
sensors

Article

Adaptive and Efficient Mixture-Based Representation
for Range Data

Minghe Cao 1 , Jianzhong Wang 1,* and Li Ming 2

1 School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China;
3120160104@bit.edu.cn

2 School of Automation, Beijing Institute of Technology, Beijing 100081, China; mingllove@bit.edu.cn
* Correspondence: cwjzwang@bit.edu.cn

Received: 29 April 2020; Accepted: 4 June 2020; Published: 8 June 2020
����������
�������

Abstract: Modern range sensors generate millions of data points per second, making it difficult to
utilize all incoming data effectively in real time for devices with limited computational resources.
The Gaussian mixture model (GMM) is a convenient and essential tool commonly used in many
research domains. In this paper, an environment representation approach based on the hierarchical
GMM structure is proposed, which can be utilized to model environments with weighted Gaussians.
The hierarchical structure accelerates training by recursively segmenting local environments
into smaller clusters. By adopting the information-theoretic distance and shape of probabilistic
distributions, weighted Gaussians can be dynamically allocated to local environments in an arbitrary
scale, leading to a full adaptivity in the number of Gaussians. Evaluations are carried out in terms of
time efficiency, reconstruction, and fidelity using datasets collected from different sensors. The results
demonstrate that the proposed approach is superior with respect to time efficiency while maintaining
the high fidelity as compared to other state-of-the-art approaches.

Keywords: gaussian mixture model; environment representation; hierarchical structure; point cloud data

1. Introduction

Range data have widely been used in applications including medical imaging, object modeling,
and robotics state estimation. Modern range sensors (e.g., LiDAR, RGB-D cameras) generate millions of
data points per second, making it difficult to utilize all incoming data effectively in real time for devices
with limited computational resources. Along with the impact of sensor noises, it is rarely feasible to
operate directly on the raw point measurements obtained from the sensors in robotics applications.

Point cloud representation techniques are developed to address this problem. The direct dense
representation involves stitching point clouds from different poses of frames, and downsampling
data via various filters. Other techniques include discretizing the environment into grids or voxels.
The Occupancy Grid Map was first proposed by Elfes [1] for the perception and navigation of mobile
robots. The environment was represented as discretized binary grids whose status are either occupied
or not occupied. Ryde et al. [2] extended the Occupancy Grid Map to three dimensions by aligning
range data stored in occupied voxel lists. Li [3] applied the Occupancy Grid Map to the urban scenario.
OctoMap [4] is one of the most popular volumetric environment models because it can be flexibly
deployed in multiresolution. While downsampling and simple discretization may result in loss of
information, the Normal Distributions Transform (NDT) [5] assigns a normal distribution to each
grid cell to model the distribution of local environments, which was extended to 3D environments
by Magnusson [6]. The NDT approach and its variants provide a higher fidelity of representation
compared to occupancy methods. However, the discretized grids and voxels are independent and
set at a fixed resolution, which may lead to inconsistency at the boundaries. Furthermore, it is hard

Sensors 2020, 20, 3272; doi:10.3390/s20113272 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-8470-3664
https://orcid.org/0000-0001-8655-3869
http://dx.doi.org/10.3390/s20113272
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/11/3272?type=check_update&version=2

Sensors 2020, 20, 3272 2 of 18

to deploy these models in large scale environments due to the memory requirements. Other than
traditional methods, approaches based on deep learning [7–9] have also been proved efficient and
robust in facilitating representation.

As a result of the flexibility to model distributions whose parametric forms are unknown,
the Gaussian Mixture Model (GMM) is a convenient and essential probability model used in many
research domains, from image processing to machine learning [10–14]. Approaches have been proposed
to address the various problems associated with GMMs, such as problems involving environment
representation [15,16], registration [17–22], mapping [23–25], localization [26], and planning [25].
Jian et al. [18] and Segal et al. [19] converted a point cloud into a GMM by assigning a covariance
matrix to every point for registration. The difference is that the covariance matrices in [18] are isotropic,
whereas Segal [19] considered that each point distributes with a high covariance along its local plane
and a low covariance in the normal surface direction. Though these construction methods minimized
the cost in the setup step, the computational cost in the registration step increased since the number of
components is much greater than in the training method. Other approaches, such as those described
in [15,16], model environments by training point cloud data into anisotropic Gaussian components
using the Expectation–Maximization (EM) algorithm.

Even though the anisotropic GMM representation approach has been proved to be memory
efficient, it still has several drawbacks. Firstly, as a result of the fact that there is no closed form solution
to analytically solve GMM parameters when fitting a point cloud, approaches like EM are commonly
used to give an estimation. However, the time complexity of the EM algorithm is O(N×C) where N is
the size of the environment and C is the number of GMM components. Thus, the EM algorithm is not
feasible for real-time operations in large environments. Secondly, the number of GMM components
must be given manually at the beginning of the training procedure, which is hard to estimate without
prior knowledge. Attempts, such as those involving hierarchical forms, have been widely explored to
address these drawbacks [15,16,21,27,28]. Typically, these methods operate “bottom-up”, repeatedly
grouping together like clusters of points and using divergence measures to split and merge the data.
Goldberger et al. [27] constructed an iterative EM-like algorithm using Kullback–Leibler divergence
(KL-Divergence) in order to repeatedly merge candidate clusters. Srivastava et al. [15] initialized
the hierarchy by inputting an overestimated amount of Gaussians at the lowest level and iteratively
merging similar components measured by KL-divergence. In contrast, Eckart et al. [16] applied a
“top-down” hierarchical approach by exploiting the sparsity of the responsibility matrix, achieving
high time efficiency through parallel computing.

The similarity of two probability density functions (PDFs) can be measured by adopting various
types of divergences or distances. However, not all divergences are equally useful in terms of
the GMM. KL-Divergence is the most well-known criterion for mutual information between two
probability density functions. While the KL-Divergence was used in [15,27] for merging similar
Gaussians, it does not yield an analytic closed-form expression for GMMs. Estimation methods for
KL-divergence between GMMs can be found in [29–31]. However, the estimation methods are either
not accurate or computationally expensive. A closed-form information criterion for the GMM is desired.
An analytical solution for the GMM based on Cauchy–Schwarz PDF divergence [32] measurements
was derived in [33]. Wang et al. [34] proposed a GMM registration technique by utilizing Jensen–Renyi
divergence [35]. Jian et al. [18] and Ma et al. [36] analytically solved the point set registration problem
based on L2 distance of the GMM. We choose the Cauchy–Schwarz pdf divergence as the information
metric to measure the similarity between GMMs because it resembles KL-divergence.

In this paper, a probabilistic representation of three-dimensional point clouds is developed in
the form of a hierarchy of Gaussian Mixture Models. The hierarchy derive from the top-down and
coarse-to-fine structure proposed by [16], which eases constraints on point-to-cluster assignments and
enables a high time efficiency. To solve the issue that the number of Gaussian components between
levels are inconsistent, we introduce information-theoretic measurement as well as distribution
shape of the covariances as stop conditions. As a result, the proposed approach can dynamically

Sensors 2020, 20, 3272 3 of 18

allocate anisotropic Gaussians to local areas with high-frequency details as well as a simple geometry.
The proposed model can recreate original point cloud in multifidelity and arbitrary resolutions, which
gives high flexibility in robot applications.

The paper is organized as follows. Section 2 states the theoretical foundation required to develop
the proposed approach. Section 3 presents the method of our algorithm. Section 4 gives the details of
implementation. A comprehensive evaluation is conducted in Section 5. Finally, the conclusions and
Future work are discussed in Section 7.

2. Gaussian Mixture Model Representation

2.1. Gaussian Mixture Model

In this work, the Gaussian Mixture Model is used as a representation method. The Gaussian
Mixture Model is a parametric probability density function represented as sum of Gaussian densities

p(x|Θ) =
C

∑
c=1

ρcN (x|µc, Σc). (1)

N (x|µ, Σ) is the three-dimensional multivariate Gaussian density, whose parameter µ ∈ R3, Σ ∈ R3∗3

are the mean vector and the covariance matrix. The scalar ρc is the weight of the Gaussian component.
Given a three-dimensional point cloud Z of size N, assuming the points within the point cloud

are independent and identically distributed (i.i.d) on the surface being modeled, the likelihood of the
environment generated by a GMM can be expressed as

p(Z|Θ) =
N

∏
n=1

p(zn|Θ) =
N

∏
n=1

C

∑
c=1

ρcN (zn|µc, Σc). (2)

Since there is no closed form solution for the GMM, the Expectation-Maximization (EM)
algorithm [37] is commonly utilized to find an estimation by iteratively maximizing data likelihood.
Specifically, by establishing the correspondence between points and Gaussian components of the
mixture through a set of binary latent variables, the E-step evaluates the corresponding posterior
probability by computing the expectation of latent variables

Γ ≡ E [rnc] =
ρc p (zn|Θc)

∑C
i=1 ρi p (zn|Θi)

, (3)

while the M-step maintains the current responsibilities and re-estimates the parameters by maximizing
the expected log-likelihood

Θnew = argmax
Θ

N

∑
n=1

C

∑
c=1

γnc {ln ρc + lnN (zn|Θc)} . (4)

E [rnc] is defined as the responsibility matrix Γ, where γnc is the responsibility of point n to the
cth Gaussian.

The optimization of the M-step can be analytically solved using Equation (5), where Γc = ∑n γnc

and Θnew = {ρnew, µnew, Σnew} are the updated parameters in each step. By iteratively computing the
E-step and M-step, final output can be determined when the average data log-likelihood converge to
a threshold.

Sensors 2020, 20, 3272 4 of 18

µnew
c =

∑n γnczn

Γc
,

Σnew
c =

∑n γncznzT
n

Γc
− µnew

c µnewT

c ,

ρnew
c =

1
N

Γc.

(5)

2.2. Sparsity of Responsibility Matrix

The points collected by range sensors are usually distributed along the surfaces of objects. On the
basis of the nature of 3D geometry, the posterior over correspondences (responsibilities) are sufficiently
sparse when modeling with a large number of Gaussians. Figure 1 visualizes a responsibility matrix
of a point cloud whose x-axis is points and y-axis is the index of the associated mixture component.
The corresponding responsibilities are visualized as dark to light colors, where the light colors denote
a high contribution to the responsibilities while the dark colors denote the opposite. From the
figure, we can see that a high percentage of the matrix is occupied by dark colors, meaning most
matrix elements will not contribute meaningfully after the expectation step of the EM algorithm.
Consequently, the summation of these zero or nearly zero values in the maximization step will cause a
low computational efficiency and finally lead to a poor timing performance.

0 10k 20k 30k 40k

0

10

20

30

40

50

60

0

0.2

0.4

0.6

0.8

1

Point Index

C
om

po
ne

nt
 In

de
x

Figure 1. Visualized responsibility matrix. The dark region occupies a significant percentage, meaning
the matrix is sufficiently sparse.

To address the issue caused by the sparsity of the responsibility matrix, we employ a hierarchical
structure that recursively segments the environment into local parts by clustering responsibilities that
have a meaningful contribution. The details are discussed in the next section.

3. Method

3.1. Hierarchy

Our approach uses anisotropic weighted Gaussians for three-dimensional environment
representations. By exploiting the sparsity of the responsibility matrix discussed earlier, a hierarchical
structure is employed by the small-sized recursive children of the GMMs and the partitioned points
by selecting points that have meaningful contributions. In this way, the general EM training with
time complexity O(N × C) is divided into a collection of trainings with a decreasing size, leading to
a log-speed acceleration. The proposed structure is presented in Figure 2. The root of the hierarchy
is input point cloud. Each ellipse represents a weighted Gaussian of the GMM. Each level is an
independent GMM that estimates the point cloud. In the hierarchical structure, the point cloud is firstly
fitted with a GMM of size C. Then, points within the point cloud are associated with the Gaussians.
The parent Gaussians spawn more children from another GMM using the associated local point clouds.

Sensors 2020, 20, 3272 5 of 18

The default size of the children are set as a fixed positive integer. The structure is a full tree if no
condition is set to interfere with the generation. With the increase in level, more Gaussian components
are generated, and the point cloud are modeled with higher fidelity. However, the number of Gaussians
grows exponentially with the increase in levels, causing a huge gap in the number of fitting Gaussians.
The lack of adaptivity easily leads to underfitting and overfitting problems. We propose several
conditions that determine if a parent Gaussian should continue to spawn children. For these local
details that have been well modeled, the Gaussians are seen as converged and remain static in the
following procedures, while the others proceed until all are converged. The converged mixtures are
denoted as the children of Gaussian 2 to Gaussian 4 in the figure, and the stop conditions are further
discussed in Section 3.3.

Figure 2. The proposed hierarchical model. The root of the tree is the input point cloud. Each level is
an independent Gaussian Mixture Model (GMM). The ellipse denotes weighted Gaussians. Gaussian 1:
the parent Gaussian spawns another mixture of size C in the normal generation. Gaussian 2: the local
point clouds are defined as being well modeled by their distribution shape. Gaussian 3: the children
mixtures are determined as being well modeled by the information metric. Gaussian 4: the size of
GMM children is cut in half if ill-conditioned covariance is encountered.

In order to maintain a valid global Gaussian Mixture at each level, the correct GMM parameters
must be updated after the generation of the children level. Suppose the current training level is l,
the probability of the GMM in children level l + 1 generating the point cloud can be expressed as

p(zi|G(l+1)) =
K

∑
c=1

Jc

∑
c′=1

ρ
(l+1)
c′ ρ

(l+1)|(l)
c p

(
zi

∣∣∣Θ(l+1)|(l)
c

)
, (6)

where ρ
(l+1)|(l)
c and Θ(l+1)|(l)

c are the children parameters of the GMM G(l), K is the number of
Gaussians in level l, and Jc is the number of children refined by the cth component in the parent
GMM G(l). The formula shows that in order to update the children model, the weight value must be
propagated down from the parent level.

3.2. Partition

We use parent responsibility matrices to associate points with child mixtures [16]. Considering
the fact that some marginal points may be shared by multiple Gaussians, we introduce a matrix P
and two coefficients: λu

p and λl
p. The sufficiently large λu

p is used to control the amount of information
sharing among children of different parents. While a relatively small λl

p deals with the situation that
points are not assigned to any child mixture after applying λu

p. Specifically, for responsibilities greater
than λu

p, the corresponding elements in P are set to 1, while the others remain zeros. For points that do
not have significant contributions to any children Gaussian mixtures, the elements fall below λl

p are set
to zeros, while the others are set to 1. Then, the matrix is normalized by rows. Algorithm 1 describes
the procedure in detail. Γn and Pn denote the nth row vector of the matrix. Line 12 normalizes P
by rows so that the sum of each row is equal to 1. The partition matrix reflects how the local point

Sensors 2020, 20, 3272 6 of 18

clouds are assigned to children mixtures. In addition, its values are used as the weight of the points in
the successive modeling procedures. When λu

p is sufficiently large, only a small amount of points are
shared by children mixtures, maintaining the algorithm’s high computational efficiency.

Algorithm 1 Partition

1: procedure PARTITION(Γ, λu
p, λl

p)
2: Init: P ← zeros
3: for all Γnc ≥ λu

p do
4: Pnc = 1
5: end for
6: idx ← f ind(SUM(Pn) == 0)
7: for all idx ∈ Γn do
8: if Γnc ≥ λl

p then
9: Pnc = 1

10: end if
11: end for
12: Return Normalized(P)
13: end procedure

3.3. Stop Conditions

The amount of Gaussians grows exponentially with the increase in the training level. One simple
termination method is set a maximum level. However, the number of Gaussian components between
two levels has a gap, and it is hard to find a proper fitting level. In this section, we propose several
stop conditions that can adaptively and efficiently terminate the generation when a local point cloud is
well fitted.

3.3.1. Distribution Shape

To enable a meaningful Gaussian distribution, the covariance of the Gaussian must be a positive
semi-definite matrix. To describe the shapes of the distributions, we specify the eigenvalues and
eigenvectors of the covariance matrix as σ = {σ1, σ2, σ3} and v = {v1, v2, v3}, where we define
σ1 ≥ σ2 ≥ σ3. A covariance matrix can be visualized as a three-dimensional ellipse utilizing v as the
orientations and σ as the scale factors on the corresponding axises. Normally, the distribution shapes
can be described as planar, linear, and spherical.

We introduce two coefficients, sl and sp, where sl = σ3/σ2 and sp = σ2/σ1. Then, a distribution is
linear if we have sl ≤ λe, and planar if it is nonlinear and sp ≤ λe. If a distribution has no eigenvalue
1/λe times larger than another one (nonlinear and nonplanar), then it is spherical. For the reason that
the points collected by range sensors are distributed along surfaces, we assume the point cloud in the
real world to be locally planar. For the hierarchical structure, when a parent distribution is sufficiently
planar, it stops generating new children and is collected by the converged mixture set.

3.3.2. Information Metric

Divergence measurements seek to provide a measure of the distance or the mutual information
between two probability distributions. Cauchy–Schwarz Divergence [33] is widely used in
probability-based techniques [38–40]. The Cauchy–Schwarz PDF divergence measure is defined as

CS(p, q) = − log

 ∫
q(x)p(x)dx√∫

q(x)2dx
∫

p(x)2dx

 . (7)

Sensors 2020, 20, 3272 7 of 18

Unlike KL-divergence, CS-divergence is a symmetric measurement for any two PDFs p and q,
such that 0 ≤ CS(p, q) < ∞ and the minimum is obtained when and only when p(x) = q(x). For two
Gaussian distributions N (x|µa, Σa) and N (x|µb, Σb), the integration of the dot product is∫

N (x|µa, Σa)N (x|µb, Σb) dx = N (0|µa − µb, Σa + Σb) , (8)

which enables a closed-form solution for the GMM. Given a GMM G of size J and G ′ of size K,
the CS-divergence of the GMMs can be obtained using Equation (9), where Θj = {ρj, µj, Σj} and
Θ′k = {ρ

′
k, µ′k, Σ′k} are the jth and kth Gaussians of G and G ′.

CS(G,G ′) =− log
(∫
GG ′dx

)
+

1
2

log
(∫
G2dx

)
+

1
2

log
(∫
G ′2dx

)
,

=− log

(
J

∑
j=1

K

∑
k=1

ρjρ
′
kN

(
0|µj − µ′k, Σj + Σ′k

))

+
1
2

log

 J

∑
j=1

ρ2
j

1

(4π)
D
2
∣∣Σj
∣∣ 1

2
+ 2

J

∑
j=1

∑
j′<j

ρjρj′N
(

0|µj − µj′ , Σj + Σj′
) ,

+
1
2

log

 K

∑
k=1

ρ′2k
1

(4π)
D
2
∣∣Σ′k∣∣ 1

2
+ 2

K

∑
k=1

∑
k′<k

ρ′kρ′k′N
(

0|µ′k − µ′2k′ , Σ′k + Σ′k′
) .

(9)

Since the mixtures in the hierarchy are probability distributions, we apply CS-divergence as a
metric to measure the mutual information between GMMs. In the proposed approach, we focus on
the similarity between parent Gaussians and their children. In the case that local estimation made
by a parent Gaussian is not accurate enough, the children mixtures further refine it with higher
fidelity, causing a considerable divergence between parent and children GMMs. Oppositely, if a local
environment is well fitted by a Gaussian mixture, not much information is gained by continuous
generation, leading to a small value of divergence. This is the case on the basis that a threshold
parameter λcs is introduced to determine if a local part of a point cloud is well fitted. Specifically,
the CS-divergences between the parent and its children are computed. For those that fall below λcs,
the children stop generating and are collected by the converged mixture set.

To deal with ill-conditioned covariances, regularization methods may be applied within the
training process, which may have an impact on the metric. To avoid this issue, in the case in which the
covariance matrix is ill-conditioned, the EM fitting makes an attempt with half the number of training
Gaussian components. In the case that only two Gaussians remain, The ill-conditioned covariances
can be regularized.

4. Implementation

4.1. M-Step Vectorization

When implementing the EM algorithm, other than for loops, the M-step can be easily rewritten
using matrix multiplication. Algorithm 2 shows the procedure. Vector w is the weights of points
derived from matrix P . We denote Γc as being the cth column of Γ. The superscript T is the transpose
operation of the matrix. The FLAT operation reshapes a column-major matrix to a row vector.
Thereafter, the SUM operation sums up all of the vector elements. By rewriting the algorithm, it is more
feasible to achieve a high time efficiency when implementing it in different programming languages
and deploying it through different computation platforms.

Sensors 2020, 20, 3272 8 of 18

Algorithm 2 M Step Rewrite

1: procedure M_STEP(Z , Γ, w)
2: for all zn do
3: X n ← FLAT

(
zT

n zn
)

4: end for
5: for all c ∈ C do
6: ρc ← Γcw/SUM (w)
7: µc ←

(
ΓT

c Zd
)

/ρc
8: Σc ← FLAT(ΓT

c X d/ρc)− FLAT
(
µT

c µc
)

9: end for
10: Return ρ, µ, Σ
11: end procedure

4.2. Implementation

Algorithm 3 presents the pseudocode of our implementation. At each level, the global GMM G(l)
is composed of two sets, Gconverged and Gtraining, where the Gaussians in Gtraining are responsible for
refining local parts into higher fidelity, while Gconverged collects the converged mixtures determined by
the stop conditions. If a mixture is marked as converged, it stops generating children, making it a static
component of the global GMM. After training of each level, the Gaussians in Gtraining are substituted
with the refined children mixtures, and both sets propagate to the next level. This process continues
until all the Gaussians in level l are collected by the Gconverged, where we have G(l) = Gconverged, then the
procedure is terminated and the hierarchyM is returned as the final output.

At the beginning of the procedure, only point cloud data and the number of children are
necessarily given as inputs. Θinit is used as initial input for every EM train. The mean vectors
are set to be the points sampled evenly within the point cloud. The covariances are set as fixed
diagonal matrices. The mixing weights are initially equal. The Gconverged is initially empty and Gtraining
is composed of a GMM of size C. Line 8 to 15 shows the refining process of partitioning point cloud
using the EM algorithm. The local point clouds and the point weight vector w are extracted from the
partition matrix. As illustrated earlier, w is used to prevent multiple counts. The E_Step computes the
responsibility matrix using Equation (3) while the M_Step optimizes the parameters by maxing the
log-likelihood function. In our approach, the M_Step is calculated using our rewritten Algorithm 2.

To model environments with an adaptive number of weighted Gaussians, the proposed converge
conditions are utilized. The distribution shape is determined in Line 5. We assume that point clouds
are locally planar. If a Gaussian satisfies sp ≤ λe, it will be seen as sufficiently planar and collected by
Gconverged. Furthermore, the CS-divergence is utilized to find mutual information between parents and
their children (line 16 to 19). The divergences that fall below λcs show that parents and their children
have a high level of similarity. Then, the children mixtures are collected by the converged GMM set.

After training of each level, the Partition procedure is implemented based on the responsibility
matrices to give a proper association to the local point clouds, as illustrated in Algorithm 1. The global
GMM of each level is the collection of Gtraining and Gconverged.

Sensors 2020, 20, 3272 9 of 18

Algorithm 3 Hierarchical Training

1: procedure HIERARCHICALMODEL(Z ,C)
2: Init: Θinit,Gconverged ← empty,Gtraining
3: while ! empty(Gtraining) do
4: for all m ∈ Gtraining do
5: if sp ≤ λe then
6: Gconverged ← Gconverged ∪ Θm
7: else
8: c′ ← C, {Zm, w} ← P
9: while status! = succeed do

10: while !converged do . EM algorithm
11: {Γm, status} ← E_Step(Zm, Θinit, c′, w) . Equation (3)
12: Θchildren ← M_Step(Γm) . Algorithm 2
13: end while
14: c′ ← c′/2
15: end while
16: if CS(Θm, Θchildren) ≤ λcs then
17: Gconverged ← Gconverged ∪ Θchildren
18: else
19: Gtraining ← Θchildren
20: end if
21: end if
22: end for
23: P ← Partition(Γ, λu

p, λl
p) . Algorithm 1

24: G(l) ← Gtraining ∪ Gconverged
25: end while
26: ReturnM = {G(1),G(2), ...G(l)}
27: end procedure

5. Evaluation

To evaluate the performance of our approach, we introduce several public datasets. The Corner
and Office are from the TUM (https://vision.in.tum.de/data/datasets/rgbd-dataset) dataset [41],
whose range data are collected by a Microsoft Kinect RGB-D camera. The Corner sets consist of
grounds and walls in a clear area. The Office is an office scene which might be commonly found
in a disorganized indoor environment. The Street dataset is a subset of the NCLT (http://robots.
engin.umich.edu/nclt/) dataset [42] collected via a 32-channel Lidar in an outdoor environment.
The Campus dataset is a subset of the KITTI (http://www.cvlibs.net/datasets/kitti/raw_data.php)
dataset [43] collected via a 64-channel Lidar in an outdoor environment. These datasets are composed
of structured walls, pedestrians, as well as scattered foliage. Detailed information is listed in Table 1.

Table 1. Detailed information of the datasets.

Corner Office Street Campus

Sensor RGB-D Camera RGB-D Camera LiDAR LiDAR
Model Microsoft Kinect Microsoft Kinect Velodyne HDL-32E Velodyne HDL-64E
Source TUM TUM NCLT KITTI
Scene Indoor Indoor Outdoor Outdoor

Structure Simple Complex Medium Complex
Valid Size ∼2.91 MB ∼2.54 MB ∼0.61 MB ∼1.22 MB

To give a comprehensive evaluation, we compare three state-of-the-art approaches for comparison.
Hereafter, the Expectation-Maximization algorithm stated in [44] is referred to as EM. The bottom-up
approach proposed in [45] is referred to as HGMM. The top-down approach proposed in [16] is

https://vision.in.tum.de/data/datasets/rgbd-dataset
http://robots.engin.umich.edu/nclt/
http://robots.engin.umich.edu/nclt/
http://www.cvlibs.net/datasets/kitti/raw_data.php

Sensors 2020, 20, 3272 10 of 18

denoted as GMM-Tree. Those three approaches are all based on the EM algorithm. NDT is a widely
used state-of-the-art model proposed in [5] that also can be seen as a mixture of Gaussians. For the
HGMM, we set the initial GMM size to 300. For the GMM-Tree, we set the number of children to eight
and the maximum components as 84. For our approach, we set C = 8, λu

p = 0.35.

5.1. RGB-D Dataset

The Gaussian Mixture Model is continuous parametric distribution. Thus our approach can
recreate environments by resampling an arbitrary amount of points [44]. Figure 3 illustrates an
example of raw RGB-D data selected from the datasets as well as their reconstructed point clouds of
different approaches. The point cloud size is consistent with the size of the input point clouds.

(a)

(b)

Figure 3. The raw point clouds of the RGB-D datasets and the reconstructed point clouds by our
approach. (a) Raw point cloud; (b) Reconstruction using our approach.

The figures demonstrate that our approach provides a fairly good approximation. For example,
in the Office linear parts such as chair legs are reconstructed in a high resolution, the curve surfaces
of the globe are also recreated, showing that our approach has the ability to dynamically allocate
Gaussians to the details throughout the environment. Detailed analysis of fidelity is discussed in the
following section.

5.1.1. Fidelity

The fidelity provides a measure between the original environment and the GMM representation.
We utilize a Peak Signal to Noise Ratio (PSNR) metric to evaluate the representation fidelity. Specifically,
given a reference point cloud of size N, we generate an equivalent N amount of points from its
corresponding GMM representation. For every point in the original point cloud, we find the nearest

Sensors 2020, 20, 3272 11 of 18

neighbor in the reconstructed cloud. Then, the mean square error (MSE) of point clouds is obtained.
The PSNR is computed by

PSNR = 10log10(
p2

MSE
), (10)

where p is the diagonal distance of the bounding box of the original point cloud [46].
Figure 4 gives the PSNR with respect to the memory size of the scenes shown in Figure 3a.

The x-axis is plot in log scale. We set the number of Gaussian components of the EM distribute within
the log space. From the figure we can clearly see the trade-off between memory size and fidelity. Apart
from adaptive approaches like the HGMM and our approaches, the others can seek better PSNR by
trading memory. The curves of the EM in linear space is convex. We define the term “knee-zone” as
the converging area beyond where the fidelity will not vary significantly. Seeking fidelity beyond the
“knee-zone” is not cost-effective for most of the models. For example, in Figure 4a, the fidelity gain of
the GMM-Tree in level four is only two extra compared to level three, but level four costs eight times
more memory. Thereafter, the data located within the knee-zone can be seen as a balance between
fidelity, memory efficiency, and fitting time. For all RGB-D scenes, the final results of our approach
(the endpoint of the red curves) fall within the knee-zone of the curves, validating the efficiency of our
approach. As a result of the need for voxelization, the PSNR of the NDT is lower than ours at similar
memory sizes.

100 101 102 103 104

Memory Size (KB)

25

30

35

40

45

50

55

60

P
SN

R

EM
HGMM
Proposed
GMM-Tree
NDT

(a)

100 101 102 103 104

Memory Size (KB)

25

30

35

40

45

50

55

60

P
SN

R

EM
HGMM
Proposed
GMM-Tree
NDT

(b)

Figure 4. Peak Signal to Noise Ratio (PSNR) of the scenes selected from the RGB-D datasets. (a) Corner;
(b) Office.

5.1.2. Efficiency

The efficiency of our approach is investigated in this section. For the RGB-D datasets,
we computed the mean values of the fitting time, fidelity, and memory footprint of different approaches.
The grid size of the NDT is set to 0.2 m. The fitting Gaussians of the EM is set to 300. The results are
plotted in Figure 5.

From the figure, we can see that our approach has the best efficiency compared to the other
approaches. Our approach uses an efficient method to control generation by dynamically allocating
Gaussian mixtures based on the information and local geometry. If we set the EM as a baseline,
our approach greatly saves the fitting time while providing a comparable fidelity. The HGMM
achieves adaptivity by computing the KL-divergence between Gaussian mixtures and merging similar
Gaussians. The extra computation of KL-divergence worsens the time performance. And the HGMM’s
PSNR is slightly lower than that of the EM because of the merging process. Its advantage is in memory
footprint. The GMM-Tree takes advantage of decoupling the sparse responsibility matrix, therefore
achieving a high time efficiency compared to EM and HGMM. Even though the GMM-Tree has the best
performance in terms of fidelity, however, as a result of lacking adaptivity, it has the worst memory
efficiency, which the memory occupancy is several times greater than ours. And the consumption

Sensors 2020, 20, 3272 12 of 18

of computation also leads to a worse time performance. Due to no need to iteratively approximate
solutions, the NDT is the fastest among all approaches. In spite of that, our approach has better
performance in terms of the other two aspects. In Figure 5a our approach outperforms NDT in both
memory and fidelity. In Figure 5b our approach and the NDT has similar memory but our approach
achieves better fidelity.

(a) (b)

Figure 5. The mean value of fitting time, fidelity, and memory footprint of RGB-D datasets using
different approaches. (a) Corner; (b) Office.

5.2. Lidar Dataset

Figure 6 illustrates the examples of raw point clouds as well as their reconstructed point clouds of
the Lidar datasets. However, as a result of the characteristics of the Velodyne LiDAR sensor, the data
points between the two scan channels are inconsistent. For example, instead of forming a dense point
cloud as is the case with RGB-D cameras, the points along surfaces distribute as dot lines. When
employing GMM-based approaches, the gap between two laser scans can end up being filled up
(see the grounds and walls of the reconstructed point clouds). Even though these models normally
reflect the ground truth of the geometrical world, to avoid extreme cases that may lead to a false
conception, we control the absolute size of the Gaussians in our method so that the representation can
achieve a certain resolution.

5.2.1. Fidelity

As a result of the characteristics of the Velodyne LiDAR sensor, the Point-to-Point PSNR does not
reflect the real performance of GMM-based approaches. Consequently, we redefine the MSE as the
mean square of Point-to-Surface error to evaluate the Lidar datasets. Specifically, for every point in an
original point cloud, its local plane is estimated using six neighboring points. Then, for the resampled
point cloud, the MSE with respect to the local plane is computed by

MSE =
v · (zr

n − zn)

|v| , (11)

where zn is the point of the original point clouds, v is the normal vector of zn, and zr
n is a point of the

resampled point cloud. Then, the PSNR is finally computed using Equation (10).

Sensors 2020, 20, 3272 13 of 18

(a)

(b)

Figure 6. The raw point clouds of the Lidar datasets and the reconstructed point clouds by our
approach. (a) Raw point cloud; (b) Reconstruction using our approach.

Figure 7 gives the PSNR with respect to the memory size of the scenes shown in Figure 6a.
The situation is slightly different from the RGB-D datasets. In Figure 7b, instead of apparently
converging with the increase of fitting Gaussians, the EM curves show a linear increase in log
space. We conclude this is caused by the sparsity of the large portion of foliage, where laser hits
are randomly scattered. The EM and NDT show their strength in modeling point cloud into higher
fidelity. Nonetheless, the final mixture of our approach gives a comparable fidelity to the EM with
300 components.

100 101 102 103 104

Memory Size (KB)

40

45

50

55

60

65

P
SN

R

EM
HGMM
Proposed
GMM-Tree
NDT

(a)

100 101 102 103 104

Memory Size (KB)

40

45

50

55

60

65

P
SN

R

EM
HGMM
Proposed
GMM-Tree
NDT

(b)

Figure 7. Peak Signal to Noise Ratio (PSNR) of the scenes selected from the Lidar datasets. (a) Street;
(b) Campus.

Sensors 2020, 20, 3272 14 of 18

5.2.2. Efficiency

The performance of different approaches in terms of fitting time, fidelity, and memory footprint
are illustrated in Figure 8. We set the NDT’s grid size to 1.5m. Other parameters are consistent with
the RGB-D datasets.

(a) (b)

Figure 8. The mean value of fitting time, fidelity, and memory footprint of Lidar datasets using different
approaches. (a) Street; (b) Campus.

The results are consistent with the RGB-D datasets. In terms of timing, our approach gives
an average of 15 times acceleration compared to the EM benefit from the partition, and three times
acceleration compared to the GMM-Tree from adaptivity. The GMM-Tree achieves a better PSNR
for a sufficient number of fitting Gaussians, while our approach finds a balance between time cost,
memory efficiency, and modeling fidelity. With respect to the NDT, our approach is superior in fidelity
and memory.

6. Discussion

Section 5 gives comparisons of our approach against other state-of-the-art approaches. In this
section, we will discuss the real performance of our approach in the applications of robotics.
The proposed approach can be leveraged to facilitate robots in several ways. Intuitively, as a parametric
distribution, the GMM can resample an arbitrary amount of points. Then a grid map can be generated
using these points. The created grid map can be further utilized in navigation. To assess the grid map
constructed by the resampled points, we take the map created by raw point cloud as ground truth,
then query the status of the two maps with a set of uniformly distributed points. The results of the
True Negative Rate (TNR) and False Positive Rate (FPR) are shown in Table 2. The grid maps created
by our approach show high resemblance compared to the original point clouds’, where for most of the
cases, the overall positive rates are over 98%. The True Negative Rates, which are hazardous when
enabling navigation, only account for a very small percentage of the error rates.

Table 2. The True Negative Rate (TNR) and False Positive Rate (FPR) of different datasets with respect
to different grid sizes.

Grid Size 0.3 m 0.2 m 0.1 m

TNR FPR TNR FPR TNR FPR

Corner 0.44% 1.33% 0.27% 1.37% 0.24% 0.99%
Office 0.29% 0.86% 0.15% 1.44% 0.24% 1.19%
Street 0.70% 1.34% 0.46% 0.78% 0.13% 0.19%

Campus 1.20% 3.79% 1.01% 2.50% 0.52% 0.84%

Sensors 2020, 20, 3272 15 of 18

Another application of our approach is robot localization through registration. Given a point
cloud Z and a GMM representation G, the rigid transformation T can be obtained by maximizing
the data probability using Equation (12), where the transform T can be iteratively solved using the
Expectation-Maximization method [21].

T̂ = argmax
T

p (T (Z) |G) (12)

For the scenes shown in Figures 3a and 6a, we first fit them with GMM representations. Then the
raw point clouds are rotated and translated along all their degree of freedom. We conduct registrations
using the transformed point clouds with respect to their GMM representation. The errors are shown
in Figure 9. The figures show that the GMMs short of components lead to higher errors. And the
influence of the number of components on Lidar datasets is more than RGB-D datasets. However,
we found that if a great amount of GMM components were used, the cost function would oscillate
when iteratively maximizing. Thus the registration will take many more steps (therefore more time) to
converge, and it is easier to fall into local minima. Thereafter, a proper number of fitting components
is desired. Our approach presents its strength in the adaptive fitting.

EM-100
EM-200

Proposed
0

0.5

1

1.5

2

R
ot

at
io

n
E

rr
or

(o
)

10-3

EM-100
EM-200

Proposed
0

1

2

3

4

5

T
ra

ns
la

ti
on

 E
rr

or
(m

)

10-5

(a)

EM-100
EM-200

Proposed
0

2

4

6

8

R
ot

at
io

n
E

rr
or

(o
)

10-3

EM-100
EM-200

Proposed
0

0.5

1

1.5

2

2.5

3

T
ra

ns
la

ti
on

 E
rr

or
(m

)

10-4

(b)

EM-100
EM-200

Proposed
0

0.5

1

1.5

2

2.5

R
ot

at
io

n
E

rr
or

(o
)

10-3

EM-100
EM-200

Proposed
0

0.5

1

1.5

2

2.5

3

T
ra

ns
la

ti
on

 E
rr

or
(m

)

10-4

(c)

EM-100
EM-200

Proposed
0

0.05

0.1

0.15

0.2

0.25

R
ot

at
io

n
E

rr
or

(o
)

EM-100
EM-200

Proposed
0

0.005

0.01

0.015

0.02

0.025

T
ra

ns
la

ti
on

 E
rr

or
(m

)

(d)

Figure 9. The rotation errors and translation errors of the GMM registrations.EM-100 and EM-200 are
the EM-trained GMM using 100 and 200 components, respectively. (a) Corner; (b) Office; (c) Street;
(d) Campus.

7. Conclusions

In this paper, a 3D point cloud representation based on the Gaussian mixture model is proposed.
By replacing a large EM problem with multiple smaller ones, the proposed hierarchical structure
significantly accelerates training speed. The mutual information and shape of the probabilistic
distributions are introduced to determine if a local environment is well represented, leading to full
adaptivity in allocating weighted Gaussians. The evaluations demonstrate that our approach can
effectively model the point cloud and be applied in robotic with high efficiency.

Author Contributions: The authors contributed to the article as follows: Conceptualization, M.C. and L.M.;
Data curation, L.M.; Funding acquisition, J.W.; Methodology, M.C.; Project administration, J.W.; Software, M.C.;
Visualization, M.C.; Writing—original draft, M.C.; Writing—review & editing, L.M. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was supported by Defense Industrial Technology Development Program
(JCKY2019602C015). Funded in part by the China Scholarship Council.

Sensors 2020, 20, 3272 16 of 18

Acknowledgments: We thank the funding by the China Scholarship Council for visiting Carnegie Mellon
University. We also appreciate the editor and all anonymous reviewers for their constructive suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Elfes, A. Using Occupancy Grids for Mobile Robot Perception and Navigation. Computer 1989. [CrossRef]
2. Ryde, J.; Hu, H. 3D mapping with multi-resolution occupied voxel lists. Auton. Robot. 2010. [CrossRef]
3. Li, Y.; Ruichek, Y. Occupancy grid mapping in urban environments from a moving on-board stereo-vision

system. Sensors 2014, 14, 10454–10478. [CrossRef] [PubMed]
4. Hornung, A.; Wurm, K.M.; Bennewitz, M.; Stachniss, C.; Burgard, W. OctoMap: An efficient probabilistic 3D

mapping framework based on octrees. Auton. Robot. 2013. [CrossRef]
5. Biber, P.; Strasser, W. The normal distributions transform: A new approach to laser scan matching.

In Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003)
(Cat. No.03CH37453), Las Vegas, NV, USA, 27–31 October 2003. [CrossRef]

6. Magnusson, M. The Three-Dimensional Normal-Distributions Transform: An Efficient Representation for
Registration, Surface Analysis, and Loop Detection. Ph.D. Thesis, Örebro Universitet, Örebro, Sweden,
December 2009.

7. Maltezos, E.; Doulamis, A.; Doulamis, N.; Ioannidis, C. Building extraction from LiDAR data applying deep
convolutional neural networks. IEEE Geosci. Remote Sens. Lett. 2018, 16, 155–159. [CrossRef]

8. Kehl, W.; Milletari, F.; Tombari, F.; Ilic, S.; Navab, N. Deep learning of local RGB-D patches for 3D object
detection and 6D pose estimation. In European Conference on Computer Vision; Springer: Amsterdam,
The Netherlands, 2016; pp. 205–220.

9. Eitel, A.; Springenberg, J.T.; Spinello, L.; Riedmiller, M.; Burgard, W. Multimodal deep learning for robust
RGB-D object recognition. In Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Hamburg, Germany, 28 September–2 October 2015; pp. 681–687.

10. Wang, C.; Wang, T.; Wang, E.; Sun, E.; Luo, Z. Flying Small Target Detection for Anti-UAV Based on a
Gaussian Mixture Model in a Compressive Sensing Domain. Sensors 2019, 19, 2168. [CrossRef]

11. Merisaari, H.; Parkkola, R.; Alhoniemi, E.; Teräs, M.; Lehtonen, L.; Haataja, L.; Lapinleimu, H.;
Nevalainen, O.S. Gaussian mixture model-based segmentation of MR images taken from premature
infant brains. J. Neurosci. Methods 2009, 182, 110–122. [CrossRef]

12. Ban, Z.; Chen, Z.; Liu, J. Supervoxel segmentation with voxel-related Gaussian mixture model. Sensors 2018,
18, 128. [CrossRef]

13. Yang, C.H.; Chang, C.C.; Liang, D. A novel GMM-based behavioral modeling approach for smartwatch-based
driver authentication. Sensors 2018, 18, 1007. [CrossRef]

14. Kim, N.K.; Jeon, K.M.; Kim, H.K. Convolutional Recurrent Neural Network-Based Event Detection in
Tunnels Using Multiple Microphones. Sensors 2019, 19, 2695. [CrossRef]

15. Srivastava, S.; Michael, N. Approximate continuous belief distributions for precise autonomous inspection.
In Proceedings of the SSRR 2016—International Symposium on Safety, Security and Rescue Robotics,
Lausanne, Switzerland, 23–27 October 2016; pp. 74–80. [CrossRef]

16. Eckart, B.; Kim, K.; Troccoli, A.; Kelly, A.; Kautz, J. Accelerated Generative Models for 3D Point Cloud Data.
In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas,
NV, USA, 27–30 June 2016; pp. 5497–5505. [CrossRef]

17. Zhu, H.; Zou, K.; Li, Y.; Cen, M.; Mihaylova, L. Robust Non-Rigid Feature Matching for Image Registration
Using Geometry Preserving. Sensors 2019, 19, 2729. [CrossRef] [PubMed]

18. Jian, B.; Vemuri, B.C. Robust Point Set Registration Using Gaussian Mixture Models. IEEE Trans. Pattern
Anal. Mach. Intell. 2011, 33, 1633–1645. [CrossRef] [PubMed]

19. Segal, A.; Haehnel, D.; Thrun, S. Generalized-ICP. Robot. Sci. Syst. 2009, 2, 435. [CrossRef]
20. Tabib, W.; Omeadhra, C.; Michael, N. On-Manifold GMM Registration. IEEE Robot. Autom. Lett. 2018, 3,

3805–3812. [CrossRef]
21. Eckart, B.; Kim, K.; Kautz, J. HGMR: Hierarchical Gaussian Mixtures for Adaptive 3D Registration. Eur. Conf.

Comput.Vis. (ECCV) 2018, 705–721. [CrossRef]

http://dx.doi.org/10.1109/2.30720
http://dx.doi.org/10.1007/s10514-009-9158-3
http://dx.doi.org/10.3390/s140610454
http://www.ncbi.nlm.nih.gov/pubmed/24932866
http://dx.doi.org/10.1007/s10514-012-9321-0
http://dx.doi.org/10.1109/iros.2003.1249285
http://dx.doi.org/10.1109/LGRS.2018.2867736
http://dx.doi.org/10.3390/s19092168
http://dx.doi.org/10.1016/j.jneumeth.2009.05.026
http://dx.doi.org/10.3390/s18010128
http://dx.doi.org/10.3390/s18041007
http://dx.doi.org/10.3390/s19122695
http://dx.doi.org/10.1109/SSRR.2016.7784280
http://dx.doi.org/10.1109/CVPR.2016.593
http://dx.doi.org/10.3390/s19122729
http://www.ncbi.nlm.nih.gov/pubmed/31216649
http://dx.doi.org/10.1109/TPAMI.2010.223
http://www.ncbi.nlm.nih.gov/pubmed/21173443
http://dx.doi.org/10.15607/RSS.2009.V.021
http://dx.doi.org/10.1109/LRA.2018.2856279
http://dx.doi.org/10.1007/978-3-030-01267-0_43

Sensors 2020, 20, 3272 17 of 18

22. Eckart, B.; Kim, K.; Troccoli, A.; Kelly, A.; Kautz, J. MLMD: Maximum Likelihood Mixture Decoupling for
Fast and Accurate Point Cloud Registration. In Proceedings of the 2015 International Conference on 3D
Vision, Lyon, France, 19–22 October 2015; pp. 241–249. [CrossRef]

23. Omeadhra, C. Generative Point Cloud Modeling with Gaussian Mixture Models for Multi-Robot Exploration.
Ph.D. Thesis, Carnegie Mellon University, Pittsburgh, PA, USA, August 2018.

24. O’Meadhra, C.; Tabib, W.; Michael, N. Variable Resolution Occupancy Mapping using Gaussian Mixture
Models. Handb. Mach. Learn. 2018, 245–261. [CrossRef]

25. Corah, M.; O’Meadhra, C.; Goel, K.; Michael, N. Communication-efficient planning and mapping for
multi-robot exploration in large environments. IEEE Robot. Autom. Lett. 2019, 4, 1715–1721. [CrossRef]

26. Dhawale, A.; Shankar, K.S.; Michael, N. Fast Monte-Carlo Localization on Aerial Vehicles using Approximate
Continuous Belief Representations. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 5851–5859. [CrossRef]

27. Goldberger, J.; Roweis, S. Hierarchical clustering of a mixture model. In Proceedings of the NIPS
2005—Advances in Neural Information Processing Systems 18, Vancouver, BC, Canada, 5–8 December 2005.

28. Garcia, V.; Nielsen, F.; Nock, R. Levels of details for Gaussian mixture models. In Lecture Notes in Computer
Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer:
Berlin/Heidelberg, Germany, 2010; pp. 514–525. [CrossRef]

29. Goldberger, J.; Gordon, S.; Greenspan, H. An efficient image similarity measure based on approximations of
KL-divergence between two gaussian mixtures. In Proceedings of the Ninth IEEE International Conference
on Computer Vision, Nice, France, 13–16 October 2003; pp. 487–493. [CrossRef]

30. Hershey, J.R.; Olsen, P.A. Approximating the Kullback Leibler divergence between Gaussian mixture models.
In Proceedings of the ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing,
Honolulu, HI, USA, 15–20 April 2007. [CrossRef]

31. Durrieu, J.L.; Thiran, J.P.; Kelly, F. Lower and upper bounds for approximation of the Kullback-Leibler
divergence between Gaussian mixture models. In Proceedings of the ICASSP, IEEE International Conference
on Acoustics, Speech and Signal Processing, Kyoto, Japan, 25–30 March 2012. [CrossRef]

32. Jenssen, R.; Erdogmus, D.; Hild, K.E.; Principe, J.C.; Eltoft, T. Optimizing the Cauchy-Schwarz PDF distance
for information theoretic, non-parametric clustering. In Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Berlin/Heidelberg, Germany,
2005; pp. 34–45. [CrossRef]

33. Kampa, K.; Hasanbelliu, E.; Principe, J.C. Closed-form cauchy-schwarz PDF divergence for mixture of
Gaussians. In Proceedings of the Proceedings of the International Joint Conference on Neural Networks,
San Jose, CA, USA, 31 July–5 August 2011; Volume 2, pp. 2578–2585. [CrossRef]

34. Wang, F.; Syeda-Mahmood, T.; Vemuri, B.C.; Beymer, D.; Rangarajan, A. Closed-Form Jensen-Renyi
Divergence for Mixture of Gaussians and Applications to Group-Wise Shape Registration. Med. Image
Comput. Comput. Assist. Interv. 2009, 12, 648–655.

35. Ben Hamza, A.; Krim, H. Jensen-renyi divergence measure: theoretical and computational perspectives.
In Proceedings of the IEEE International Symposium on Information Theory, Yokohama, Japan,
29 June–4 July 2003. [CrossRef]

36. Ma, J.; Qiu, W.; Zhao, J.; Ma, Y.; Yuille, A.L.; Tu, Z. Robust L2E estimation of transformation for non-rigid
registration. IEEE Trans. Signal Process. 2015, 63, 1115–1129. [CrossRef]

37. Dempster, A.P.; Laird, N.M.; Rubin, D.B. Maximum likelihood from incomplete data via the EM algorithm.
J. R. Stat. Soc. Ser. B (Methodol.) 1977, 39, 1–22.

38. Beard, M.; Vo, B.T.; Vo, B.N.; Arulampalam, S. Void Probabilities and Cauchy-Schwarz Divergence for
Generalized Labeled Multi-Bernoulli Models. IEEE Trans. Signal Process. 2017. [CrossRef]

39. Chirikjian, G.S. Information theory on lie groups and mobile robotics applications. In Proceedings of the
IEEE International Conference on Robotics and Automation, Anchorage, AK, USA, 3–7 May 2010. [CrossRef]

40. Charrow, B.; Kahn, G.; Patil, S.; Liu, S.; Goldberg, K.; Abbeel, P.; Michael, N.; Kumar, V.
Information-Theoretic Planning with Trajectory Optimization for Dense 3D Mapping. Robot. Sci. Syst.
2015, 11. [CrossRef]

41. Sturm, J.; Engelhard, N.; Endres, F.; Burgard, W.; Cremers, D. A benchmark for the evaluation of RGB-D
SLAM systems. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems,
Vilamoura, Portugal, 7–12 October 2012. [CrossRef]

http://dx.doi.org/10.1109/3DV.2015.34
http://dx.doi.org/10.1109/LRA.2018.2889348
http://dx.doi.org/10.1109/LRA.2019.2897368
http://dx.doi.org/10.1109/CVPR.2018.00613
http://dx.doi.org/10.1007/978-3-642-12304-7_48
http://dx.doi.org/10.1109/iccv.2003.1238387
http://dx.doi.org/10.1109/ICASSP.2007.366913
http://dx.doi.org/10.1109/ICASSP.2012.6289001
http://dx.doi.org/10.1007/11585978_3
http://dx.doi.org/10.1109/IJCNN.2011.6033555
http://dx.doi.org/10.1109/isit.2003.1228271
http://dx.doi.org/10.1109/TSP.2014.2388434
http://dx.doi.org/10.1109/TSP.2017.2723355
http://dx.doi.org/10.1109/ROBOT.2010.5509791
http://dx.doi.org/10.15607/rss.2015.xi.003
http://dx.doi.org/10.1109/IROS.2012.6385773

Sensors 2020, 20, 3272 18 of 18

42. Carlevaris-Bianco, N.; Ushani, A.K.; Eustice, R.M. University of Michigan North Campus long-term vision
and lidar dataset. Int. J. Robot. Res. 2016, 35, 1023–1035. [CrossRef]

43. Geiger, A.; Lenz, P.; Stiller, C.; Urtasun, R. Vision meets Robotics: The KITTI Dataset. Int. J. Robot. Res. (IJRR)
2013, 32, 1231–1237. [CrossRef]

44. Bishop, C.M. Pattern Recognition and Machine Learning; Springer: New York, NY, USA, 2007; pp. 325–358.
[CrossRef]

45. Srivastava, S. Efficient, Multi-Fidelity Perceptual Representations via Hierarchical Gaussian Mixture Models.
IEEE Trans. Rob. 2019, 35, 248–260. [CrossRef]

46. Tian, D.; Ochimizu, H.; Feng, C.; Cohen, R.; Vetro, A. Geometric distortion metrics for point cloud
compression. In Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP), Beijing,
China, 17–20 September 2017; pp. 3460–3464.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1177/0278364915614638
http://dx.doi.org/10.1177/0278364913491297
http://dx.doi.org/10.1117/1.2819119
http://dx.doi.org/10.1109/TRO.2018.2878363
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Gaussian Mixture Model Representation
	Gaussian Mixture Model
	Sparsity of Responsibility Matrix

	Method
	Hierarchy
	Partition
	Stop Conditions
	Distribution Shape
	Information Metric

	Implementation
	M-Step Vectorization
	Implementation

	Evaluation
	RGB-D Dataset
	Fidelity
	Efficiency

	Lidar Dataset
	Fidelity
	Efficiency

	Discussion
	Conclusions
	References

