a better cancerous outcome in intermediate- 
and high-risk localized prostate cancer than RT does. For 
patients with life expectancies of less than 10 years and 
with lower clinical T stages and histological grading, RT 
might be sufficient to protect them from mortality caused 
by prostate cancer. In Taiwan, the cutoff age for a 10-year 
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life expectancy is 76 years during the study period. Average 
ages (RP: 65.79 years old, RT: 74.10) for these two groups 
in our dataset are consistent with the NCCN recommenda-
tion, as seen in Table 1. More young patients personally 
chose or were advised by physicians to undergo radical 
prostatectomies. In addition, we found that patients with 
fewer comorbidities tended to undergo radical prostatec-
tomies rather than radiotherapy (Table 1). This finding is 
compatible with Jespersen’s work, in which the choice of 
treatment for localized prostate cancer is demonstrated to 
be affected by comorbidity [12]. This is relatively reasona-
ble because RP is a major surgery, and its success is highly 
dependent on patients’ general conditions. Systemic dis-
eases yield more perioperative complications and prolong 
hospital stay [31]. Our findings furthermore revealed that 
the RT group had less favorable prostate cancer–specific 
mortality. This finding is consistent with Abdollah’s work 
and the subsequent systemic review and meta-analysis. 
This might result from the nature of sparing radiation 
insensitive tumor cells during radiotherapy, which would 
not happen in the case of RP [32, 33]. In the RP group in our 
dataset, more patients had diabetes mellitus without end 
organ damage compared with other comorbidities. This 
may have been due to routine blood sugar tests according 
to clinical practice guidelines for preoperative blood tests 
[34]. Routine blood glucose checkup led to exhaustive 
detection and even overdiagnosis of diabetes mellitus.      

Our data from the NHIRD of Taiwan revealed that CCI 
and associated items are critical risk factors for the overall 
survival of localized prostate cancer patients but not for 
prostate cancer–specific survival. These findings are con-
sistent with the relevant literature. Matthes et al. surveyed 
the effects of comorbidities for prostate cancer victims. 
They found that CCI (CCI1: HR: 2.07 (1.51-2.85) and CCI2+: 
2.34 (1.59-2.34)) were associated with overall mortality 
rather than prostate cancer–specific mortality [35]. The 
increase in the overall mortality risk was also aligned with 
our results. Thomas’ study demonstrated the same con-
clusions in patients receiving RP [36]. The findings of Jae 
et al. also supported this assertion in patients with RP [37]. 
In line with our results, Matthes claimed that CCI played 
a more significant role than age in overall mortality risks 
[38]. Cancela and colleagues presented contradictory find-
ings that age remains a major predictor in the untreated 
localized prostate cancer population [39]. To our knowl-
edge, much literature addresses the measurement of the 
risks for every single CCI item. We established a Cox pro-
portional hazard model to assess the effects of all CCI items 
and observed severe liver disease and dementia to be the 
most important factors associated with overall mortality. 
Minor factors, including congestive heart failure, chronic 

pulmonary disease, cerebrovascular disease, were also 
discovered. Because the score for moderate-to-severe liver 
disease is 3, moderate-to-severe liver disease has a higher 
correlation with overall mortality. Chen et al. studied 
the population for individuals with dementia in Taiwan 
and found them to usually have multiple comorbidities 
and to be poorly cared for [40]. This might be the reason 
why dementia is relevant. In clinical practice, informing 
patients and their families to take dementia into consid-
eration during their decision-making processes might be 
advisable.          

Our data suggested that the CCI and its items can 
reinforce the machine learning classifier for survival pre-
diction of localized prostate cancer. As a good predictor 
of overall death, CCI and its items could be extracted 
from the NHIRD and successfully modeled with RF and 
SVM algorithms. The highest accuracy rate of our model 
is 85.18%, with the kappa value 0.6315. Fleiss defined 
the quality of classifier as good to fair with kappa values 
between 0.4 and 0.75 [41]. Currently, researchers only rela-
tively rarely model prostate cancer survival with machine 
learning algorithms. This study might constitute a useful 
reference for other research. Imbalanced classification is 
fairly common in most real-world cases, and our dataset 
used a ratio of 1:20. Downsampling is a well-known and 
widely used technique for solving imbalance problems 
[29]. In this study, we followed the recommendations of 
this handbook that the ratios of 1:1, 1:2, and 1:3 be used, 
and we observed that accuracy did not change signifi-
cantly. However, the kappa value and sensitivity decreased 
as the ratio of sampling increased from 1:1 to 1:3. This 
occurred because the false negative prediction increased 
as the ratio of sampling increased. Subsequently, even 
the 1:3 RF model with CCI yielded a maximum accuracy 
of up to 82.62% among RF models, but we still regarded 
the 1:1 RF model with CCI as the best model among RF 
models because it has both high accuracy and kappa. Our 
dataset suggested that SVM models with CCI were supe-
rior to RF models with CCI. However, we still cannot con-
clude with certainty that SVM is a superior algorithm to 
RF. The advantage of RF is that RF is more interpretable 
because the RF algorithm enables the measuring of varia-
bles’ importance. This is helpful for variable selection and 
improved modeling.     

In this research, we successfully identified the risk 
factors for prostate cancer death and all deaths among 
patients with localized prostate cancer in Taiwan. The 
research findings could serve as a valuable reference for 
epidemiological research in the east Asian prostate cancer 
population, whose clinical courses and epidemiological 
features differ from Caucasian and Black populations’ [42-
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44]. The model we established could be helpful clinically 
during the shared decision-making process. The nature of 
compulsory enrollment in Taiwan’s National Health Insur-
ance enabled the comprehensive compilation of medical 
expense records and ensured that NHIRD constitutes a 
high-quality database in terms of data integrity. Integrity 
is an essential property for a database to assure consist-
ency and statistical accuracy [45]. To maintain dataset 
integrity, we strive to avoid unnecessary sample drop-
outs. Therefore, a new method was designed to model our 
dataset with RF and SVM algorithms.

Because follow-up time can affect the duration of sur-
vival event observation, the follow-up time was included 
among the inputs for machine learning models. We have 
validated this new method of machine learning mode-
ling for survival prediction using our dataset for localized 
prostate cancer, a cancer well-known to be associated 
with long survival. The longer the expected survival is, the 
longer follow-up time is required for observing survival 
events. Numerous researchers use fixed follow-up times 
for some cancers with shorter target event-free survival, 
for example, 3 years or 5 years [46-50]. However, no defi-
nite conclusions may be drawn regarding what follow-up 
time for observation of localized prostate cancer survival 
is adequate: this might be 10 years, 20 years, or even 
longer. Such follow-up times are too long for most data-
bases to accomplish complete studies, currently. Using 
this right-censoring method, patients who have inade-
quate follow-up time can be retained while compared with 
the fixed follow-up time, such as 3 or 5 years, for observing 
survival events. Retaining the information provided by the 
inadequate follow-up records is helpful to maintain the 
integrity of our database for facilitating unbiased analysis 
and interpretation. In this study, we proved the method 
used to be feasible. The accuracy of our machine learning 
model was up to 80%. In clinical practice, we can assign 
follow-up times (t) as 1 year, 2 years, and so on to predict 
survival.        

According to our findings in this study, we strongly 
suggest that researchers take CCI and associated items into 
account when developing new models for prostate cancer 
decision aids in the future. Furthermore, our machine 
learning models with satisfying accuracy, can serve for a 
decision aid during shared decision-making process [51]. 
It is helpful for physicians and patients to use our model 
to predict the survivals under different choices of definite 
treatment for prostate cancer. However, we cannot make 
suggestions until further evaluation of patients’ psycho-
logical impacts after their receiving of such machine-learn-
ing suggestions. Before our comorbidity-reinforced model 
could be added into standard shared decision-making 

process [51] in clinical practice, we suggest that trials 
for assessment of patients’ psychological and emotional 
impacts caused by machine learning suggestions need to 
be conducted. After these results are available, we might 
be able to design a new shared decision-making process 
reinforced by machine-learning decision aid..

This research has three limitations. First, prostate 
specific antigen (PSA) data is unavailable in the NHIRD. 
The pretreatment PSA level and the elevation of the PSA 
level after definite treatment of localized prostate cancer 
is associated with higher risks of prostate cancer–specific 
death [52]. Williams et al. also demonstrated that both pre-
treatment and posttreatment PSA levels were associated 
with an overall mortality of localized prostate cancer [53]. 
The lack of data regarding PSA would represent a major 
loss of crucial information for the status of extension of 
prostate cancer and would compromise the establishment 
of the Cox hazard proportional model and machine learn-
ing models. However, little evidence addresses the associ-
ation between the PSA level and noncancerous mortality 
of prostate cancer. In our dataset, the proportion of non-
cancerous mortality is as high as 75.06% of the overall 
mortality. The high proportion of noncancerous death in 
our dataset would attenuate the effects of the PSA data 
deficiency. Furthermore, our machine learning model 
achieves accuracy of up to 81 %, even in the absence of 
PSA data. This is an excellent proof of the significant role 
of CCI and its items.        

The second limitation is that no uniform procedure 
was available for surveying the patients’ comorbidities, 
which often exist in retrospective datasets. The lack of 
standard procedures resulted in the neglect of some pre-
existing comorbidities and the underestimating of CCI. 
However, this bias can be partially diminished by routine 
preoperative evaluation, which is commonly performed in 
most Taiwanese medical centers and provides indications 
regarding some occult comorbidities. Although many 
machine learning models exist for prediction, they have 
seldom been used in clinical practice [54]. Future studies 
might aim at surveying the effects of various machine 
learning models in clinical practice. 

The third limitation is the lack of records regarding 
self-paid treatments in the NHIRD database. Overcoming 
this limitation is difficult. Some brachytherapy, intensi-
ty-modulated radiotherapy, image-guided radiotherapy, 
robotic surgery, or laparoscopic RP are partially or fully 
paid for by patients themselves. The NHIRD database pro-
vides no information regarding the exact methods for the 
RT or RPs that patients undergo. This limitation causes 
bias for model building and survival prediction. However, 
National Health Insurance has begun to implement the 
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policy of recording the code for every self-paid treatment. 
The respective problem will no longer exist in the future.        

5  Conclusions
The CCI and its items are powerful predictors for cancer-
ous outcomes. Using the CCI and its items for building 
machine learning models would enhance the predictive 
power of machine learning models utilizing RF and SVM 
algorithms. The various treatment choices are statisti-
cally insignificant after adjustment by Cox regression to 
cancerous outcomes. The outcome prediction of comor-
bidity-reinforced machine learning models has achieved 
acceptably high accuracy and thus could serve as an 
individualized decision aid during the shared medical 
decision-making process for localized prostate cancer 
after evaluation of psychological and emotional impacts 
caused by suggestions yielded with the model.
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