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Abstract

Introduction

The electrocardiogram (ECG) is a valuable tool for the diagnosis of myocardial ischemia as

it presents distinctive ischemic patterns. Deep learning methods such as convolutional neu-

ral networks (CNN) are employed to extract data-derived features and to recognize natural

patterns. Hence, CNN enable an unbiased view on well-known clinical phenomenon, e.g.,

myocardial ischemia. This study tested a novel, hypothesis-generating approach using pre-

trained CNN to determine the optimal ischemic parameter as obtained from the highly sus-

ceptible intracoronary ECG (icECG).

Method

This was a retrospective observational study in 228 patients with chronic coronary syn-

drome. Each patient had participated in clinical trials with icECG recording and ST-segment

shift measurement at the beginning (i.e., non-ischemic) and the end (i.e., ischemic) of a

one-minute proximal coronary artery balloon occlusion establishing the reference. Using

these data (893 icECGs in total), two pre-trained, open-access CNN (GoogLeNet/

ResNet101) were trained to recognize ischemia. The best performing CNN during training

were compared with the icECG ST-segment shift for diagnostic accuracy in the detection of

artificially induced myocardial ischemia.

Results

Using coronary patency or occlusion as reference for absent or present myocardial ische-

mia, receiver-operating-characteristics (ROC)-analysis of manually obtained icECG ST-

segment shift (mV) showed an area under the ROC-curve (AUC) of 0.903±0.043 (p<0.0001,

sensitivity 80%, specificity 92% at a cut-off of 0.279mV). The best performing CNN showed

an AUC of 0.924 (sensitivity 93%, specificity 92%). DeLong-Test of the ROC-curves showed

no significant difference between the AUCs. The underlying morphology responsible for the

network prediction differed between the trained networks but was focused on the ST-seg-

ment and the T-wave for myocardial ischemia detection.
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Conclusions

When tested in an experimental setting with artificially induced coronary artery occlusion,

quantitative icECG ST-segment shift and CNN using pathophysiologic prediction criteria

detect myocardial ischemia with similarly high accuracy.

Introduction

The electrocardiogram (ECG) is an easy available biomedical tool yielding diagnostic informa-

tion on various cardiac pathologies, specifically acute myocardial ischemia, where the presence

or absence of ECG ST-segment shift has therapeutic consequences [1].

However, as myocardial ischemia directly affects all energy-dependent cellular processes, sev-

eral ECG parameters other than ST-segment shift also reflect myocardial ischemia. Recently, our

research group employed an experimental setting with complete coronary artery balloon occlu-

sion during 1 minute, thus creating a brief myocardial ischemia [2, 3]. Intracoronary ECG

(icECG) was used to assess the diagnostic accuracy of various ECG parameters for ischemia detec-

tion [4], whereby the icECG ST-segment shift measured at the J-point at a threshold of 0.365mV

was superior to other parameters for ischemia detection. In the mentioned study, selection of the

analyzed parameters was based on a literature search for ECG ischemia parameters. Thus, it is

likely that potentially well-performing parameters were overlooked based on missing literature.

In comparison, deep learning methods, such as convolutional neural networks (CNN) are

not affected by a selection bias based on available literature. Instead, the algorithm tries to find

patterns in a given dataset to solve a pre-defined task [5, 6]. Hence, CNN focuses on data-

derived features rather than on pre-defined parameters, offering an interesting novel approach

to enable an unbiased view on well-known clinical phenomenon. Contrary to previous studies

[7–13], where CNN processed ECG data to provide a diagnostic aid for clinical physician, this

study contributes a novel, deep learning based hypothesis-generating approach applicable

from basic science to clinical problems (Fig 1). For the demonstration of the feasibility of this

approach, the study implemented transfer learning (i.e., retraining) of pre-trained CNN to

determine the optimal icECG parameter for myocardial ischemia detection.

In a first step, multiple CNN were trained to differentiate between non-ischemic and ische-

mic images of icECG. Then, parametric visualization of the CNN-derived activation patterns

was used to find the ECG morphology responsible for the network prediction. Of note, pat-

terns found and used by well-performing CNN to predict the presence or absence of myocar-

dial ischemia were identical to currently used parameters by physicians. Thus, providing an

independent validation of these icECG ischemia parameters.

Methods

Study design and patients

This was a retrospective observational study in patients with chronic coronary syndrome who

underwent coronary angiography due to chest pain, and participated in one of several clinical tri-

als [14–16] our research group carried out between July 2016 and October 2020. As part of all

those trials, coronary collateral flow index (CFI) was obtained, i.e., the quantitative measure of

coronary collateral function during a brief, artificial coronary artery occlusion. A detailed descrip-

tion of CFI has been previously published [17]. In brief, CFI is a measure of collateral blood sup-

ply to a coronary artery proximally balloon-occluded for the duration of 1 minute, and it is

defined as mean coronary occlusive pressure relative to mean aortic pressure, both subtracted by
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central venous pressure [18]. Hence, the present study employs the same temporal landmarks

with non-ischemic (i.e., before coronary occlusion), and controlled ischemic (i.e., at the end of

the occlusion) conditions as recently [4]. Of note, the experimental setting of a brief artificial coro-

nary balloon occlusion creates an independent reference essential for the subsequent analysis.

Criteria for inclusion in the present analysis were previously conducted CFI measurements

with simultaneous recording of icECG, and written informed consent for further use of the

patient’s data. Exclusion criteria were the presence of ECG bundle branch blocks, and of non-

sinus rhythm or paced rhythm. Application of these criteria resulted in 893 icECG tracings. A

patient could thus provide more than two (one non-ischemic and one ischemic) icECG trac-

ings to the data set. IcECGs did not have to be present in pairs of both conditions.

All original studies had been approved by the Ethics Committee of the Canton of Bern,

Switzerland, and all patients gave written informed consent for further use of their data. Data

collection, storage and analysis was performed retrospective and offline on the local servers of

the University Hospital of Bern. Thus, potential issues on data leakage, federated learning or

problems concerning real-time transfer of data were not applicable [19–22].

Acquisition and preparation of the intracoronary ECG

IcECG was acquired by attaching an alligator clamp to the 0.014-inch pressure monitoring

angioplasty guidewire (PressureWire™ X Guidewire, Abbott, Chicago, Illinois, United States)

positioned in the distal third of a major coronary artery, and connecting it to a precordial lead.

The structure of this guidewire with non-conductive coating allows the generation of an

Fig 1. Comparison of the standard scientific method and the deep–learning based approach. Starting from a question/

problem to be solved, the standard scientific method is based on a thorough literature research resulting in the construction of

a hypothesis. Conversely, the deep–learning based approach uses already available data to train a neural network to solve the

defined task as good as possible. Assessment of its performance requires comparison with previously established methods. The

best performing networks are then analyzed by class activation mapping to visualize the underlying morphology triggering the

network. Based on these visualizations, a hypothesis is constructed and tested in an appropriate experiment. Light–grey: shared

processes; dark–grey: standard scientific method; white: deep–learning based, hypothesis–generating approach.

https://doi.org/10.1371/journal.pone.0253200.g001
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icECG-lead between the Wilson Central Terminal and the conductive pressure sensor of the

guidewire located near the tip without the need for additional isolation. IcECG recording was

performed at a sampling frequency of 2’000 Hz, and with standard system filtering (corre-

sponding to a bandpassfilter 0.05-100Hz). The same guidewire served as angioplasty guidewire

for the balloon catheter used for proximal coronary balloon occlusion.

In a subsequent step, 12 to 15 consecutive cardiac cycles were manually chosen according

to the intra-procedural tagging as “non-ischemic” or “ischemic” (i.e., recorded during coro-

nary patency respectively coronary occlusion). The chosen cardiac cycles were then signal

averaged, additionally plotted in Matlab and saved as jpg-images and stored in group-specific

folders (491 non-ischemic, and 402 ischemic icECG images; Fig 2).

Image allocation and data augmentation

Of the 893 icECG images, 58 were randomly separated into an examination folder for final diag-

nostic accuracy assessment independent of the training and validation data. The remaining 835

icECG images were randomly allocated to training and validation data (80% respectively 20% as

recommended by Goodfellow et al. [5]), the validation data being used to assess the performance

of the trained networks during the training process. This resulted in 668 training and 167 valida-

tion images. Because of the strong spatial dependence of the icECG with relevant regional morpho-

logic changes within each patient, the likelihood that the network performs overfitting on single

patients was judged small. Thus, randomization was not made on a patient level and recordings

from two different coronary arteries of the same patient were allowed in two different data sets.

Before the start of each training iteration, all training images were randomly shuffled and

processed by adding data noise to prevent overfitting [5, 23]. That is, the images were ran-

domly rotated in a range between ±45˚, translocated ±10 pixels in every direction and/or

reflected on the horizontal axis.

Selection and preparation of the pretrained convolutional neural networks

Pretrained CNN were trained on millions of images (for the ImageNet [24] Large Scale Visual

Recognition Challenge (ILSVRC; http://www.image-net.org/challenges/LSVRC/), whereby

Fig 2. Input data for the neural networks. The input data were taken from the original study analysis and converted

into jpgs with a predefined image size (224x224x3 pixels). Each image contained either the illustration of a non–

ischemic (i.e., recorded directly before the coronary balloon occlusion) or an ischemic (i.e., recorded at the end of the

balloon occlusion) intracoronary ECG as well as the corresponding label (non–ischemic respectively ischemic). In this

example, both icECGs are from the same vessel (left anterior descending coronary artery) from the same patient.

IcECG ST–segment shift was 0.056mV respectively 0.858mV.

https://doi.org/10.1371/journal.pone.0253200.g002
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general pattern recognition skills have been already previously developed, thus, allowing the

application of a complex network architecture on a small data set. For this study, two CNN

with different depth and network architecture were chosen. Both had an input size of

224x224x3 pixels for the images allowing a single data set preparation.

• GoogLeNet (GN) is a 22 convolutional layer deep CNN developed by Szegedy et al. [25] named

in honor of the first CNN (LeNet by Yann LeCun [26]). GN has a special architecture with net-

works within networks (called inception modules). These modules contain multiple different

filter sizes allowing simultaneous feature extraction on different levels of details [27].

• ResNet101 (RN) is a 101 convolutional layer deep CNN developed by Kaiming He et al. [28]

using a special residual learning framework allowing the training of a deeper and thus more

accurate network. As a trade-off, its prediction time is significantly longer as that of GN.

To prepare for the transfer learning process, the last three layers of the networks responsible

for the network prediction had to be replaced for the new task, i.e., the classification of icECG

images into non-ischemic respectively ischemic. In addition, a dropout layer was added to pre-

vent the network from overfitting [29]. The remaining layers responsible for pattern recogni-

tion and feature extraction were not changed. General learning rate was chosen low while the

new layers received a learning rate weight factor of 10 (i.e., 10-fold the normal learning rate) to

improve and accelerate their training process.

Transfer learning (CNN training)

During transfer learning, the pretrained CNN were retrained on the new task. For this pur-

pose, the network analysed each image in the training data set and classified it. After n-images

(i.e., minibatch size), the network parameters were updated to reflect the new insights learned

from the n-images, and the training continued until all images were analyzed once (i.e., one

epoch). During this process, several parameters were involved, which had to be determined

before training. In this study, GN was used for determining the range of the four hyperpara-

meters, i.e., learning rate, dropout probability, minibatch size and number of epochs. For each

hyperparameter, approximately ten training runs were conducted within a broad range of val-

ues (e.g., for the dropout probability 0–1 in 0.1 steps) using two optimizer algorithms (stochas-

tic gradient descent with momentum, SGDM [30], and adaptive moment estimation learning

rate algorithm, ADAM [31]).

After defining a range of working values for each hyperparameter, 111 training runs using

the random search approach [32] were performed using the ADAM optimizer algorithm. A

random search was performed only with ADAM because of the better performance in less

time. Further, hyperparameter optimization for GN with five cycles of Bayesian optimization

[33] (each with 30 training runs, three cycles with SGDM, two cycles with ADAM) was per-

formed resulting in 150 trained networks.

Based on the experience with GN hyperparameter optimization and the concordance of work-

ing values for each hyperparameter with the literature, no grid or random search was performed

for RN. Instead, optimal setting of the hyperparameter was directly assessed by Bayesian optimi-

zation. Because of the significantly longer training duration for RN compared to GN, only two

cycles (each with 30 training runs using the ADAM optimizer algorithm) were performed.

Network performance analysis

Network performance analysis resulted in 321 trained networks (261 GN, 60 RN). Networks

performing above the arbitrary threshold of 85% classification accuracy (i.e., (true positive

+ true negative)/(true positive + true negative + false positive + false negative)) on the
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validation data were stored for in-depth evaluation with determination of diagnostic accuracy

on the validation data, the examination data as well as the combined data sets. Based on the

results of this evaluation, the ten best performing networks (independent of the architecture)

were further evaluated with class activation mapping (CAM) [34, 35], i.e., parametric visualiza-

tion of their activation patterns to find the morphology responsible for the network prediction

using ten characteristic icECGs (S1–S10 Figs).

Computational hardware

Network training was simultaneously performed on two computers (Intel1 Core™ i7-7700

CPU@3.60GHz, 8GB RAM respectively Intel1 Core™ i7-8550U CPU@1.80GHz, 8GB RAM)

using customized software (written in Matlab R2019b and R2020a). Average training time dur-

ing Bayesian optimization was 117 minutes for GN and 186 minutes for RN.

Statistical analysis

Two study groups based on the temporal landmarks for non-ischemic (i.e., before coronary

occlusion) and controlled ischemic (i.e., at the end of the occlusion) conditions were formed.

Between-group comparison of continuous study parameters was performed by a paired stu-

dent’s t-test.

Network performance was analyzed by determination of classification accuracy (i.e., correct

classified images/all images) using a 4-field matrix and calculation of sensitivity, specificity

and F1-score (harmonic mean of sensitivity and positive predictive value). Nonparametric

receiver operating characteristics (ROC) analysis using the reference of coronary patency or

occlusion for absent or present myocardial ischemia was performed for accuracy assessment of

detecting myocardial ischemia by manually obtained icECG ST-segment shift (continuous)

and the CNN prediction (dichotomous). Comparison of the area under the ROC curves was

performed using the DeLong-Test.

Statistical significance was defined at a p-level of<0.05. Continuous variables are given as

mean ± standard deviation. All analyses were performed using SPSS version 25 (IBM Statistics,

Armonk, New York) or MedCalc for Windows, version 19.1 (MedCalc Software, Ostend, Belgium).

Results

Eight-hundred ninety three icECGs from 228 patients were included in the study. Six-hundred

sixty eight were used for CNN training and two-hundred twenty five icECGs for the perfor-

mance evaluation.

Patient characteristics

Patient characteristics are presented on Table 1.

Descriptive statistics

Descriptive statistics of icECG ST-segment shift and the target vessel distribution grouped

according to the non-ischemic vs. ischemic state are presented on Table 2. Right coronary

artery served most frequent as the study vessel. Manually determined icECG ST-segment shift

was different between the groups in each data set.

Fig 3 shows the distribution of icECG ST-segment shift grouped according to the state of

absent or present coronary artery balloon occlusion for the combination of validation and

examination data as well as the corresponding network prediction from a selected trained net-

work (RN5).
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Receiver-operating characteristic curves

Using coronary artery patency or occlusion as dichotomic reference for absent or present

myocardial ischemia, receiver-operating-characteristics (ROC) analysis of manually

obtained icECG ST-segment shift in mV showed an area under the ROC-curve for the com-

bined validation and examination data of 0.903±0.043 (p<0.0001; Fig 4). AUC for the train-

ing data was 0.941±0.019 (p<0.0001), for validation data 0.897±0.051 (p<0.0001), for

examination data 0.927±0.074 (p<0.0001) and for the complete data 0.932±0.018

(p<0.0001, S1 Table).

Regarding the optimum cut-off for ischemia detection, an icECG ST-segment shift of

0.279mV distinguished best between non-ischemic and ischemic myocardium, sensitivity

80%, specificity 92% for the combined validation and examination data.

Network performance

Prediction of the ten best performing networks and their accuracy, sensitivity, specificity and

network-activating icECG morphology are presented on Table 3, and in detail on S2 Table.

Using the reference (i.e., temporal landmarks before respectively at the end of a coronary bal-

loon occlusion) for absent or present myocardial ischemia, the three best-performing networks

showed a diagnostic accuracy of 92% (RN5: sensitivity 93%, specificity 92%; RN6: sensitivity

88%, specificity 96%; GN10: sensitivity 89%, specificity 95%; Fig 4). Visualization of the net-

work activation patterns are shown on Fig 5, and in detail on S1–S10 Figs.

Table 1. Patient characteristics.

Overall

Number of patients 228

Patient characteristics

Age (years) 68±10

Female gender (%) 17

Body mass index (kg/m2) 28±5

Angina pectoris before intervention (%) 50

Duration of angina pectoris (months) 8±17

Canadian cardiovascular society class of angina pectoris 2.13±0.97

Diabetes mellitus (%) 34

Arterial hypertension (%) 75

Current smoking (%) 17

Cumulative pack years of cigarettes 38±25

Dyslipidemia (%) 80

Family history for coronary artery disease, CAD (%) 29

Prior myocardial infarction (%) 44

Medical treatment

Aspirin (%) 85

Platelet inhibitor (%) 40

Calcium channel-blocker (%) 28

Beta-blocker (%) 61

Nitrate (%) 14

Oral anticoagulation (%) 18

Statin (%) 78

ACE inhibitor or ARB (%) 70

Diuretics (%) 38

https://doi.org/10.1371/journal.pone.0253200.t001
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Comparison of icECG ST-segment shift and network performance

DeLong-Test of the ROC-curves (Fig 4) showed no significant difference of AUCs between

manually obtained icECG ST-segment shift and the three networks (RN5: p = 0.384; RN6:

p = 0.435; GN10: p = 0.438). There was no significant difference either between the AUCs

among the three networks.

Discussion

When tested in an experimental setting with systematically induced, complete coronary bal-

loon occlusion, thus establishing the reference of non-ischemic and ischemic myocardium,

these conditions are distinguishable by icECG with equal accuracy using manually determined

icECG ST-segment shift and convolutional network analysis. The underlying morphology

responsible for the network prediction differs between the trained networks, but for myocar-

dial ischemia detection focuses mainly on the icECG ST-segment and the T-wave.

Assessment of myocardial ischemia by intracoronary ECG

Slightly different from previously published results, icECG ST-segment shift showed a lower

diagnostic accuracy (0.903±0.043 for the evaluation data versus 0.963±0.029 [4]), and was less

pronounced during myocardial ischemia in the current analysis (0.915±0.972mV vs. 1.272

±0.998mV). This resulted in a lower optimal cut-off level for ischemia detection at 0.279mV

Table 2. ST–segment shift and target vessel distribution.

Overall Non-ischemic Ischemic p-value

Overall, n 893 491 402 -

ST-segment shift at J-point (mV) - 0.004±0.300 1.015±0.956 p<0.001

Left anterior descending (LAD), n 278 147 131 p = 0.630

Left circumflex coronary artery (LCX), n 196 107 89

Right coronary artery (RCA), n 419 237 182

Training data 668 368 300 -

ST-segment shift at J-point (mV) - -0.007±0.309 1.050±0.950 p<0.001

Left anterior descending (LAD), n 229 119 110 p = 0.456

Left circumflex coronary artery (LCX), n 154 85 69

Right coronary artery (RCA), n 285 164 121

Validation data 167 92 75 -

ST-segment shift at J-point (mV) - 0.042±0.290 0.931±0.820 p<0.001

Left anterior descending (LAD), n 46 26 20 p = 0.978

Left circumflex coronary artery (LCX), n 35 19 16

Right coronary artery (RCA), n 86 47 39

Examination data 58 31 27 -

ST-segment shift at J-point (mV) - 0.026±0.197 0.870±1.326 p = 0.003

Left anterior descending (LAD), n 3 2 1 p = 0.876

Left circumflex coronary artery (LCX), n 7 3 4

Right coronary artery (RCA), n 48 26 22

Validation + Examination data 225 123 102 -

ST-segment shift at J-point (mV) - -0.038.±0.269 0.915±0.972 p<0.001

Left anterior descending (LAD), n 49 28 21 p = 0.897

Left circumflex coronary artery (LCX), n 42 22 20

Right coronary artery (RCA), n 134 73 61

https://doi.org/10.1371/journal.pone.0253200.t002
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(compared to 0.365mV). This difference is related to biological and not statistical variance

between the recent and the actual investigation. The extent of myocardial ischemia, i.e., the

cause of icECG ST-segment shift, depends on multiple factors, namely duration of coronary

occlusion, ischemic area at risk for infarction, myocardial oxygen consumption and coronary

collateral blood supply [36]:

Extent of icECG ST� segment shift≙ Duration of occlusion � Area at risk �Myocardial oxygen consumption
Coronary collateral blood supply

≙ : being related to

While the duration of coronary artery occlusion was identical in the recent and the present

study (i.e., 60 seconds), the other determinants of myocardial ischemia differed. Compared to

the previous analysis [4], where left anterior descending coronary artery was the most frequent

study vessel, the right coronary artery currently served as the most frequent study vessel, caus-

ing a relevant decrease in the myocardial area at risk.

In addition, considering the higher heart rate during myocardial ischemia in the previous

study (95±25 vs 72±14 beats per minute), it can be assumed that myocardial oxygen consump-

tion (resulting from ventricular wall stress, heart rate and contractility) was increased as well.

Last, coronary collateral function presently did not serve as an exclusion criterion. Accord-

ingly, CFI was significantly higher in the present than the former analysis: 0.123±0.081 vs.

0.084±0.055 (p<0.001).

Fig 3. IcECG ST–segment shift grouped according to the state of absent or present coronary artery balloon

occlusion. Combination of the validation and the examination data (n = 225) was used for the performance analysis.

Black circles: Non–ischemic prediction of ResNet5, black crosses: Ischemic prediction of ResNet5. Red signals: wrong

predictions of ResNet5. Error bars indicate mean values and SD.

https://doi.org/10.1371/journal.pone.0253200.g003
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Application of CNN on icECG

Based on the ubiquitous availability of the ECG in clinical practice, and together with the rise

of wearable devices, an increasing amount of ECG data is available. Effective processing of

these data by physicians is not feasible even if it could provide valuable information. Thus, sev-

eral studies used CNN to process ECGs, primarily with the intention of classifying them

according to their rhythm [7–10, 37, 38]. Further, one study has demonstrated that CNN

trained on a per-patient level may be an interesting, low-computational possibility to automat-

ically monitor long-term continuous ECG data (e.g., output of implantable devices) [11].

Aside from arrhythmia detection, CNN has also been used to distinguish between other

cardiac pathologies. van de Leur et al. used a huge data set with>300’000 ECG recordings to

train a CNN to perform a triage into four categories (normal, not acutely abnormal, subacutely

abnormal and acutely abnormal) [12]. A panel of five cardiologist served as the reference.

Deep neural network in that study demonstrated an excellent overall discrimination with an

AUC of 0.93. So called class activation mapping has shown that the network based its predic-

tions on the same regions in the ECG as would physicians [12].

Makimoto et al. trained a small 6-layered CNN on 289 images of a 12-lead ECG resulting in

a comparable capability as physicians in recognizing myocardial ischemia on ECG [13]. Visu-

alization of the activation patterns revealed that the CNN was triggered by elevated ST-T-seg-

ments. However and as stated by the authors, conclusions of this visualization have to be

drawn carefully, as it has been shown that class activation mapping can fail to properly localize

Fig 4. Nonparametric receiver–operating characteristic curve of the icECG ST–segment shift and the network

predictions using coronary artery patency or occlusion as dichotomic reference for absent or present myocardial

ischemia. Of note, network prediction provides a dichotomous output (non–ischemic respectively ischemic), resulting

in a triangular ROC–curve. Hence, there is only one combination of sensitivity and specificity possible for each CNN.

Dashed black line = reference line.

https://doi.org/10.1371/journal.pone.0253200.g004
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objects in an image if the image contains multiple occurrences of the same classification (as it

is the case in a 12-lead ECG) [13]. Last, Cohen-Shelly et al. showed the feasibility of artificial

intelligence based screening for aortic valve stenosis using standard 12-lead ECG [39].

Comparison of CNN and manual icECG ST-segment shift measurement

This study demonstrated that transfer learning of a pretrained CNN is highly accurate for

detecting myocardial ischemia as reflected by icECG. CNN focuses on distinctive features in

the icECG ST-segment and the T-wave. The pathophysiologic basis of these characteristic pat-

terns is the reduced resting potential of the ischemic myocardial cells, caused by a pathologic

ion current across the injured cell membrane with subsequent distortion of the normally iso-

electric ST-segment [4, 40]. In addition, inadequate energy supply during ischemia directly

affects the ventricular repolarization and thus, the morphology and duration of the T-wave

[40]. As shown by our previous study, icECG ST-segment shift measured at the J-point outper-

formed all other icECG parameters in differentiating between non-ischemic and ischemic

icECG tracings (area under the ROC curve of 0.963±0.029 vs 0.811±0.057 for amplitude of the

T-wave [4]). Hence, it is remarkable that CNN, which focused on the same ECG morphologies

revealed a trend to even higher diagnostic accuracy than manually obtained icECG ST-seg-

ment shift for ischemia detection.

As compared to icECG ST-segment shift, CNN were not limited to a single, “hand-picked”

but to all icECG parameters. Hence, combination of two characteristics, e.g., ST-segment and

T-wave integral, enabled the numerically higher diagnostic accuracy. Most CNN used one

morphology for the non-ischemic (e.g., QRS-complex), and another one for the ischemic

Table 3. Prediction and performance of the best ten trained networks.

Convolutional neural network True
Predicted

Non-

ischemic

Ischemic Accuracy Sensitivity Specificity F1-score Activating Morphology

ResNet5: L1e-4_D0.80_M14_E60 Non-ischemic 113 7 92.44 93 92 0.918 Area under the ST-segment and the

T-waveIschemic 10 95

GoogLeNet10: L1e-

4_D0.26_M18_E28

Non-ischemic 117 11 92.44 89 95 0.915 QRS + J-point

Ischemic 6 91 ST-segment + T-wave

ResNet6: L2e-4_D0.52_M25_E60 Non-ischemic 118 12 92.44 88 96 0.914 ST-segment

Ischemic 5 90 End of T-wave

GoogLeNet2: L1e-

4_D0.25_M18_E20

Non-ischemic 114 9 92.00 91 93 0.912 QRS + J-point

Ischemic 9 93 Mainly J-Point

ResNet7: L1e-4_D0.60_M14_E60 Non-ischemic 116 11 92.00 89 94 0.910 Mainly T-wave

Ischemic 7 91

GoogLeNet8: L1e-

4_D0.45_M18_E25

Non-ischemic 119 14 92.00 86 97 0.907 QRS + J-point

Ischemic 4 88 Mainly J-Point

GoogLeNet12: L1e-

4_D0.6_M15_E20

Non-ischemic 120 15 92.00 85 98 0.906 Small QRS

Ischemic 3 87 J-Point

ResNet10: L1e-4_D0.63_M12_E60 Non-ischemic 113 9 91.56 91 92 0.907 ST-segment

Ischemic 10 93 T-wave

ResNet8: L1e-4_D0.64_M22_E60 Non-ischemic 121 17 91.56 83 98 0.899 J-point/ST-segment

Ischemic 2 85 T-wave

GoogLeNet13: L1e-

4_D0.3_M20_E30

Non-ischemic 121 17 91.56 83 98 0.899 QRS

Ischemic 2 85 Mainly T-wave

Order according to accuracy. L = learning rate, D = dropout rate, M = minibatch size, E = number of epochs.

Please note that all ResNet–networks were trained with a preliminary termination term (thus, all had E60 but were automatically stopped by the training algorithm).

https://doi.org/10.1371/journal.pone.0253200.t003
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Fig 5. Visualization of network activation patterns of the three best performing CNN. Red regions contributed

most to the network class prediction. ResNet5 bases its prediction on the area under the ST–segment and the T–wave.

GoogLeNet10 is activated by the QRS–complex and the J–point for the non–ischemic state, and by the ST–segment

and the T–wave for the ischemic state. ResNet6 bases its prediction on the ST–segment for the non–ischemic state, and

on the end of the T–wave for the ischemic state. Please note the rather uncertain prediction of ResNet6 on the ischemic

ECG.

https://doi.org/10.1371/journal.pone.0253200.g005
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images. Thus, they were also able to differentiate between the physiologic and pathophysio-

logic state of ischemia on a larger scale.

IcECGs recorded in the RCA are especially challenging as they often show a large atrial sig-

nal (P-wave), unstable isoelectric lines and negative T-waves (S1–S10 Figs, middle image in

both rows). Further, recording of the icECG in the proximal and mid RCA assesses myocardial

ischemia in the low-mass right ventricle (i.e., small ischemic signal) further complicating

ischemia detection. Thus, it is not astonishing that 14 out of the 17 (82%) falsely classified

images of RN5 were recorded in the RCA, the latter of which represented 60% of the data (see

S11 Fig for all falsely classified icECGs of RN5). Nevertheless, and despite the high proportion

of RCA icECG recordings, CNN were able to distinguish between non-ischemic and ischemic

images with high accuracy demonstrating the robustness of the method.

Limitations

The biggest limitation of the application of CNN on various problems lies in the very nature of

neural networks, i.e., “its complicated interconnected hierarchical representations of the train-

ing data to produce its predictions” [41] on unseen data. Thus, interpretation of these predic-

tions is challenging and often referred to as a “black box” problem [41]. While class activation

mapping offers a visualization of the activation patterns and enables conclusions on the gen-

eral distinction procedure, prediction can remain unexplainable. S11 Fig demonstrates all

falsely predicted icECG images of RN5. Most of them are understandable, e.g., ischemic mor-

phology of a non-ischemic icECG recorded in the RCA. However, some predictions are

incomprehensible. Track-down of the activation pattern in each convolutional layer would

possibly enlighten the erroneous predictions. However, such a process within a network archi-

tecture with numerous convolutional layers is extremely complex and time-consuming.

Further, the used networks were exceeding the complexity of the presented task by far. This

was, however, on purpose, as the objective of our study was to demonstrate the feasibility of a

hypothesis-generating process. Thus, to ensure generalizability to other, future tasks, highly

capable pretrained networks were used in combination with excessive data augmentation to

prevent overfitting. Hence, this method does not provide the most appropriate and efficient

CNN, but rather a well-performing CNN to allow generating hypotheses, which need further

verification. In addition, the presented task (i.e., to distinguish between non-ischemic and

ischemic icECG tracings), would have been possible with raw icECG signal data without the

conversion into jpg-images associated with an increase of data points and a loss of details. In

this case, pretraining would have been feasible with open source ECG databases. However, this

approach would limit the generalizability of the proposed, deep learning approach, as the

requirements are not ubiquitous applicable.

While transfer learning of pretrained CNN enabled the application of networks with a high

capacity on a small data set, this approach determines also the format of the input data. Thus,

data has to be images with restricted input size, which limits the resolution. A requirement,

which could cause the missing of subtle patterns. In addition, quantitative assessment is not

possible using this deep learning approach and it requires a certain accordance between the

original task and the problem to be addressed. As this requirement is not always given, it is

possible that the presented approach does not provide accurate network predictions. However,

taken into account the relatively low effort and the potentially valuable information, we recom-

mend to try this approach at least once on a particular problem.

Finally, ROC-analysis with binary predictors (i.e., the dichotomous classification by the

CNN) is a potential misleading metric [42]. However, the ROC-analysis was not the only sta-

tistical assessment of the network performance and all (consistent) results were shown.
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Implications

This study demonstrates the feasibility of a hypothesis generating process using transfer learn-

ing of pretrained CNN on a small (n<1000) data set. Contrary to previously conducted ECG

studies using deep learning, the goal of this study was not to develop a diagnostic aid for physi-

cians in daily clinical practice, but rather to enable an unbiased view on a well-known clinical

phenomenon, i.e., myocardial ischemia. Implementation of this view did not require big data

or specialized computational hardware. Instead, a small but well-defined data set was used to

perform transfer learning on pretrained CNN using single CPU computers. Hence, the pro-

posed approach is feasible without extensive computational hardware and for a wide variety of

scientific problems. Conditions are the presence of a well-defined, independent reference

(absent vs present ischemia), and the possibility to transform the data into images (as most of

the high capacity, open-available CNN were trained on the ImageNet [24] database).

In the present study, data-derived features used by the CNN to distinguish between absent

or present myocardial ischemia were similar to the common practices and focused mainly on

the icECG ST-segment and the T-wave. Hence, the hypothesis-generating process did not pro-

vide unknown ischemic patterns but rather confirmed the common parameters used to quan-

tify myocardial ischemia in the icECG.

Conclusion

When tested in an experimental setting with artificially induced coronary artery occlusion,

quantitative icECG ST-segment shift and CNN using pathophysiologic prediction criteria

detect myocardial ischemia with similarly high accuracy. Thus, this study contributes a novel,

deep learning based hypothesis-generating approach applicable from basic science to clinical

problems.

Supporting information

S1 Fig. Visualization of network activation patterns of ResNet5. Red regions contributed

most to the network class prediction.

(TIF)

S2 Fig. Visualization of network activation patterns of GoogLeNet10. Red regions contrib-

uted most to the network class prediction.

(TIF)

S3 Fig. Visualization of network activation patterns of ResNet6. Red regions contributed

most to the network class prediction.

(TIF)

S4 Fig. Visualization of network activation patterns of GoogLeNet2. Red regions contrib-

uted most to the network class prediction.

(TIF)

S5 Fig. Visualization of network activation patterns of ResNet7. Red regions contributed

most to the network class prediction.

(TIF)

S6 Fig. Visualization of network activation patterns of GoogLeNet8. Red regions contrib-

uted most to the network class prediction.

(TIF)
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S7 Fig. Visualization of network activation patterns of GoogLeNet12. Red regions contrib-

uted most to the network class prediction.

(TIF)

S8 Fig. Visualization of network activation patterns of ResNet10. Red regions contributed

most to the network class prediction.

(TIF)

S9 Fig. Visualization of network activation patterns of ResNet8. Red regions contributed

most to the network class prediction.

(TIF)

S10 Fig. Visualization of network activation patterns of GoogLeNet13. Red regions contrib-

uted most to the network class prediction.

(TIF)

S11 Fig. Visualization of network activation patterns of all false prediction of ResNet5.

Red regions contributed most to the network class prediction. While some predictions are

understandable (left and right column), others are incomprehensible (middle column).

(TIF)

S1 Table. Nonparametric receiver-operating characteristic curves of manually determined

icECG ST-segment shift and corresponding collateral flow index and heart rate.
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S2 Table. In-detail performance of the ten best performing networks.
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