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Abstract
The COVID-19 epidemic has swept the world for over two years. However, a large number of infectious asymptomatic

COVID-19 cases (ACCs) are still making the breaking up of the transmission chains very difficult. Efforts by epidemi-

ological researchers in many countries have thrown light on the clinical features of ACCs, but there is still a lack of

practical approaches to detect ACCs so as to help contain the pandemic. To address the issue of ACCs, this paper presents a

neural network model called Spatio-Temporal Episodic Memory for COVID-19 (STEM-COVID) to identify ACCs from

contact tracing data. Based on the fusion Adaptive Resonance Theory (ART), the model encodes a collective spatio-

temporal episodic memory of individuals and incorporates an effective mechanism of parallel searches for ACCs.

Specifically, the episodic traces of the identified positive cases are used to map out the episodic traces of suspected ACCs

using a weighted evidence pooling method. To evaluate the efficacy of STEM-COVID, a realistic agent-based simulation

model for COVID-19 spreading is implemented based on the recent epidemiological findings on ACCs. The experiments

based on rigorous simulation scenarios, manifesting the current situation of COVID-19 spread, show that the STEM-

COVID model with weighted evidence pooling has a higher level of accuracy and efficiency for identifying ACCs when

compared with several baselines. Moreover, the model displays strong robustness against noisy data and different ACC

proportions, which partially reflects the effect of breakthrough infections after vaccination on the virus transmission.

Keywords Asymptomatic coronavirus carriers � ART-based spatio-temporal episodic memory � Weighted evidence

pooling � COVID-19 simulation � Realistic scenarios

1 Introduction

In stark contrast to SARS and MERS, the two highly

infectious coronaviruses caused respiratory diseases, a

much larger proportion of COVID-19 patients never

develop symptoms like fever and cough but are still con-

tagious while shedding the severe acute respiratory syn-

drome coronavirus 2 (SARS-CoV-2) [1–3]. The presence of

symptoms facilitates case detection, however, the asymp-

tomatic COVID-19 cases (or ACCs) are usually unaware of

their infectiousness. Therefore, many researchers termed

them as ‘silent spreaders’ of SARS-CoV-2 [4]. Currently

many countries have limited measures to contain the large

number of transmissions brought about by ACCs, making it

hard to control the pandemic [2, 5].

Recently many researchers have started to focus on

issues about ACCs such as the proportion of ACCs over all

infected cases, the duration of virus shedding and the
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temporal dynamics of infectiousness [4, 6–11]. Neverthe-

less, given that quick population screening for all positive

cases is technically very difficult and financially crippling

for many countries to implement, alternative proactive and

cost-effective approaches are urgently needed to identify

those silent spreaders and isolate them from the rest of the

population.

In reality, many countries and regions like Singapore,

Israel, South Korea, Australia and Taiwan are implement-

ing digital contact tracing [12–18]. With suitable privacy

protection, a large database of contact tracing data can

potentially be used to identify ACCs. It is important to note

that picking ACCs from a population is a new problem

different from other contact tracing applications. Most of

the existing systems using contact tracing serve to provide

warnings to individuals who shared the same time and

space with positively identified COVID-19 cases so they

can be wary of the possibility of being infected

[12, 19–21]. In contrast, the task studied in this paper is to

identify invisible asymptomatic cases who may have

infected those positively identified cases in the first place.

To address this important issue, we propose an episodic

memory-based computational model named STEM-

COVID to identify ACCs by learning and reasoning over

the spatiotemporal trajectories of a population. The basic

consideration is that people sharing the same space at the

same time have a greater chance of infecting each other.

Therefore, if one has appeared at the same places and at the

same periods as many others who were later tested positive

with the coronavirus, he/she could be considered as a

plausible source.

Episodic memory, as a form of long-term memory, is a

record of sequential events associated with contextual

information, e.g., observations, activities, emotions, times

and places. Fusion Adaptive Resonance Theory (ART)

networks (see Sect. 5.1), as a class of biologically-inspired

self-organized neural networks, are an effective computa-

tional tool to encode and recall episodic memory [22–24].

For efficient memory encoding and ACCs search, we have

extended one such model called Spatio-Temporal Episodic

Memory (STEM) [24] to encode the collective spatiotem-

poral traces and the COVID-19 positivity of tested indi-

viduals [25]. The model manifests potential efficacy for

identifying ACCs out of the entire population.

However, this previous model suffers from some limi-

tations in ACC search. In particular, it merges the episodic

traces of all tested-symptomatic COVID-19 cases (t-SCCs)

into a Boolean evidence vector. It can only indicate whe-

ther any t-SCC ever appeared within a spatiotemporal

context, but not the quantum of t-SCCs present. To over-

come this shortcoming, this paper proposes a weighted

evidence pooling mechanism to extract more detailed

information from the contact history between individuals.

Specifically, the weights on different events in the evidence

vector are proportionate to the number of subsequently

diagnosed positive cases under the respective spatiotem-

poral contexts. Then the pooled memory trace of t-SCCs is

used to search among the untested cases for individuals

with similar episodic traces. Those with higher similarities

are deemed to have greater likelihoods to be asymptomatic

spreaders of the virus.

Additionally, given the difficult access to real-world

contact tracing data due to privacy issue, this paper designs

an agent-based modeling (ABM) of COVID-19 spreading

to simulate the transmission of the coronavirus among

people. The model is much more sophisticated and realistic

than the one proposed in the previous work [25]; in terms

of the infectiousness profile of ACCs and SCCs, the

incubation period of SCCs, the duration of viral shedding

of ACCs and the proportion of ACCs over all cases. For

performance evaluation, experiments are conducted by

running the simulation model under multiple scenarios in

adherence to different specifications of infection and pop-

ulation sizes. We also conduct more rigorous benchmark

experiments where the contact tracing data provided to the

STEM-COVID model can be noisy or incomplete, mir-

roring that people in the real world often miss the regis-

trations of some activities. The comparison with several

other typical algorithms strongly shows that STEM-

COVID can identify ACCs with a fairly high level of

accuracy, robustness and efficiency.

In summary, the main novelties and technical contri-

butions of this paper include: (a) an efficient search process

for ACCs with a weighted evidence pooling method to

unify the episodic traces of positive COVID-19 cases and

searching over the untested cases in parallel; (b) a realistic

spatiotemporal data simulation model of COVID-19

spreading designed based on recent epidemiological find-

ings; (c) a rigorous benchmark setup using incomplete

input data.

The rest of the paper is organized as follows. Section 2

summarizes recent studies on ACCs and epidemiological

models and Sect. 3 formulates our study objective and

describe the problem. Section 4 describes the simulated

model and associated settings. The proposed model and

detection algorithm are presented in Sect. 5. Experimental

configurations, results and discussion are reported in

Sect. 6. Section 7 concludes the paper with a discussion of

contributions and future work.
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2 Related epidemiological studies

2.1 Discussions on asymptomatic coronavirus
cases

Since early January in 2020 when an asymptomatic

infection of a 10-year-old child occurred in a family cluster

who have traveled to Wuhan [26], the following months in

2020, 2021 and 2022 have witnessed occurrences of ACCs

around the world including China, South Korea, Japan,

Vietnam, Singapore, America, Italy and Iceland

[9–11, 27–30].

As suggested by Mizumoto et al. [10], the proportion of

asymptomatic cases and their infectiousness highlighted

the level of difficulty to contain the disease. The estima-

tions of the proportion of ACCs over all infected people

varies between 5% and 80% of people diagnosed positive

with the SARS-CoV-2 [29]. A report by the World Health

Organization (WHO), published in March, suggested that

about 80% of all infections would be asymptomatic or only

mild [31]. In early April, China’s National Health Com-

mission has identified 130 asymptomatic cases out of 166

new infections [32]. An isolated village in northern Italy

also reported that 50%-75% of infected people were

asymptomatic [28]. However, there are also many obser-

vations that have presented much lower numbers. An

observational cohort study on 36 children in Zhejiang,

China found 28% of cases were asymptomatic [9]. Another

family clustering-based study carried out in Zhejiang

reported 54 (14%) cases with no symptoms out of 391 in

total [33]. The infections on the Diamond Princess cruise

ship included 17.9% of asymptomatic cases [10]. Tian

et al. analyzed the data of 262 patients among whom 13

(5%) cases were asymptomatic [11]. This percentage was

reported to be 23% in Singapore by the National Centre for

Infectious Diseases (NCID) based on tracing of about 2500

household close contacts [27].

Despite the differences in the ratios of ACCs/SCCs, the

epidemiological community has agreed that asymptomatic

carriers can also be a significant source of transmission

[1, 7, 8, 34]. Specifically, researchers observed transmis-

sions among family members caused by asymptomatic

cases, with some of whom developed severe pneumonia

[7, 8]. Further in-depth study is needed to gain a greater

insight on the dynamics of such transmissions as well as

the clinical characteristics of ACCs. Studies conducted

both in South Korea and northern Italy suggested that the

viral load in asymptomatic patients is similar to that in

symptomatic cases, implying similar potential degree of

infectiousness [6, 34]. At the same time, evidence shows

that the viral load in ACCs reduces at a much slower pace

[6]. Similar observations can be found in [4] where the

authors inferred a significantly longer duration of viral

shedding in the asymptomatic carriers than the symp-

tomatic group. They also observed a weaker immune

response to the coronavirus infection in ACCs with lower

levels of immunoglobulin IgG and neutralizing antibody.

The asymptomatic transmissions are challenging tradi-

tional symptom-based public health strategies [35, 36] and

are regarded as the Achilles’ heel in the COVID-19 control

effort [37]. As advised by Oran and Eric [30], more

innovative and cost-effective approaches are urgently

required to detect the asymptomatic cases and disrupt the

transmission chains.

2.2 Popular epidemiological models

To facilitate the prediction of how an epidemic would

evolve under certain setting, experts in theoretical epi-

demiology have developed mathematical models to

describe the transmission dynamics [38]. Among them, the

popularly used compartmental models assign people in a

population with different labels and represent the progress

of the people in different compartments. Originated from

an early work of Kermack and McKendrick in 1927 [39],

the SIR (Susceptible-Infectious-Recovered) model, the

basic form of this family [40], consists of three coupled

ordinary differential equations to delineate the change of

numbers of susceptible, infectious and recovered individ-

uals. The dynamics of a considered disease demonstrated

by the model are heavily dependent on some important

parameters, which reflect not only the characteristics of the

disease itself, but also the effectiveness of public inter-

vention measures. Due to the hardship to obtain analytic

solutions, approximation methods are usually used to

compute the evolution of the numbers over time. By

relaxing the assumptions in the original SIR model,

researchers extend it into more sophisticated variants such

as SEIR, SEIS and SLIS models and have applied them in

describing the outbreak of SARS [41] and SARS-CoV-2

[42]. However, this kind of equation-based models can

only represent an epidemic on a macro level due to their

aggregated nature, but not at a human-to-human contact

history in a population.

Besides compartmental models, agent-based modeling

(ABM) is a currently popular approach for epidemiologists

to study the effect of social behaviors on the dynamics of

infectious diseases like Ebola [43]. Researchers have also

developed an agent based micro-simulation of the COVID-

19 epidemic in France and concluded that only consistently

performing measures of lockdown, physical distancing and

mask wearing can effectively protect the society during the

pandemic [44]. The ABM models presented in [19, 45–47]

were used to test the effect of ‘‘forward’’ or/and ‘‘back-

ward’’ contact tracing on the epidemic control. However,
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these models provide no means for identifying the invisible

ACCs from the population based on the generated contact

tracing data.

2.3 Motivation

As discussed above, a large number of ACCs pose extra

difficulty to the containment of the COVID-19 epidemic.

The traditional symptom-based public health strategies

require expensive medical testing, and massive population

screening for all positive cases cannot be very responsive

to the fast evolving epidemic. Moreover, theoretic epi-

demiological models can only provide insights into the

development of the disease, but not address the problem of

tracking asymptomatic cases. In comparison, it would be a

more cost-effective way to exploit the digital contact

tracing data to swiftly identify potential transmission

sources. It will undoubtedly help contain the transmission

of the coronavirus in a continual manner as the contact

tracing data is being continuously fed into the system.

Moreover, to prove the efficacy of the proposed model, a

realistic agent-based simulation is needed and it is expected

to coincide with current epidemiological evidence on the

epidemic.

3 Problem formulation and overall
procedure

This paper aims to provide a computational solution to the

problem of ACC identification from the perspective of

cognitive computation. The approach taken is to model the

spatiotemporal trajectories of different individuals in a

collective manner and identify ACCs through comparing

the collective episodic traces of t-SCCs and the untested

individuals.

Consider a population of size N, each spatiotemporal

data point of an individual can be represented by an event

in the form of e ¼ ðt; pÞ, where t is a time stamp in the unit

of hours and p is the identifier of a place. We consider a

quantized spatial and temporal scale, i.e., 0� t\T and

0� p\P, where T is the duration during which the data

points are collected and P is the number of all possible

places in the environment. An episodic trace of an indi-

vidual is then specified by a sequence of events described

as e ¼ \e0; e1; :::; eT 0 [ .

All the individuals in the simulation can be classified

into four categories according to their respective COVID-

19 positivity as follows.

(1) The first group consists of symptomatic COVID-19

patients who have been diagnosed positive with the

virus and are isolated after the onset of symptoms.

They are thus referred to as tested-symptomatic

COVID-19 cases (t-SCCs for short), or known cases.

The lengths of episodic traces of t-SCCs could be

T 0 � T due to potential halfway isolation.

(2) The other three groups are untested cases having no

sign of symptoms. Among them,

(a) some are asymptomatic COVID-19 cases

(ACCs),

(b) some will be SCCs but are currently in their

pre-symptomatic stage [48],

(c) and the rest are uninfected people.

Therefore, the COVID-19 positivity of an individual with

index 0� i\N can be CPi 2 f0; 1g where 1 indicates a

positive and symptomatic patient while 0 is for an untested

individual.

Given the input data as the episodic trace ei of each

individual i with the CPi label, the target outputs of the

proposed model are the likelihood of each untested indi-

vidual i to be an ACC, defined as

Li ¼ ProbðACCjCPi ¼ 0Þ.
Based on the formulation, Fig. 1 illustrates the idea of

COVID-19 data simulation and the process of building the

collective episodic memory in STEM-COVID and identi-

fying ACCs from the memory model. For generating input

data for the proposed model by simulation, Sect. 4 presents

the spatial representation, life cycle of agents and dynamics

Fig. 1 A flowchart for the whole procedure of simulation and

proposed model
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of virus spreading in the simulation model. Based on the

produced episodic traces and COVID-19 positivity of

N individuals from simulation, STEM-COVID supports a

two-step process of ACC identification as show in Algo-

rithm 2. For the first step, this paper presents two different

methods as shown in Algorithm 3 and 4, respectively,

namely union-based evidence pooling and weighted evi-

dence pooling. Subsequently, ACCs are screened through a

comparison of similarities between the unified evidence

vector and the episodic traces of untested individuals.

4 COVID-19 data simulation

For empirical performance evaluation, a simulation model

of the real world, where no public health interventions are

exerted, is designed to emulate the spreading of coron-

avirus in communities. This section will briefly introduce

the spatial representation, the life cycle of individual

agents, the temporal dynamics of virus transmissibility and

the key parameter settings. Compared to the previous work

[25], we extend the simulation model with more realistic

distributions for incubation periods of SCCs and duration

of viral shedding of ACCs, and more delicate models of the

infectiousness profile of the positive cases.

4.1 Spatial representation

We discretize the simulated environment into a network of

places that are reachable from each other. As shown in

Fig. 2, the neighboring places can be connected by walk-

ways or roads, and the whole space can be seen as a graph.

People undergo different levels of risks to be infected by

a coronavirus carrier at different types of places, typically

influenced by the crowd density, the degree of ventilation

and many other factors. This is the reason why most of the

transmission chains were found in family clusters where

members infected outside then transmitted the virus to each

others [8, 49]. In view of such findings, we categorize the

places into different groups. Places with very high infection

risk are mostly homes, nursing rooms, etc. Places such as

cafes, restaurants and shopping malls are highly risky for

consumers to be infected. Workplaces like offices and

factories can be considered with medium risk and open

spaces like playgrounds and parks carry low risk to people.

4.2 Life cycle of agents

To simulate the dynamic activities of individuals between

different places, we model each individual as an agent who

is assigned a daily life cycle, wherein they stay at various

places for different periods of time. For example, the

agents stay at home (very high-risk places) for about 10

hours, work at offices (middle-risk) for 8 hours, go shop-

ping or socialize (high-risk) for 3 hours and do outdoor

activities (low-risk) for 3 hours. For each day in the sim-

ulation, we sample the duration (in hours) for each agent to

stay at different places using discrete uniform distributions

as given in Eq. (1):

TðvhÞ�U½9; 11�
TðmÞ�U½7; 9�
TðhÞ�U½1; 24� TðvhÞ � TðmÞ � 1�
TðlÞ ¼ 24� TðvhÞ � TðmÞ � TðhÞ;

8
>><

>>:

ð1Þ

where vh, h, m, l are abbreviations for the four types of

places, Tð�Þ represents the duration of staying at certain

type of places for an agent in one day, and U[a, b] is a

sampling from a discrete uniform distribution based on the

set fa; aþ 1; :::; bgða; b 2 N; a� bÞ. The durations vary

from day to day and from person to person.

Besides the duration of staying at different types of

places, the simulation model additionally needs to address

the places that the agents can visit and how those agents

transit between places. For this, we divide all the P places

into different numbers (i.e., Pvh;Ph;Pm and Pl) of various

types of places through setting the ratio among them. For

example, a typical life style would resolve one very high-

risk place (home), four high-risk places (two for going out

with family members while the other two for socializing

with colleagues or friends), one middle-risk place (work-

place) and one low-risk place (park). We design various

simulation scenarios with different settings of the men-

tioned parameters, which are described in Sect. 6. Com-

bined with the settings of T(.) in one day and place

assignment, we use a simulation paradigm of uniform time-

step advancement (an hour as a unit) to drive the agents to

transit between the assigned places in the order of very

high, middle, high and low-risk. For example, after a

duration of T(vh), the agent will be moved to its assigned

middle-risk place to stay for T(m). Though more possibil-

ities of life styles exist in reality, such as more types of

duration and mixed visit order between places, our

assumption is sensible because it represents a typical dailyFig. 2 A graphic representation of the spatial model
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life cycle for many people. And it is adequate to the effi-

cacy of our approach.

4.3 Dynamics of virus spreading

Along with the transitions between locations, a simulation

of virus spreading requires some additional consideration

for the temporal dynamics in clinical features of the

infected people. As many studies reported [2, 4, 8], SCCs

are infectious not only after symptom onset, but also in

their pre-symptomatic stage. Figure 3 illustrates the

dynamics based on the epidemiological findings in [2]. As

shown in the top plot in Fig. 3, the authors inferred that

very few transmissions would occur before five days prior

to the symptom onset, and the infectiousness monotoni-

cally increased to a peak around the onset of symptoms and

declined quickly within several days. Although these works

mainly focused on symptomatic cases, many other resear-

ches suggested similar viral loads and infectiousness

development in ACCs [6, 34]. Therefore, this paper sim-

ulates the infectiousness profiles of both ACCs and SCCs

based on the temporal dynamics mentioned above.

Since we assume that SCCs will be identified and iso-

lated once they show any symptom, their contagiousness

after the symptom onset will not be considered in the

simulation. For simplification, this paper uses piecewise

and linear functions to represent the evolving infection

rates of SCCs and ACCs during their incubation periods

(time from infection to symptom onset) and periods of viral

shedding, respectively, as shown in Fig. 3. A simpler

alternative in the previous work is just step functions to

describe the infectiousness profiles [25]. In the beginning,

i.e., 10%, of respective periods, both types of coronavirus

cases are not infectious at all in the simulation because of

low levels of viral loads. Each data point in the lines

indicates the probability of infecting others at places with

different levels of infection risks. The next subsection will

elaborate on the settings of incubation periods of SCCs,

duration of viral shedding of ACCs and the infection rates.

Fig. 3 The temporal dynamics

of SCCs and ACCs, partly

adapted from [2]
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4.4 Parameter settings

Table 1 lists the key parameters used in the simulation

model. The detailed settings for some of them are given as

follows.

4.4.1 Incubation period

A number of studies have reported different estimations of

the duration of incubation periods of SCCs [2, 50–53].

Among them, a highly cited work reported the mean

incubation period to be 5.2 days, with the 95th percentile of

the distribution at 12.5 days. In view of the estimations, we

use a long-tailed Gamma distribution Tin �Gammað4:0; 1:3Þ
to model an incubation period for each SCC, as shown in

Fig. 4a. The mean value and the 0.95 quartile of 100,000

samples from this distribution are roughly 5.2 and 10.1

days, respectively, which are very close to the investigation

in the real world.

4.4.2 Duration of viral shedding

According to the statistical results from [4], the group of

asymptomatic cases shed the SARS-CoV-2 virus for a

significantly longer duration than symptomatic patients.

Specifically, the median duration of ACCs could be 19

days with the interquartile range (IQR) being from 15 to 26

days. As illustrated in Fig. 4b, another Gamma distribution

is applied to sample a duration of viral shedding for each

ACC, as Tvs �Gammað10:0; 1:9Þ whose median, Q1 and

Q3 duration are roughly 18.4, 14.7 and 22.6 days,

respectively.

4.4.3 Proportion of ACCs

As mentioned in Sect. 2, the existing estimations of the

proportion of asymptomatic cases over all infections can be

varied from 5 to 80% [29, 31]. But a large number of them

fall into the range from 10 to 30%, such as the studies on

cases in Zhejiang, China, the Diamond Princess cruise ship

and Singapore [9, 10, 27]. In view of these epidemiological

findings, this paper sets a percentage of 20% of all infec-

tions as ACCs.

4.4.4 Infection rates

We set the infection rates in a unit of hours, at the peak of

the infectiousness of a positive case, for the mentioned four

types of places as rvh ¼ 0:003; rh ¼ 0:0026; rm ¼ 0:002

and rl ¼ 0:0002, respectively. Thus, the infection rate of a

coronavirus carrier at any given time and place can be

determined by these values and the piecewise linear func-

tion illustrated in Fig. 3. Note that these settings remain the

same no matter whether the source of transmissions is

symptomatic or asymptomatic, in view of the similar viral

loads found in the different types of cases [6]. These

numbers indicate the probabilities that a coronavirus carrier

infects any other healthy individual within a time step in

the simulation. With k[ 1 coronavirus carriers at the same

space and the same time period, we simply add their

infection probabilities as long as the sum is not over 1. We

will verify the settings through the comparison between the

results of simulation and recent epidemiological findings

about the epidemic.

5 Proposed approach: spatio-temporal data
modeling and reasoning

This section reviews the basic of fusion ART and the

STEM model. Subsequently, the architecture of the STEM-

COVID model is presented, followed by the algorithms for

collective episodic memory encoding and ACC search.

Finally, an analysis of the computation complexity is

provided.

Table 1 Summary of key

parameters in the simulation

model

Description of parameters Values

[0.8pt] simulation duration T (unit: days) 20

number of individuals in a family Nf 4

incubation period Tin for each SCC (unit: days) Gammað4:0; 1:3Þ
duration of viral shedding Tvs of each ACC (unit: days) Gammað10:0; 1:9Þ
proportion of ACCs over all infected cases 20%

highest hourly infection rate in very high-risk places 0.3%

highest hourly infection rate in high-risk places 0.26%

highest hourly infection rate in medium-risk places 0.2%

highest hourly infection rate in low-risk places 0.02%
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5.1 Fusion ART networks

The Adaptive Resonance Theory (ART) is a neural net-

work architecture used to emulate how brains process

information for pattern recognition and prediction, given

bottom-up sensory information and top-down expectation

[54, 55]. As shown in Fig. 5, fusion ART is a form of

multi-channel ART which encodes multimodal input pat-

terns as cognitive nodes (marked as ellipses) in the top F2

layer and enables recognition and recall of stored patterns

through the connections (marked as black semicircles)

between the F1 and F2 layers [56–59].

Input vectors: Let Ik ¼ ðIk1 ; Ik2; :::; Ikl Þ be an input vector

to the channel k, where Iki 2 ½0; 1� for i ¼ 1; 2; :::; l and

k ¼ 1; 2; :::; n.

Input fields: Let Fk
1 be the kth input field in the bottom

F1 layer and xk ¼ ðxk1; xk2; :::; xkl Þ be the activity vector of

this field after receiving Ik. We have xki ¼ Iki in common

cases. If complement coding is applied to prevent the

‘‘code proliferation’’ problems [60], the activity vector is

further augmented with a complemented vector xk, where

xki ¼ 1� xki for i ¼ 1; 2; :::; l. For more comprehensive

description about complement coding, please refer to [56].

Category fields: Let Fiði[ 1Þ be one category field,

where the learned cognitive nodes are stored. The standard

multichannel ART has only one category field F2. Let y ¼

ðy1; y2; :::; ymÞ be the activity vector of F2, formed from the

activation values of the cognitive nodes, where m is the

number of currently learned categories.

Weight vectors: Let wk
j be the weight vector associated

with the jth node in F2 for learning the input patterns of Fk
1.

Parameters: The dynamics of each input field k is

determined by its choice parameter ak � 0, learning rate bk,
contribution parameter ck and vigilance qk, where

bk; ck; qk 2 ½0; 1�.
The dynamics of fusion ART using fuzzy ART opera-

tions are briefly described as follows. A more detailed

description can be found in [58].

The Code Activation process on the jth node in F2,

when all input fields are activated with x ¼ ðx1; x2; :::; xnÞ,
is controlled by the choice function given in Eq. (2):

Tj ¼
Xn

k¼1

ck
jxk ^ wk

j j
ak þ jwk

j j
; ð2Þ

where the fuzzy AND operation ^ is defined by ðp ^ qÞi �
minðpi; qiÞ and the norm j � j is defined by jpj �

P
i pi.

A Code Competition process then selects an F2 node J

with the highest Tj followed by a Template Matching to

check if resonance occurs between the current input pattern

x and the selected node, following the rule given in Eq. (3):

mk
J ¼

jxk ^ wk
J j

jxkj � qk; 1� k� n: ð3Þ

If no selected node in F2 meets the vigilance in exhaustive

iterations of code competition and template matching, an

uncommitted node will be recruited in F2 as a new cate-

gory node so that the network automatically grows.

A Template Learning process is applied to the con-

nection weights once resonance occurs. For each channel k,

the weight vector wk
J is modified by the learning rule given

in Eq. (4):

w
kðnewÞ
J ¼ ð1� bkÞwkðoldÞ

J þ bkðxk ^ w
kðoldÞ
J Þ: ð4Þ

(a) (b)

Fig. 4 Gamma distributions for

incubation periods of SCCs and

duration of viral shedding of

ACCs

Fig. 5 The architecture of fusion ART
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The weights of a newly committed node J are initialized by

an overwriting learning as wk
J ¼ xk; 1� k� n. In turn, the

learned pattern in a selected node J in F2 may perform an

Activity Readout to all corresponding Fk
1 fields by

xkðnewÞ ¼ wk
J as the output.

5.2 The STEM architecture

Previous models of ART-based episodic memory include

Episodic Memory-ART (EM-ART) [22, 23] and STEM

[24]. While EM-ART aims to learn the temporal ordering

of events within an episode by a gradient encoding scheme,

STEM encodes and recalls events by explicitly represent-

ing the multimodal activity patterns of events without an

episode layer.

As shown in Fig. 6a, the original STEM architecture

includes four input fields to represent the context of an

event. The object field represents the presence of people

and physical objects appeared in the event, the activity field

encodes the occurred activity and the time field stores the

time of occurrence. In particular, the place property of an

event in STEM is characterized by the real-world coordi-

nates and landmark specification such as ‘‘reception’’ and

‘‘lift’’. Through the generalization by fusion ART, each

node learned in the place field represents a group of visited

locations. On top of the four fields, each category node in

F3 represents an event in response to the multimodal

information presented in F2.

Besides efficient encoding of events, experiments on a

public data set also demonstrated the capability of STEM

for robust retrieval of events under partial or noisy cues.

5.3 The STEM-COVID architecture

Learning episodic memory to identify ACCs, as the task in

this paper, requires explicitly encoding the spatiotemporal

contextual information of events as in STEM. However,

the new model differs much from STEM in several

respects. First, the real-world coordinates of places are of

less significance than the transitions of agents between

places in the task. Second, besides generalizing the input

patterns of single events as performed in STEM, the new

memory model in this paper needs to learn the episodic

trace of each individual, which consists of patterns of

multiple different events. Third, on the same level of epi-

sodic traces, different individuals need to be further cate-

gorized by the COVID-19 positivity conditions, as

formulated in Sect. 3. Fourth, this paper is concerned about

the episodic memory of a population instead of a single

person and thus a higher-level representation is in demand

to learn the collective memory.

In view of these considerations, this paper designs the

STEM-COVID model as shown in Fig. 6b, which can be

viewed as 2 two-channel fusion ART networks stacked in a

hierarchical manner. The bottom network can be seen as a

simplified edition of STEM, which encodes event nodes in

the event field in the F2 layer based on the time and place

attributes. In this middle layer, the model also incorporates

another specialized field to indicate the COVID-19 posi-

tivity of an individual. In turn, the top network aggregates

the episodic trace of an individual with his/her COVID-19

positivity into a single node in the F3 layer. This learning

scheme bears some similarity with that in EM-ART that

represents an episode as a cognitive node in its F3 layer.

However, besides the absence of the positivity field, EM-

ART differs also by its gradient encoding method for

sequential memory encoded in the activity vector in F2.

As an intermediate memory buffer, the event field in

STEM-COVID serves as both a category field of the bot-

tom network and an input field of the top one. After the

events on the episodic trace of an individual are presented

and learned by the bottom network, the episodic trace is

represented by the activity vector y of the event field,

denoted as e here for clarity. Each position in this vector

indicates a single event experienced by any individual

whose spatiotemporal trajectory has been encoded.

Specifically, values of 1s in e correspond to events expe-

rienced by the current individual, marked by the gray bars

in Fig. 6b, while the rest are zeros.

Besides the event field, the other field in F2 indicates the

COVID-19 positivity of an individual i by a complement

(a)

(b)

Fig. 6 The architectures of STEM and STEM-COVID
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coded positivity vector c ¼ ðCPi;CPiÞ, where

CPi ¼ 1� CPi. In the next step, the vectors e and c are

used as the activity vectors of the two input fields for the

top network, which learns a unique code for each indi-

vidual in the F3 layer. In general, the event field and F3

layer (i.e., the two category fields of the bottom and top

network) continuously grow in response to novel patterns

of events and individuals.

5.4 Collective episodic memory encoding

As mentioned, episodic memory considers an individual

episode as a sequence of events as e ¼ \e0; e1; :::; eT 0 [ ,

where an event is formalized as el ¼ ðtl; plÞ. We present a

hierarchical scheme for constructing collective episodic

memory based on the STEM-COVID architecture, as

shown in Algorithm 1.

The algorithm consists of a loop through the episodic

traces of all individuals in the considered population

(Line 1-25). To encode an event, the algorithm first

normalizes the time and place attributes into real values t0

and p0 2 ½0; 1Þ, respectively (Line 6), presented to the input

fields in the F1 layer (Line 7). Note that the input vectors I1

and I2 in fusion ART are here denoted as It and Ip for

clarity. A standard learning process in fusion ART net-

works will then involve code activation and resonance

search whereby nodes in the F2 layer are visited through

some iterations of code competition and template match-

ing. However, since an event can be considered unique

with a distinct combination of time stamp and place ID, the

search for resonance in STEM-COVID can be imple-

mented by a simplified code activation and competition

without template matching as given in Eq. 3 (Line 8-12).

During a loop through activating each existing event node

in the F2 layer, once a match between an event node and

the current input pattern is perfectly reached (Line 9), it is

considered that the node has won the code competition

without exhausting all remaining nodes (Line 10-11). This

is because no any other can match the input pattern any

better. Then the input can be categorized into the found
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event node j represented by the weights wt
j and wp

j . Fur-

thermore, the matching is implemented by a linear function

instead of the standard choice function (Line 9).

On the other hand, if the loop through all existing event

nodes comes to no match, a new uncommitted event node

will be recruited to encode the novel input (Line 15). In

such a case, the event field will automatically grow, fol-

lowed by the expansion of the associated weights we
j of all

F3 nodes j (Line 16).

As the entire trajectory and positivity status of an indi-

vidual are formed as the activity vectors e and c of the two

corresponding fields in F2, the information can be directly

encoded and stored as a unique node with weights we
J and

wc
J in the F3 layer (Line 21-25). Therefore, the learning in

the top network also avoids invoking iterations of bottom-

up activation and top-down matching to seek resonance.

5.5 ACC identification based on STEM-COVID

Based on the collective episodic memory learned in the

STEM-COVID model, a two-step process is proposed to

identify unknown ACCs based on the spatiotemporal tra-

jectories of the known SCCs, as shown in Algorithm 2. The

first step aims to readout and combine the episodic traces of

all t-SCCs into a specialized episode vector called evidence

vector eev (Line 1-6), which is used as a template episodic

trace in the second step to compute the similarity with the

trace of each untested individual (Line 7-13). To this end,

the positivity field in F2 is the only contributive field in the

first step for searching for all t-SCCs, whereas the second

step needs both episode and positivity fields while the

pooled trace eev and c ¼ ð0; 1Þ are being presented.

5.5.1 Evidence pooling

For pooling the episodic traces of known COVID-19 pos-

itive cases, the contribution parameters of the two fields in

F2 are set to ce ¼ 0 and cc ¼ 1 (Line 1). The specific

episode vector of each individual, learned in the connection

weights we
j , is thus ignored when the corresponding node is

activated. Consequently, all nodes in F3, encoding COVID-

19 positive cases, are then activated by the choice function

wherein the positivity vector c ¼ ð1; 0Þ is presented

(Line 2-4). Based on the activated F3 nodes, we present

two methods to pool their encoded episodic traces into a

single template vector (Line 6) described as follows.
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Union-based evidence pooling Our previous work

developed a union-based scheme of evidence pooling to

unify the episodic traces of all t-SCCs [25]. As shown in

Algorithm 3, it merges the binary episode vectors e of F3

nodes representing t-SCCs into a binary evidence vector eev

(Line 1-4). Specifically, the episode vector of each t-SCC

is readout from the weights to the activity vector xe in the

event field (Line 3). All such vectors are incrementally

integrated into the initially empty vector eev based on a

simple fuzzy OR operation wherein ðxe _ eevÞi ¼
maxðxei ; eevi Þ for i ¼ 1; 2; :::; ne, where ne is the number of

existing event nodes in the event field and the length of eev

as well (Line 4). In such a way, the final eev encodes which

events all the t-SCCs have experienced in a collective

manner.

Weighted evidence pooling

Although the method described above is simple and

straightforward, each binary element eevi of the resultant

evidence vector is only capable of implying whether any t-

SCC ever experienced the corresponding ith event, but

offers no hint about the number of t-SCCs appearing in the

same context. This piece of information, however, is

important for identifying ACCs in the sense that if more

COVID-19 patients have shared the same space at the same

time with one individual, it is highly plausible to consider

the individual as a more likely source of infection.

In view of this consideration, this work proposes a

weighted evidence pooling scheme in Algorithm 4. By

looping through all F3 nodes with positive activation val-

ues, this method combines all the encoded binary episode

vectors with an element-wise accumulation so that eevi
equals to the number of t-SCCs who experienced the cor-

responding spatiotemporal context (Line 2-4). In the end,

the evidence vector is normalized by its maximum element

so that eevi 2 ½0; 1� is a real number instead of a Boolean

flag (Line 6-7). In this way, the weights on different spa-

tiotemporal contexts in the pooled evidence vector are

proportionate to the numbers of known coronavirus carriers

who have experienced the respective events. When

searching for ACCs, high similarities to the evidence

vector should be assigned to the episodic traces of indi-

viduals who (a) have experienced many of the same events

as t-SCCs and (b) have ever appeared in some spatiotem-

poral context where more than one otherwise healthy per-

son got infected.
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5.5.2 ACC search

Following evidence pooling, searching for ACCs can be

done by computing the similarities between the unified

trace and the traces of all untested individuals. Accord-

ingly, the contribution parameters in the F2 layer are set as

ce ¼ cc ¼ 1 and the positivity vector c is set as (0, 1)

ignoring all known positive cases (Line 7-8 in Algo-

rithm 2). With the activity vectors eev and c, every single

node in the F3 layer will be activated by the choice func-

tion (Line 9-11).

The choice function is essentially an evaluation of the

similarity between the current input pattern and a cognitive

code with respect to the already learned pattern. The acti-

vation value for an untested individual indicates the like-

lihood of this individual to be an ACC. Such a high value

can only be obtained by a larger value of jeev ^ we
j j, indi-

cating that:

(1) the number of events shared by the corresponding

untested individual and any SCC is large, or

(2) in some spatiotemporal contexts experienced by the

individual, many otherwise healthy people were

infected with the coronavirus.

The potential ACCs can be identified by selecting the top

k individual nodes based on the activation values (i.e., the

respective likelihoods to be an ACC), where k is a user-

defined parameter. When a community or a city only has

limited medical resources to test for potentially positive

cases, the officials in the health section may determine a

relatively small value of k. Otherwise, choosing a larger

value of k can help screen more hidden spreaders of the

virus.

5.6 Complexity analysis

This subsection analyzes the space and time complexities

of the episodic memory construction and the ACC search

algorithms presented above. The involved parameters

include the population size N, the time duration of data

collection T, the number of different places in the simu-

lation P, the number of untested individuals Nu, the number

of t-SCCs Nt ¼ N � Nu and the number of current event

nodes in STEM-COVID ne. For space complexity, we are

mainly concerned about the space requirement for storing

all the event nodes and individuals nodes. Then we con-

sider the time complexity of learning the memory model by

Algorithm 1 and searching for ACCs by Algorithm 2.

Finally for comparison, we present a baseline of ACC

identification and give its time complexity.

5.6.1 Space complexity of STEM-COVID

The worst-case space complexity occurs when all indi-

viduals share no common events so that the number of

event nodes can be T � N. However, there can only be T � P
combinations of time and place indicators. Therefore, the

worst-case space complexity for the event field is

OðT �minðN;PÞÞ. For encoding a population of size N, the

total space complexity in F3 is given by OðNTminðN;PÞÞ,
considering that the connection weights between each

individual node in F3 and the event field in F2 involve all

event nodes.

5.6.2 Time complexity of STEM-COVID

Constructing the memory model We first analyze the time

complexity of learning a single event or individual node

when the number of existing event nodes is ne. In the

standard fusion ART model, the worst-case time com-

plexity for learning a category node is Oðmn2Þ if no mat-

ched node is found, where m is the number of attributes in

the input fields and n is the number of existing category

nodes [24]. The quadratic component is incurred by the

repeated code competition and template matching for res-

onance search. However, we substitutes a loop of top-down

matching through all existing event nodes for such itera-

tions (Line 8-12 in Algorithm 1). By this simplification,

the worst-case time complexity is reduced to OðmneÞ,
where m ¼ 2 given the two single-attribute fields in F1.

Due to no matching required, the time complexity of

learning a single individual node in F3 (Line 21-25 in

Algorithm 1) is just OðneÞ.
Next we look into the growing complexity of learning

event and individual nodes because of the dynamic

increase of ne as the ongoing learning. In the worst case, all

individuals share no common events and the lengths of all

episodic traces are T. When the episodic trace of the ith

individual is presented, there would have been iT event

nodes in F2. As such, the time complexity of learning all

the T events of this individual is calculated as 2fiT þ
ðiT þ 1Þ þ :::þ ½ðiþ 1ÞT � 1�g according to the analysis

in the last paragraph. After the entire episodic trace is

learned, encoding the ith individual node in F3 incurs the

time complexity of Oððiþ 1ÞTÞ given that ne ¼ ðiþ 1ÞT
now.

As a result, the overall time complexity of learning the

event and individual nodes for all the individuals

(i ¼ 0; 1; :::;N � 1) is then OðN2T2Þ. Given that the final

total of event nodes is limited to OðTminðN;PÞÞ as ana-

lyzed above, the time complexity of constructing the

memory model by Algorithm 1 should be

OðNT2minðN;PÞÞ.
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Completing the ACC detection Algorithm 2 includes

time complexity of two steps. For evidence pooling, N

individual nodes are activated (Line 4 in Algorithm 2) and

activity readout and fuzzy OR operations or element-wise

additions are performed for Nu times (Line 2-4 in Algo-

rithm 3 or Line 2-4 in Algorithm 4). Since activating or

reading-out each code involves operations on the weights

for ne event nodes, the time complexity in the first step can

be written as OððNu þ NÞneÞ. Similarly, the second step,

when N nodes in F3 are activated, would have a time

complexity of OðNneÞ (Line 11 in Algorithm 2). Overall,

the time complexity of STEM-COVID for ACC identifi-

cation is OðNTminðN;PÞÞ.

5.6.3 Time complexity of baseline algorithm

To show the efficiency of our algorithm for ACC detection,

we present a naive algorithm as a baseline for computing

the similarity between the unified events of t-SCCs and the

trace experienced by each untested individual. It can be

regarded as a brute force version of STEM-COVID with

the union based evidence pooling, so they share similar

accuracy of recognizing ACCs but with different time

complexity. As shown in Algorithm 5, the baseline simply

counts the number of events commonly experienced by an

untested individual and any t-SCC and considers the ratio

of this count to the number of all events experienced by the

untested individual as a metric of similarity (Line 4-12).

The whole process applies three nested loops, thus

involving Nu � T � nt times of event matching, where

nt ¼ jfetgj, at most equaling to Nt � T . Hence the worst-

case time complexity of this baseline is OðNuNtT
2Þ, which

is much higher in most cases than the time complexity of

STEM-COVID for ACC identification.

6 Experiments

This section will report on the performance of STEM-

COVID in terms of its effectiveness, robustness and effi-

ciency for identifying ACCs. The settings of eleven dif-

ferent scenarios and performance measures will be first

described, before the quantitative results and discussion.

6.1 Simulation scenarios

All simulations run for twenty days, i.e., T ¼ 480 h. For

simplicity, every four agents are clustered in one household

and extension to more complex family structures can easily

be applied in the model. The simulation model is run under

eleven different scenarios and the key settings of four

scenarios are listed in Table 2. Besides the population size

N and the numbers of different types of places (i.e., Pvh, Ph,

Pm and Pl), Nu 0 agents are randomly selected as the index

cases (also referred to as ‘patient zero’) who are asymp-

tomatic and infectious from the very beginning of the

simulation.

The infectiousness profiles of ACCs and SCCs in sce-

nario S200N, a simplified edition of S200P, are represented

by a step function, where the infection rates switch from 0

directly to half of the peaking infection rates, instead of

continuously increasing from 0 to the peak. This follows

the setting in the previous work [25]. The scenario S200SE

differs from S200P, in which a superspreader event is
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arranged on the 6th day in the simulation, when 50 indi-

viduals are involved in a crowded indoor gathering and 5

out of them are then coronavirus carriers [61]. The reason

why we have different settings of infection rates in S200N,

S200P and S200SE should be attributed to the current shift

of dominant SARS-CoV-2 variants (e.g., Alpha found in

UK and Delta first identified in India) 1 2, which have

increasing transmissibility. Especially, the superspreader

event can be manifested as the change of dominant variants

from Vanilla to Alpha to Delta to Omicron now. We set

these scenarios trying to mimic the realistic change and

investigate the effectiveness of our model under different

situations. The last scenario S1000P listed in Table 2, with

a population size and spatial scale fivefold as those in

S200P, is used to investigate the effect of problem size on

performance.

Besides the four scenarios described above, four other

sets of experiments, named S200P-20, S200P-40, S200P-

60 and S200P-80, are set to assess the robustness of our

model in a realistic world where the contact tracing data

are incomplete. They employ the same simulation data as

S200P, but with a varying percentage (20%, 40%, 60% and

80%) of data points on the spatiotemporal trajectories of

individuals randomly discarded. This represents different

degrees of noisy and incomplete data.

In addition, although we have set the proportion of

ACCs among all positive cases to be 20% in the main

experiments based on the literature, this paper also tests the

effects of proportions of ACCs among all positive cases on

the identification accuracy of the proposed model. The

rationale behind this is that according to many recent

reports from agencies like Reuters3 and CNBC4, there are

many breakthrough infections after being partially or fully

vaccinated are asymptomatic in countries such as Indonesia

and the US. To this end, the experiments include another

three scenarios, named S200P-ACC10, S200P-ACC30 and

S200P-ACC40, which change the proportion of ACCs in

S200P(-ACC20) to 10%, 30% and 40%.

The simulation model runs for a total of 15 times under

each scenario described above with different random seeds

to generate multiple simulation instances for statistical

results.

6.2 Performance measures

Based on the collective memory, STEM-COVID would

select top-k untested individuals with the highest similari-

ties of the episodic traces to the pooled evidence vector. A

run of ACC detection based on the simulation and STEM-

COVID is considered successful if one of the top-k indi-

viduals is a true ACC. Since each simulation scenario will

be run 15 times, the top-k success rate for ACC detection,

i.e., the ratio of the number of successful runs to 15, is then

used to demonstrate the detection accuracy of the model

under that scenario. Beyond normal ACCs, it will be also

helpful if the index cases can be recognized, since they

could be superspreaders who can potentially infect many

other. Therefore, we also have a similar top-k success rate

for detecting index cases.

Recall that we have theoretically compared the time

complexity of STEM-COVID and the baseline for ACC

search. In practice, we will present the time costs in sec-

onds required by them to complete the computation of trace

similarities in the simulations. All the experiments are run

on a laptop with Intel(R) Core(TM) i7-9750H CPU @

2.60GHz.

6.3 Results and discussion

Before looking into the performance on ACC detection, we

first summarize the generated data of the simulations.

Table 2 Summary of settings in

the four scenarios
Metrics S200N S200P S200SE S1000P

N 200 200 200 1000

Nu 0 1 1 1 5

Pvh 50 50 50 250

Ph 2 2 2 10

Pm 10 10 10 50

Pl 2 2 2 10

infectiousness profile step function piecewise,linear piecewise, linear piecewise, linear

superspreader event 	 	 p 	

1 https://www.bbc.com/news/health-57431420.
2 https://www.bbc.com/news/health-55659820.
3 https://www.reuters.com/world/asia-pacific/hundreds-indonesian-

doctors-contract-covid-19-despite-vaccination-dozens-2021-06-17/.
4 https://www.cnbc.com/2021/06/25/covid-breakthrough-cases-cdc-

says-more-than-4100-people-have-been-hospitalized-or-died-after-

vaccination.html.
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Finally, we will compare the time overheads required by

STEM-COVID and the baseline in identifying ACCs.

6.3.1 Summary of simulations

Table 3 presents the mean numbers of different types of

cases in the four scenarios listed in Table 2, averaged over

the 15 simulations. With more realistic piecewise functions

to simulate the development of infectiousness, there are

slightly larger numbers of infected individuals in S200P

than in S200N. Based on S200P, S200SE sees a substantial

increase of numbers of both ACCs and SCCs due to an

indoor gathering. As expected, the results of all metrics in

S1000P are roughly five times of those in S200P.

More specifically, Fig. 7 shows the growth of ACCs, t-

SCCs and all SCCs during the simulation under scenarios

S200P and S200SE. The exponential curves imply a rapid

increase of cases. Notice that it takes about 170 hours in

S200SE to increase the number of SCCs from 50 to 100.

The result tallies very well with many epidemiological

investigations on early transmissions of COVID-19 that its

basic reproductive number (R0) is over 2 and the doubling

time of the cases is around 7 days [50, 62, 63].

Moreover, the superspreader event in S200SE, occurred

at ts marked in Fig. 7, produces a surge in the number of

coronavirus carriers and leaves the eventual numbers of

ACCs and SCCs roughly double of those in S200P. The

striking contrast between the two scenarios manifests that

indoor gatherings of large numbers of people can easily

drive the epidemic out of control.

6.3.2 Effectiveness for ACC identification

Recall that we presented a weighted evidence pooling

approach in this paper, as an enhanced version of the union

based scheme [25]. Table 4 reports the top-k success rates

Table 3 Summary of simulation data in the four scenarios

scenarios # ACC # t-SCC # SCC # Untested cases

S200N 17.5 32.3 65.9 116.6

S200P 14.8 26.7 56.0 129.2

S200SE 24.8 61.2 100.2 75.0

S1000P 80.7 151.3 305.5 613.8

Fig. 7 Growth of COVID-19 cases in S200P and S200SE scenarios

Table 4 Comparison of

effectiveness of the two

evidence pooling methods,

where ‘wt’ indicates the

weighted scheme

success rates (%) S200N S200P S200SE S1000P

union wt union wt union wt union wt

top-1 0.0 13.3 6.7 20.0 40.0 40.0 6.7 8.3

top-3 33.3 33.3 13.3 53.3 73.3 80.0 26.7 50.0

top-5 46.7 60.0 33.3 66.7 80.0 86.7 46.7 75.0

top-15 73.3 93.3 73.3 93.3 100.0 100.0 93.3 83.3

top-25 100.0 93.3 100.0 93.3 100.0 100.0 93.3 100.0

Bold values indicate the better results obtained by the two schemes in each scenario

Fig. 8 Top-k success rates for identifying ACCs. As a reference, there
are 14.8, 24.8 and 80.7 such cases in S200P, S200SE and S1000P,

respectively

Fig. 9 Top-k success rates for identifying index cases. As a reference,

there are 1, 1 and 5 such cases in S200P, S200SE and S1000P,

respectively
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of searching ACCs under the two schemes. The results

show remarkable advantages of the enhanced version in

effectiveness of pooling the spatiotemporal traces of the

known SCCs. It is thus able to obtain a much higher level

of accuracy, especially when k\15. A noticeable result is

that the top-5 success rates of STEM-COVID with

weighted evidence pooling in all scenarios are never below

60%, given such a small k value.

Besides, Fig. 8 shows the top-k identification success

rates of the STEM-COVID model for identifying ACCs in

scenarios S200P, S200SE and S1000P. The mean numbers

of untested cases Nu averaged over all simulation instances

are reported in the corresponding brackets. Overall, STEM-

COVID achieves a fairly high level of success rates in all

scenarios. For instance, a success rate of over 50% is

obtained in S200P with k ¼ 3 when there are only 14.8

ACCs out of all 129.2 untested cases on the average. The

best results of identifying ACCs are seen in S200SE with

the largest proportion of ACCs over all untested cases

(24.8/75.0). Furthermore, the performance of STEM-

COVID in S1000P is very close to that in S200P, indicating

that our approach can scale up well to larger scenarios

without significant loss in effectiveness.

Among the ACCs, index cases are extremely difficult to

be screened because of their small proportion over the

whole population. Nevertheless, as shown in Fig. 9, the

success rates for identifying the sole index case in S200P

increase rapidly with the larger k values used, where the

top-3 and top-5 hit rates are no less than 20%, and even

higher with k ¼ 15 and 25. Comparatively, the top-k suc-

cess rates in S200SE do not go beyond 40% in recognizing

the index cases. A plausible explanation may be that fewer

times of contacts are required in S200SE to cause the same

number of infections, which weakens the effectiveness of

our contact tracing-based approach. This hypothesis can be

verified by the fact that the index cases in S200SE infected

11.9 persons on average, in contrast to only 7.0 in S200P

within the same duration of simulation. In addition, the

model performs well in S1000P considering that the top-15

and top-25 success rates to detect the index cases in

S1000P are much higher than the top-3 and top-5 success

rates in S200P.

6.3.3 Robustness of STEM-COVID

The top-k success rates for identifying ACCs and index

cases in S200P-20, S200P-40, S200P-60 and S200P-80 are

shown in Fig. 10. Compared against the performance in

S200P, the effectiveness of STEM-COVID to identify

normal ACCs is marginally affected by the incomplete

data, especially that the success rates in S200P-20 and

S200P-40 are very close to those in S200P. Comparatively,

the success rates of detecting index cases are generally

higher when less data is lost. To be specific, the top-5

(a) (b)

Fig. 10 Performance of STEM-

COVID with incomplete input

data

(a) (b)

Fig. 11 Performance of STEM-

COVID in scenarios with

different ACC proportions
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success rates for identifying index cases in S200P and

S200P-20 are 33.3% and 20.0%, which are much higher

than those in S200P-40, S200P-60 and S200P-80 (i.e.,

6.7% in all the three scenarios). In a nutshell, despite

incomplete contact tracing data, the STEM-COVID model

preserves a reasonably high level of efficacy, indicating its

strong robustness. This desirable property also provides the

possibility of randomly discarding part of the contract

tracing data to retain the computational efficiency of

building the model and searching for ACCs in very large

scenarios.

Apart from the robustness against incomplete input data,

this paper also demonstrates the impact of the proportions

of ACCs on the model performance in Fig. 11. Generally,

it would be difficult to identify an ACC from the

population when the proportion of ACCs among all

infected cases is very small. This is the case in Fig. 11

where under S200P-ACC10, no ACC can be identified

when k ¼ 1 or 3. However, the performance remains rel-

atively steady with the proportions from 20 to 40%.

6.3.4 Comparison with baselines

To demonstrate the strength of STEM-COVID in identi-

fying hidden ACCs, this paper compares its performance

with that of three competitors, listed as follows.

• The baseline presented in Algorithm 5 in Sect. 5.6: It

can be considered as a brute-force approach to realizing

the ACC identification algorithm with union-based

evidence pooling.

Table 5 Comparison of prediction accuracy and time costs among STEM-COVID (S-C for short), the brute-force baseline (B-F for short)

presented in Sect. 5.6, kNN and SOM

S200N S200P

S-C B-F kNN SOM S-C B-F kNN SOM

success rates of identifying ACCs (%) top-1 13.3 0.0 0.0 0.0 20.0 6.7 13.3 26.7

top-3 33.3 33.3 13.3 26.7 53.3 13.3 33.3 26.7

top-5 60.0 46.7 20.0 33.3 66.7 33.3 53.3 40.0

top-15 93.3 73.3 66.7 73.3 93.3 73.3 66.7 80.0

top-25 93.3 100.0 73.3 73.3 93.3 100.0 73.3 86.7

success rates of identifying index cases (%) top-1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

top-3 6.7 0.0 0.0 0.0 20.0 0.0 6.7 0.0

top-5 13.3 0.0 0.0 0.0 33.3 0.0 6.7 0.0

top-15 20.0 0.0 13.3 13.3 60.0 13.3 13.3 6.7

top-25 26.7 13.3 13.3 26.7 66.7 20.0 20.0 6.7

time (s) mean 2.5 13.7 5.5 0.1 2.5 13.4 5.6 0.1

std 0.0 2.8 0.8 0.0 0.0 3.5 1.0 0.0

S200SE S1000P

S-C B-F kNN SOM S-C B-F kNN SOM

success rates of identifying ACCs (%) top-1 40.0 40.0 20.0 20.0 6.7 6.7 20.0 0.0

top-3 80.0 73.3 53.3 33.3 53.3 26.7 20.0 20.0

top-5 86.7 80.0 80.0 53.3 73.3 53.3 46.7 46.7

top-15 100.0 100.0 93.3 93.3 86.7 93.3 53.3 80.0

top-25 100.0 100.0 93.3 100.0 100.0 93.3 80.0 93.3

success rates of identifying index cases (%) top-1 20.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

top-3 20.0 0.0 0.0 0.0 6.7 0.0 0.0 0.0

top-5 20.0 0.0 0.0 0.0 6.7 0.0 0.0 0.0

top-15 33.3 0.0 13.3 6.7 46.7 6.7 6.7 13.3

top-25 33.3 0.0 20.0 20.0 66.7 13.3 6.7 20.0

time (s) mean 2.5 15.5 4.4 0.1 64.2 409.6 137.4 2.7

std 0.0 0.7 0.9 0.0 1.4 38.1 6.9 0.4

Bold values indicate the better results obtained by the two schemes in each scenario
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• An adapted version of k Nearest Neighbors (kNN): Each

individual is represented as a vector consisting of the

sequence of location specifiers. The model is used to

sort and identify an untested case among others based

on the number of SCCs among its k nearest neighbors.

For two cases with the same number, the one with

closer distances to the tested positive cases will have a

higher order. Based on prior experiments, euclidean

distance is used and k is set to be 5 when N ¼ 200 while

k ¼ 25 when N ¼ 1000.

• Self-Organizing Map (SOM) [64]: Constructed using

unsupervised learning, all input vectors (i.e., traces as

used in kNN) are clustered into a small number of

output nodes. The model is used to sort and identify an

untested case among others based on the number of

SCCs, which share the same best matching unit (BMU)

with it. For two cases with the same number, the one

closer to the SCCs is preferred. We adopt a one-

dimensional map with 10 nodes and 5000 training steps

when N ¼ 200, or 50 nodes and 25000 steps when

N ¼ 1000. To measure the distance between two

vectors, SOM also applies the euclidean distance.

As formulated in Sect. 3, the application in this paper is a

weakly labeled problem from a perspective of classifica-

tion. Under each scenario, there is no data with labels for

offline training but only individual traces to be leveraged or

identified online, so methods that require training before

being used are not applicable. Moreover, the traces of

different individuals are not independent due to their social

contact, whereas conventional classification methods

assume the data to be independently distributed. Besides,

there is no explicit features in each trace to be leveraged for

classification. These points are the reasons why this paper

uses the algorithms mentioned above, with reasonable

strategies to adapt them in the problem, instead of tradi-

tional classification methods, for performance comparison.

Table 5 reports the comparison among STEM-COVID,

the brute-force baseline (B-F for short), kNN and SOM in

terms of their identification accuracy and costs of CPU

time (in seconds). The statistical results under each sce-

nario include the top-k accuracy of identifying ACCs and

index cases, the mean value and standard variation of the

running times, which are obtained by executing the algo-

rithms once on each simulation instance under the corre-

sponding scenario. It is clear that no matter which scenario

the algorithms are applied to, the proposed approach not

only is more accurate than B-F, but also performs much

better than kNN and SOM. The performance gaps between

STEM-COVID and the peer algorithms are even larger for

recognizing index cases. Moreover, the proposed method

requires considerably less time to complete the computa-

tion than B-F and kNN, even though it contains the steps of

both evidence pooling and ACC search. While under each

scenario, the time costs of the two competitors vary much

under different simulation instances, the superiority of our

approach remain relatively consistent. However, since

SOM builds a small number of output nodes out of the

individual traces, it saves much time to sort the cases.

7 Conclusion and discussion

This paper has presented an episodic memory-based neural

model called STEM-COVID, which is able to encode the

collective spatiotemporal trajectories of a population and

support an efficient search algorithm to identify asymp-

tomatic COVID-19 cases. Compared against the previous

model [25], the model with a weighted evidence pooling

method is able to better capture the contact relationships

between individuals in the evidence vector. The experi-

mental results based on realistic simulation scenarios have

demonstrated the effectiveness and efficiency of this epi-

sodic memory-based computational model when compared

with some classical models. Moreover, we also demon-

strated its strong robustness against incomplete input data.

Notably, this paper tries to mimic the current situation of

COVID-19 spread, such as the shift of dominant variants

and the changes of ACC proportions as the bulk of the

vaccinated breakthrough infections by aggressive variants

are asymptomatic. These are all taken into account in our

scenario design. In practical situations where mass

screening is not possible, the STEM-COVID model can

thus help to greatly improve the effectiveness of selective

COVID-19 testing.

Serving as a starting point, this work can be further

extended and applied to very large-scale real-world contact

tracing data as a cost-effective way to contain the epi-

demic, in addition to traditional symptom-based strategies.

This would require national agencies and resources to

exploit this approach in addressing such asymptomatic

cases as it involves privacy issues. Under acceptable pro-

tocols of privacy protection, the health officials can use the

GPS, Bluetooth or check-in registration data from users’

mobile phone to gather or infer their travel routes and then

identify potential transmission sources of the coronavirus

[12–17]. A good example is the SafeEntry and TraceTo-

gether systems widely used in Singapore [65]. For real-

world applications, nevertheless, there remain some limi-

tations in our work that require further research. For

example, the demographic and geographic models will

need to be much expanded to reflect the real world. We

also would like to incorporate more practical models of

temporal dynamics of COVID-19 transmissions. Finally, to

deal with the modeling of super large-scale scenarios, like

epidemic prevention in a metropolis of millions of people,
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multi-resolution and hierarchical modeling of spatiotem-

poral data could become necessary.
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