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Applying deep learning to single-trial EEG data
provides evidence for complementary theories
on action control
Amirali Vahid1, Moritz Mückschel1, Sebastian Stober 2, Ann-Kathrin Stock1 & Christian Beste1✉

Efficient action control is indispensable for goal-directed behaviour. Different theories have

stressed the importance of either attention or response selection sub-processes for action

control. Yet, it is unclear to what extent these processes can be identified in the dynamics of

neurophysiological (EEG) processes at the single-trial level and be used to predict the pre-

sence of conflicts in a given moment. Applying deep learning, which was blind to cognitive

theory, on single-trial EEG data allowed to predict the presence of conflict in ~95% of subjects

~33% above chance level. Neurophysiological features related to attentional and motor

response selection processes in the occipital cortex and the superior frontal gyrus con-

tributed most to prediction accuracy. Importantly, deep learning was able to identify pre-

dictive neurophysiological processes in single-trial neural dynamics. Hence, mathematical

(artificial intelligence) approaches may be used to foster the validation and development of

links between cognitive theory and neurophysiology of human behavior.
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The ability to monitor conflicts is an essential aspect of goal-
directed behavior and action control as it allows us to select
appropriate reactions in a highly complex and ever-

changing world. Without this cognitive faculty, we would find
ourselves to be strongly driven by sensory inputs from the
external world, unable to resist distraction or deal with ambig-
uous/contradictory information. Given this high relevance, sev-
eral major theoretical frameworks have been setup to explain
these and related processes of action control1–4.

Experimentally, (response selection) conflicts that require
action control are often examined using paradigms like the
Flanker or Simon task5. In these paradigms, people carry out a
choice task on stimuli that have a task-relevant stimulus feature
determining the required response and (at least one) irrelevant
stimulus (feature). The latter can facilitate the selection of the
correct response by activating the same response as the relevant
stimulus feature (non-conflict trial), but it can also diminish the
ability to select the correct response by eliciting a response ten-
dency other than the correct response (conflict trial)5. The gen-
eral finding in this context is a “conflict effect” that is indicated by
slower and/or more error-prone responses in conflicting trials, as
compared to non-conflicting trials6. In the Simon task, stimulus-
response conflicts requiring action control occur due to the
incongruent lateralization of the stimulus and the responding
hand5,7–9. Considering the cognitive processes involved, there
are (at least) two major streams of research on how this conflict
comes about10: One stream refer to the role of attention
and spatial coding processes, the other focuses on mechanisms
related to intentional response selection processes. The reason
is that the type of conflict being measured in Simon tasks is a so-
called stimulus-response (S–R) conflict5,10. Thus, both stimulus-
related (attentional) and response-related processes seem to
play a role.

In the last two decades, a lot of neuroscientific research using
fMRI, EEG, and computational methods has been carried out in
order to identify and elucidate the neural correlates of conflict
monitoring processes during action control11–14. Considering
EEG data, S–R conflicts are associated with modulations in the
time window of the N2 ERP component at frontal and fronto-
central electrode sites12,15–26. Similarly, processes of motor acti-
vation, like lateralized readiness potentials, are modulated27,28.
Also, attentional selection processes and neurophysiological cor-
relates of attention (like the N1)29 and spatial attention (N2pc)
have been shown to be modulated in the Simon task27,30. This
seems reasonable given the importance of attentional (orienting)
processes in the Simon task, which requires the integration of
distinct and spatial stimulus position (codes)10.

Yet, only very few studies have also reported linear relation-
ships between the amplitude of the above-mentioned neuro-
physiological correlates and task performance13. The inter-
relation between behavior and associated neurophysiological
dynamics is hardly strictly linear, albeit most analysis approaches
in cognitive neuroscience rely on the assumption of linearity
when applying (correlational) approaches to connect behavioral
data and neurophysiological data. Generally, there is rarely a
one-to-one relationship between EEG-derived neural signals and
behavior31, although this is often suggested, or at least implied.
Furthermore, the neurophysiologic data used for the formation
of ERPs is inherently noisy. Therefore, it is substantially harder
to establish such functional connections at the single-subject
level or the single-trial level31–33. This problem severely limits
the degree and level at which neural signatures may be func-
tionally related to human behavior31, or indicate cognitive pro-
cesses involved in a specific situation (e.g., conflict processing).
These shortcomings may be tackled with machine learning
methods31. There are already first encouraging approaches, as

more conventional machine learning approaches like support
vector machines (SVMs) have been successfully applied in
comparable contexts34–38. Still, one major shortcoming of these
conventional SVM approaches is that even though the included
“features” (i.e., EEG signatures) may be selected by algorithms39,
SVMs can only handle a small number of features at a given
time/analysis40. As only some aspects or timepoints of the EEG
data can therefore be considered in feature extraction via SVM,
these approaches cannot appropriately account for the time
information/dimension of the neurophysiologic data. Yet, this is
particularly critical with EEG data, where timing properties of
neurophysiological processes are important to consider. This
means that possibly predictive/behaviorally relevant aspects of
neural processes may still remain unnoticed in SVM approaches.
In contrast to this, deep learning allows computational models to
learn representations of data with multiple levels of abstrac-
tion41, thus truly using all of the information that the dataset has
to offer40,42. This is a major advantage over more conventional
machine learning approaches. So far, only a small number of
studies have used deep learning for the classification of EEG
data43–46. Likewise, to our knowledge, there is no study applying
deep learning methods in a cognitive control context to examine
the usefulness of single-trial EEG data for the prediction of the
trial type (i.e., conflicting and non-conflicting trials in an
experiment) and associated differences in cognitive processes. It
is, to our knowledge, the first EEG study using deep learning to
characterize the processes underlying action control in conflict
tasks on a single-trial level and shows how this data-driven deep-
learning approach can be used for hypothesis generation, con-
firmation of current theory, and for practical applications
demanding high accuracy.

Importantly, we do so in a theoretically meaningful manner by
integrating a “saliency map” approach46,47. This is necessary
from a cognitive perspective, because it is crucial to know which
aspects of the neurophysiological data contribute most to clas-
sification performance. To learn which EEG input features
(timepoints/channels) have the highest impact on the classifi-
cation decision, we employed a “saliency map” approach46,47.
Using this approach, it is possible to delineate which timepoints
and electrode sites in the EEG contribute most to classification
accuracy; i.e., the correct identification/classification of trial type
(the combination of trial conflicts and the responding hand) on
the basis of EEG data. This is an important aspect considering
the ultimate goal of informing cognitive neuroscience theory by
using deep learning methods. Given that cognitive sub-processes
are reflected in specific EEG data time windows, it is reasonable
to hypothesize that a purely data-driven approach such as deep
learning should identify (but not necessarily be limited to) EEG
features that correspond to ERP correlates. This will have major
consequences: If a purely mathematical procedure (i.e., deep
learning), which runs without any strong assumptions (e.g.,
without being informed about relevant EEG features reported in
literature and cognitive theories), identifies aspects in neuro-
physiological signals that are considered relevant in the context
of psychological theory formation, this will demonstrate that
data-driven artificial intelligence methods can strongly con-
tribute to the validation and further development of cognitive
concepts. This will considerably contribute to how deep learning
methods are seen in cognitive neuroscience. Moreover, if such
classifications are possible using single-trial EEG data, this will
represent an important step towards going beyond conventional
ERP components and to functionally relate EEG features to
behavioural performance. Most noteworthy, this would be done
at the time scale of single trials, i.e., the neurophysiological
processes that are directly associated with a given single
response31.
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Results
The EEG was recorded during a Simon Task (see methods section
for details), which was previously used to examine conflict
monitoring processes during action control28,48–50. In each trial,
the target stimulus (capital letter A or B) was presented for 200
ms in one of two white frame boxes place on the left or right of
centrally presented fixation cross. In the other white frame box, a
noise stimulus (three horizontal white bars) were presented
simultaneously. The left key had to be pressed when the letter “A”
was presented, the right key had to be pressed whenever the letter
“B” was presented. Trials in which the target stimulus and the
location of the stimulus matched (i.e., when A was presented in
the left and B in right white frame box) were non-conflicting
trials. The other target identity and location combination repre-
sented conflicting trials. Thus, there were four classes of trials: (i)
left hand non-conflict trials, (ii) left hand conflict trials, (iii) right
hand non-conflict trials, and (iv) right hand conflict trials.

Behavioral data. We conducted separate repeated measures
ANOVAs of the error rates (i.e., incorrect button press) and
correct RT data using the within-subject factors “hand” (left vs.
right) and “conflict” (conflicting vs. non-conflicting). Descriptive
data are provided as mean ± SEM. For error rates, we found a
main effect of hands (F(1,185)= 5.07; p= .025, η2p = .027; left
hand= 6.18 % ± 0.3; right hand= 6.79 % ± 0.4), the Simon effect,
as indicated by a main effect of conflict (F(1,185)= 218.61;
p < .001, η2p = .542; conflict= 9.6 % ± 0.5; non-conflict= 3.4 % ±
0.3), and an interaction of hand × conflict (F(1,185)= 41.79;
p < .001, η2p = .184). Post hoc t-tests revealed that there were
significant Simon/congruency effects (i.e., less errors in congruent
than in incongruent trials) for both hands (all t ≥ 10.80; all
p < .001). Yet, the Simon effect (i.e., the difference between non-
conflicting and conflicting trials) was significantly larger (i.e.,
more negative) for right hand responses (7.6 % ± 0.5) than for left
hand responses (4.7% ± 0.5) (t(185)= 6.46; p < .001). Lastly, there
was a dissociation effect of responding hand, which differed
between the two task conditions: In congruent trials, participants
showed significantly less errors with the right hand (3.0 % ± 0.3),
than with the left hand (3.8 % ± 0.3) (t(185)= 3.80; p < .001). In
incongruent trials, we found the opposite, namely significantly

more errors with the right hand (10.6 % ± 0.6), than with the left
hand (8.6% ± 0.5) (t(185)=−4.59; p < .001).

For correct RTs, we ran a comparable ANOVA and found a
main effect of hands (F(1,185)= 15.83; p < .001, η2p = .079; left
hand= 414ms ± 3; right hand= 409ms ± 3), the Simon effect, as
indicated by a main effect of conflict (F(1,185)= 776.45; p < .001,
η2p = .808; conflict= 430ms ± 3; non-conflict= 393ms ± 3),
and an interaction of hand x conflict (F(1,185)= 11.86; p= .001,
η2p = .060). Post hoc t-tests revealed that there were significant
Simon/congruency effects (i.e., better performance in congruent
than in incongruent trials) for both hands (all t ≥ 20.657; all
p < .001). Yet, the Simon effect (i.e., the difference between non-
conflicting and conflicting trials) was significantly larger for right
hand responses (41ms ± 2) than for left hand responses (34ms ±
2) (t(185)= 3.44; p= .001). Lastly, there was a dissociation effect
of responding hand, which differed between the two task
conditions: In congruent trials, participants showed significantly
better performance with the right hand (388ms ± 3), than with the
left hand (397ms ± 3) (t(185)= 5.18; p < .001). In incongruent
trials, we found no such difference (t(185)= 0.92; p= .359).

Deep learning predicts the presence of conflicts using EEG
data. Since the behavioral data revealed that the responding hand
also modulated behavioral performance, this factor was also con-
sidered in the deep learning step. Therefore, the main study
question was based on a 4-class problem: We used single-trial EEG
data from (i) left hand non-conflict trials, (ii) left hand conflict
trials, (iii) right hand non-conflict trials, and (iv) right hand conflict
trials to train the deep learning architecture (EEGNet51) on a
training dataset. The trained model was then applied to the test/
validation dataset in order to see how well it could correctly identify
the four different conditions. That is, for evaluating the classifica-
tion performance, we use the “leave one out subject” (LOOS)-
approach52 (see methods section for details). We examined both of
(4,2) and (8,2) options for the number of temporal and spatial
filters in EEGNet and the averaged classification accuracy among
subjects are 56% and 60%, respectively. Since the accuracy for (8,2)
is higher than (4,2), in the rest of the result section, we only focus
on the model based on (8,2). In Fig. 1, the classification accuracy
for this 4-class problem is shown for each individual subject.

Fig. 1 Classification accuracy for this 4-class problem is shown for each individual subject. On the x-axis the individual subjects are shown. The y-axis
denotes the classification accuracy for the 4-class problem in each individual. The dotted lines denotes the chance level calculated for the individual
participant using the method by Combrisson and Jerbi53.
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In an infinitely sized dataset, the chance level of such a 4-class
problem would be at 25% classification accuracy. As the number
of samples was of course finite in our dataset, the number of
correct trials varied slightly between conditions and subjects. As a
consequence, the chance level also slightly varies between
subjects53. The subject-wise chance level was determined using
the method by Combrisson and Jerbi53 and is also shown in
Fig. 1. The mean single-subject chance level was 28.88% (SD=
0.02). As explained in the methods section, we calculated a
threshold that indicates classification accuracies well above
chance level by assuming that classification error obeys a
binomial cumulative distribution46. Combrisson and Jerbi53 have
shown that this method shows no difference to permutation
testings when sample sizes are N > 100. Since this was the case in
the current study, we refrained from permutation testing46, which
would have required re-estimating the EEGNet model 1000 times.
Figure 1 shows that the EEGNet prediction of the trial class was
above chance level in N= 175 subjects (i.e., 95.59% of subjects).
The average accuracy of trial class prediction on the basis of the
single-trial EEG data in these N= 175 subjects was 60.1% (SD=
12.9), and thus 33.36% (SD= 9.22) higher than the individual
chance levels (t(174)= 48.24; p= 1.21e−102). It was further
shown that the number of trials available for deep learning
increased the classification accuracy (r= .165; p= .014), but this
effect was small and only explained 2% of the variance in
classification accuracy (R2= .02). The confusion matrix for the 4-
class problem is shown in Fig. 2. Rows show the real (“true”)
label, the columns show the label, which was predicted on the
basis of the single-trial EEG data.

As can be seen in the confusion matrix (Fig. 2), the average
prediction accuracy of the EEGNet was ~60% (see diagonal from

top left to bottom right in the confusion matrix). It was hence not
only above chance level, but also substantially larger than the
percentage of incorrect predictions. For example, right hand
conflict trials were only incorrectly classified as left hand conflict
trials in 7% of cases. Opposed to this, right hand conflict trials
were correctly classified as such in 63% of the cases. Generally, the
confusion matrix shows that the taken deep learning approach is
well able to classify trial class (experimental condition) on the
basis of the single-trial EEG data. Figure 3 shows the training and
validation loss versus epochs (i.e., duration of training) for two
subjects—one with high accuracy (i.e., 80%) and one with low
accuracy (20%). In all of the test subjects, the lowest cross-
entropy loss in the validation set happens before the last epoch
(500) and after ~100 epoch. As shown in Figure 3, the validation
loss is very noisy and it has a decreasing trend roughly until
epoch 20, but after that, it oscillates. To avoid overfitting we saved
the model at the epoch with lowest cross-entropy loss in the
validation set, as suggested in the original work introducing
EEGNet.

To examine whether the chosen deep learning approach does
indeed reveal the ‘best’ solution to the problem and to check
whether more simple machine learning approaches (e.g., support
vector machines, SVMs) are able to perform at a similar level, we
re-run the entire classification procedure using an SVM approach
(please refer to the methods section for details). The classification
accuracy for the SVM approach was 32%, which is very lower
than classification based on EEGNet approach.

Attention and response selection processes are predictive.
Figure 4 presents separate visualization (“saliency”) maps for each
of the four classes. As can be seen in Fig. 4, parietal-occipital
electrodes (PO9 and PO10) strongly contributed to classification
accuracy in the time window from 190 ms to 250 ms. Impor-
tantly, this was the case for all four classes of trials. The event-
related potential (ERP) plots showing activity at electrodes PO9
and PO10 are given in Fig. 4. As can be seen in Fig. 4, the
identified time window overlaps with the N1 ERP component,
which is known to reflect attentional selection processes29,33. The
sLORETA analysis in this time window shows that in all four
experimental conditions, areas in the occipital cortex, especially
the cuneus (BA17 and BA18), were activated.

However, Fig. 4 also shows that activity at electrodes F8 and FC1
was highly relevant for classification accuracy, especially in the time
window between 300 and 400ms after target stimulus presentation.
This combination of topography and timing may be attributed two
ERPs that are traditionally associated with performance and
conflict monitoring in the Simon task: One of them is the N2,
which has frequently been reported to be relevant during S–R
conflicts measured in the Simon task12,15,17–20,22–24,26,54. The
other is the lateralized readiness potential (LRP), which reflects

Fig. 2 Confusion matrix showing the classification results for the
different conditions. Colour shadings and numbers in the matrix denote
the frequency at which the real data (“true”) label was classified into one of
the four possible predicted classes.

Fig. 3 Training and validation loss for two subjects. One with high accuracy (80%) and one with low accuracy (20%).
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lateralized, motor response-related activations of the lateral vs.
contralateral motor cortex, SMA, and adjacent brain areas in
unilateral responses27. The sLORETA analysis in this time window
shows that in all four experimental conditions, areas in the superior
frontal gyrus (BA6) and medial frontal gyrus (BA24) were
activated aside visual cortical regions (BA17 and BA18).

Discussion
In this study, we tested whether deep learning, which is a purely
mathematical procedure, can identify neurophysiological corre-
lates of cognitive processes that are commonly considered rele-
vant in the context of psychological theory formation on action
control, especially in the context of conflicts. Moreover, if such
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classifications are possible using single-trial EEG data, this will
represent an important step towards going beyond conventional
ERP components and to functionally relate EEG features to
behavioral performance. Most noteworthy, this would be done at
the time scale of single trials, i.e., the neurophysiological processes
that are directly associated with a given single response31.

The results show that deep learning allows to classify different
classes of trials in an action control task on a single-subject and,
even more importantly, on a single-trial level. This was possible in
more than 95% of the included participants and classification
accuracy was ~33% above chance level. In the remaining 5% of
subjects, no classification of trials above chance level was possible.
We used a saliency map approach to determine which EEG
features contributed most to this high classification accuracy. This
showed that activity at posterior electrodes in the N1 ERP time
window strongly contributed to classification accuracy. Source
localization further showed that this was associated with activa-
tion differences in the cuneus (BA17, BA18). Of note, these areas
have been associated with attentional selection processes reflected
by the N129,55. N1-related processes have been shown to be of
special functional importance in the Simon task30. It has been
proposed that these attentional processes are relevant because the
performance in the Simon task requires different stimuli signaling
for distinct responses to be integrated with the spatial position
(location) of these stimuli10. To form such spatial codes, it has
been suggested that attention needs to be moved to the target’s
location56. Indeed, it has been shown that when there is no shift
of attention, there is also no Simon effect56. The finding that the
applied deep learning method detects these processes, shows that
attentional processes are key to the understanding of condition-
induced differences in cognitive sub-processes occurring during
the Simon task. However, it should be noted that the current
experimental setup is not able to dissociate between spatial coding
approaches and attention-shifting approaches, because the design
of the experiment included bilateral presentation of visual stimuli.
The key difference between spatial coding approaches and
attention-shifting approaches is that only the latter assumes that
it is not the location of the stimulus that matters for coding but
the direction into which attention is shifted before processing that
stimulus. Only with unilateral presentation of visual stimuli, one
can test these two approaches against each other. With respect to
theoretical concepts explaining cognitive mechanisms underlying
the Simon task, the deep learning results show that attention and
the attention-shifting approach to spatial stimulus coding10,56

have a strong explanatory power for the Simon effect. Most
noteworthy, this is a case where a purely mathematical procedure
identified exactly those aspects of the neurophysiological signal
that are already considered relevant in the context of psycholo-
gical theory formation.

Additionally, it was shown (cf. Fig. 3) that activity at electrode
F8 and FC1 was also highly relevant for classification accuracy,
especially in the time window between 300 and 400 ms after

target stimulus presentation. Of note, this combination of topo-
graphy and timing may be attributed two ERPs that are tradi-
tionally associated with performance and conflict monitoring in
the Simon task. One of them is the N2, which has frequently been
reported to be relevant during S–R conflicts measured in the
Simon task12,15,17–20,23,24,26,54, and likely reflects conflict mon-
itoring and the associated cognitive (need for) effort13. The other
component at this time and topography is the movement-related
potential, which reflects different activations of the lateral vs.
contralateral motor cortex, SMA, and adjacent brain areas in
unilateral responses27. In short, the activation difference between
the two hemispheres, which can also clearly be seen for electrode
FC1 (see Fig. 3), is thought to reflect lateralized motor response
activation. In this context, medial frontal structures, superior
frontal structures, and supplemental motor areas have been
shown to play an important role in conflict processing9,28,57–60.
Albeit EEG source estimations are not as precise as functional
imaging to localize neural activity, which is a limitation of the
applied methods, the sLORETA analysis for this time window
showed that areas in the superior frontal gyrus (BA6) and medial
frontal gyrus were activated in all four experimental conditions.
This corroborates the above interpretations that response selec-
tion and control processes (i.e., response codes) play an impor-
tant role for Simon task performance10. As previously mentioned,
the conflict evoked in the Simon task is a stimulus-response (S–R)
conflict, which arises from the mismatch between stimulus
location and motor effector (responding hand) location. Addi-
tional control demands are required for correct sensorimotor
transformation in conflicting trials, as the interference caused by
the incorrect response activation (partly in the “wrong” hemi-
sphere) needs to be resolved61,62.

Taken together, the deep learning results show that neuro-
physiological correlates of both attentional processes in occipital
areas and response selection processes in frontal areas exhibit
distinct markers that strongly contribute to the correct classifi-
cation of trial type in the Simon Task, which we used as a means
to examine action control/conflicts. The data hence provide evi-
dence for theories stressing the functional relevance of percep-
tual/attentional processes, as well as for theories stressing the
functional relevance of response selection/conflict monitoring
processes in the Simon task. Intriguingly, influential theoretical
frameworks like the ‘Theory of event coding (TEC)’2 propose that
both perception and action are processed at the same repre-
sentational level and by using the same kinds of codes. To-be-
produced events (i.e., actions/responses) and perceived external
events (i.e., stimuli) are coded for by their constituting feature
codes within a common format—the ‘event file’63. Stimuli (e.g.,
letters) are coded by objective features, such as their shape, colour
and identity (i.e., A, B etc.). These features are closely bound to
one another (i.e., integrated) to achieve a coherent perception.
Likewise, responses are represented by features detailing a
potential outcome, e.g., the required hand movement. As for the

Fig. 4 Visualization of the deep learning analysis. a Visualization maps showing the relevance of all timepoints and electrodes for classification between
the four different classes of trials. Values close to 1 indicate that the specific feature at the specific timepoints contributes most to classification accuracy.
The x-axis denotes the time in ms after target stimulus presentation. The y-axis denotes the different electrode sites. b Event-related potential at the
electrode sites contributing most to classification accuracy in the deep learning model. The x-axis denotes the time in ms after target stimulus presentation.
The y-axis denotes the voltage (note that the scaling of the y-axis differs between the plots). The gray-shadings denote the time interval that was found to
contribute strongly to classification performance in the deep learning network. c The scalp topography plots (top) are shown denoting the distribution of
amplitudes across the scalp in the time interval that contributed most to classification performance. For the sensor space images the ‘top-view’ is
presented. Hence, electrodes appearing on the left in the figure are also place at the left of the scalp. Red colours denote positive amplitudes, blue colours
negative amplitudes. At the bottom, the corresponding source localization results are shown for each of the different conditions. Only significant
activations are shown (p < .05) corrected for multiple comparisons using voxel-wise randomization tests with 2000 permutations and statistical
nonparametric mapping procedures (SnPM).
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Simon effect, it has been proposed that task-relevant stimulus
features (i.e., letter identity) and task-irrelevant features (i.e.,
stimulus location) are bound together in one representation/
code10 and the generated responses are additionally bound within
the same representation/code. Thereby, the TEC highlights that
both stimulus and response processing are essential for the Simon
task effect and conflict processing during action control. Impor-
tantly, both of these aspects were also identified as most relevant
by the deep learning approach. The crucial point is that a deep
learning procedure is able to identify almost exactly those aspects
of the neurophysiological signal that are considered most relevant
for psychological theory formation. Moreover, this represents an
important step towards going beyond conventional ERP com-
ponents, as was be done at the time scale of single trials, i.e., the
neurophysiological processes that are directly associated with a
given single response31. This suggests that cognitive-theoretical
concepts can be validated by applying deep learning procedures
to neurophysiological data. Likewise, deep learning might prove
fruitful in contexts where there are no predetermined concepts or
hypotheses. In this respect, data-driven methods may strongly
contribute to the validation, but also support the further devel-
opment of theoretical concepts in cognitive control. Similarly,
deep learning may foster the development of links between cog-
nitive theory and neurophysiology in the future.

Materials and methods
Sample, sampling strategy, and data collection. N= 186 healthy adult volun-
teers between 18 and 34 years of age (mean 23.7, SD= 3.0) participated in the
study. N= 106 of them were females. Participants were recruited from the TU
Dresden using voluntary panel board announcements and received course credits
or a financial compensation for participation (€ 15). All participants had normal or
corrected-to-normal vision. No participant reported a history of neurological and
psychiatric illness. The study was approved by the Ethics Commission of the
Medical Faculty of the TU Dresden and the Ruhr-Universität Bochum and all
participants provided written informed consent. No participants dropped out or
declined for personal reasons. In the study, an EEG-deep learning approach was
used on which depends on the available EEG data points in the entire sample.
Single-trial EEG data were used. Thus, the number of data points are: number of
subjects × electrode number × sampling rate × length of the EEG intervals ana-
lysed × number of EEG epochs analyzed. For the current study, this means that
~3,348,000,000 data points were available for the deep learning procedure using the
EEGNet architecture. No data were excluded from the analysis. No participants
dropped out or declined for personal reasons. It was a complete within subject
design and there was no allocation of subjects to experimental groups. The data
were collected between July 2011 and November 2012.

Task. The software “Presentation” (version 14.9. by Neurobehavioral Systems, Inc.)
was used for stimulus presentation, response recording, and sending the EEG
triggers. We used a standard Simon task (Fig. 5), which was previously used in
other, unrelated studies to examine conflict monitoring processes during action
control28,48–50.

Participants were seated at a distance of 57 cm in front of a 19” TFT screen
presenting a white fixation cross and two white frame boxes on a black
background. The fixation cross was in the center of the screen and the white frame
boxes were located 1.1 degrees visual angle to the left and right of the fixation cross.
In each trial, the target stimulus (capital letter A or B) was presented for 200 ms in
of the white frame boxes. In the other white frame box, a noise stimulus (three
horizontal white bars) were presented simultaneously. Responses were carried out
on the QWERTZ keyboard and participants were asked to press the left or right
CTRL key. The left key had to be pressed when the letter “A” was presented, the
right key had to be pressed whenever the letter “B” was presented. The responses
were carried out using the index finger. Each trial was terminated by the first
button press after target onset. To ensure speeded responding, a speed-up sign was
presented whenever participants failed to respond within 500 ms after target onset.
If no response was given in a trial, the trial was terminated 1700 ms after target
stimulus presentation and coded as a “miss”. Response-stimulus intervals (RSI)
randomly varied between 2000 ms and 2500 ms. The experimented consisted of
400 trials equally divided in conflicting and non-conflicting trials in which the
response was given using the left or the right hand. Trials in which the target
stimulus and the location of the stimulus matched (i.e., when A was presented in
the left and B in right white frame box) were non-conflicting trials. The other target
identity and location combination represented conflicting trials.

EEG recording and preprocessing. The EEG was continuously recorded from 60
Ag/AgCl electrodes mounted in an elastic cap (EasyCap Inc.) while subjects per-
formed the task using a BrainAmp amplifier (Brain Products Inc.) (500 Hz sam-
pling rate, filter band-width 0.3–80 Hz). During recording, the electrode impedance
was below 5 kΩ. Electrode Fpz served as reference electrode. Offline, the EEG data
were inspected for gross technical artifacts using the Brain Vision Analyzer
2 software package (Brain Productions Inc.). EEG periods with gross technical
artifacts (i.e., offsets in the EEG) were marked (cut-out). Also, channels with no
activity (‘flat line’ channels) were discarded from the EEG. Then a band-pass filter
from 0.5 to 20 Hz was applied (48 dB/oct). After that, an independent component
analysis (ICA, infomax algorithm) was run to identify horizontal and vertical eye
movements, as well as artifacts. These artifacts were corrected in the EEG.
Thereafter, previously discarded ‘flat line’ channels were interpolated. After these
preprocessing steps, the data were segmented. For that only trials with correct
responses were used. There were four segment classes: (i) left hand non-conflict
trials, (ii) left hand conflict trials, (iii) right hand non-conflict trials, and (iv) right
hand conflict trials. The segments lasted from 100 ms pre-stimulus onset to 1500
ms post-stimulus onset, resulting in a total interval length of 1600 ms. Within these
single-trial segments, an automated artifact rejection procedure was performed
applying the following criteria: (i) maximally allowed voltage step 50 μV/ms; (ii)
maximally allowed difference of values in 200 ms intervals of 200 μV; (iii) lowest
allowed activity in 100 ms intervals of 0.5 μV. The remaining segments were then
subjected to a current source density transformation, which results in a reference-
free representation of the data and acts as a spatial filter64. In a final preprocessing
step, the pre-stimulus baseline was set from −100 ms to 0 ms before stimulus onset.
These single-trial data from time point zero to 1500 ms after target presentation
were used for deep learning.

Deep learning. For deep learning, we used the EEGNet architecture51. The
EEGNet architecture can be downloaded from https://github.com/vlawhern/arl-
eegmodels. The procedure and the deep learning architecture used in the current
study is almost identical to a previous study by our group46. Originally, the deep
learning architecture (EEGNet) has been developed to decode brain states in Brain
Computer Interfaces. Its performance has already been investigated using various

Fig. 5 The target stimuli (letters) could be located in either of the boxes
on the left or the right of the fixation cross. Letter A required a reaction of
the left hand (irrespective of the spatial position of the letter) while letter B
required a reaction of the right hand (irrespective of the spatial position of
the letter).
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event-related potential datasets51. The parameters for each layer of the deep
learning network used in the current study are described in Table 1.

To apply EEGNet, one needs to create two dimensional arrays from single-trial
EEG data in which channels (C) and time (T) are represented in columns and rows,
respectively. Consequently, the input has a shape (C,T). EEGNet has two main
blocks (cf. Table 1): The first block produces temporal feature maps by applying
convolutional filters. The convolutional filters have a width of 64 samples.
Thereafter, D spatial filters spanning all EEG channels were learned by applying
depths-wise convolution. This was done for each temporal feature map. Depth-
wise convolution is connected just in one previous feature map and D is a
parameter that controls the number of spatial filters the model must learn for each
temporal filter. This is why for each temporal feature map, D spatial filters have to
be employed. After applying temporal and spatial filters, batch normalization
followed applying an exponential linear unit (ELU) as an activation function. This
included average pooling over 4-time steps with stride of 4. This resulted in outputs
with the shape of (F1∗D,1,T/4). In the second block, a separable convolution
consisting of depth-wise temporal filters of width 16 followed by a point-wise
convolution was used. Since separable convolution has fewer parameters than
ordinary convolution, the model is less prone to overfitting. Again, batch
normalization followed by ELU activation function, average pooling over 8-time
steps and dropout were applied thereafter. Finally, the classification step is done
using a dense layer with a softmax-activation function.

In the current study, we investigate in how far the single-trial
neurophysiological data at the single-subject level enables a classification of trials
into (i) left hand non-conflict trials, (ii) left hand conflict trials, (iii) right hand
non-conflict trials, and (iv) right hand conflict trials. EEGNet was applied as a
classifier to decode brain cognitive states. For evaluating the classification
performance, we use the “leave one out subject” (LOOS)-approach52. Using the
LOOS method, the amount of data in the test set is equal to number of trials that a
subject performed. Therefore, this method is different from “leave one out” (LOO),
which just considers one data in test time. Importantly, problems that have been
discussed52, such as maximizing variance of the test set or overfitting, are less of an
issue in LOOS. In this approach, one subject is selected for testing, while the
remaining subjects are used for training the classifier. Four subjects also are
randomly selected for validation sets among training subjects in order to use for
early stopping. The process of selecting one subject as testing and others as training
continues until all of subjects are selected as testing subject one time. We trained
the model for 500 epochs and saved the model with lowest cross entropy in
validation set. As suggested in original paper for number of temporal and spatial
filters (F1,D) two option were employed, i.e., (4,2) and (8,2). Moreover, the batch
size is set to 32. To train EEGNet, the ADAM optimization was used65. Since the
number of trials varies among subjects and conditions, our datasets are unbalanced,
and we apply a class weight which is the inverse of the proportion in the training
data, with the majority class set to one. To evaluate the model’s performance, we
report the entire confusion matrix and accuracy (see results section).

In order to investigate what kind of features (i.e., single timepoints in single
channel) have a stronger impact on model’s classification decision, we used the
“saliency map” approach47. Goal of such saliency maps is to find features in each
individual single-trial data that have highest impact on classification output. For
the calculation of a saliency map, one needs to take the gradient of the classification
score, i.e., before applying the softmax-activation function to the input data. This
map provides information how much the model’s output change when there are

small changes in the input data on the single-subject level. For visualization, all
saliency maps of every single-trial belonging to a class were averaged and are
shown in the results section. In order to have more obvious visualization map, we
also performed a normalization step in which the minimum and the maximum of
averaged saliency map scores is set to 0 and 1, respectively. Using this scale, values
close to 1 indicate that this feature/time point strongly contributes to classification
accuracy. Importantly, and to ensure that the model’s classification performance in
the 4-class problem is significantly above chance level for each single-subject, we
calculated a threshold indicating classification accuracies significantly above chance
level by assuming that the classification error obeys a binomial cumulative
distribution53. We used the MATLAB function “binoinv” to compute the
statistically significant threshold according to

std αð Þ ¼ binoinv 1� α; n;
1
c

� �
*
100
n

for each single-subject. In this formula, α is the significance level, n is number of
predictions (i.e., number of data in test set) and c is number of classes. This
function provides a threshold which means that a classification accuracy higher
than this threshold is significantly above chance level. The binomial method has
some advantages over other methods such as permutation tests for investigation
classification performance statistically. Permutation tests are very time consuming
because the model needs to be trained several times (e.g., 1000 times) and running
a deep learning architecture such as EEGNet based on LOOS for 1000 times is not
practical. Importantly, it has been shown that when the number of trials to predict
is more than ~100 there is not relevant difference between permutation testing and
the binomial approach53. Since the number of samples in the test set is equal to the
number of trials that a single-subject performed (N= 346 ± 30 in the current
study), the binomial result is valid.

However, of course there are also other DNN methods suitable for EEG
data43,44. Bashivan et al.43 proposed a deep learning architecture for the
classification of EEG data in a working memory task. This study entirely focused on
the frequency spectrum, which is calculated based on FFT. However, for the
purpose of the current study, the data structure must be visualizable to be able to
compare with previous finding using standard EEG methods and to be able to
inform cognitive theory, which have been well connected with standard EEG
methods. The approach by Bashivan is based on frequency information, which is
not the purpose of the current study. For the current study, the time information is
very important, which is not evident when focusing on the frequency spectrum of
the EEG. Moreover, the approach proposed by Bashivan et al. results in a data
structure, which is hard to visualize: After a few processing steps, each trial is
divided into 7-time frames and for each of them an EEG image is constructed,
making the entire dataset a video. This video like data structure can capture
information in EEG data and it is well suited for applying DNN architectures that
are designed for video or image. However, since there are some transformations on
raw EEG data (i.e., time and channel), the visualization of the model is not straight
forward. Interpolation is employed on 2D channels. Because of the interpolation
over channels in this method, we do not know which channels exactly are more
important for classification. This is, however, is important to connect to existing
research using standard ERP methods. Furthermore, the duration for FFT and each
video frame is 0.5 s and each trail consists of seven frames. Consequently, the
temporal resolution for each trail is 7 and the visualization method can only inform
us which of these video frames are more important for classification. However, this

Table 1 Details of the EEGNet architecture used to classify single-trial EEG data.

Block Layer type Filters Size Parameters Output dimension Activation Mode

1 Input (C,T)
Reshape (1,C,T)
Conv2D F1 (1,64) (F1,C,T) Linear Same
BatchNorm 2∗F1 (F1,1,T)
DepthwiseConv2D D∗F1 (C,1) C∗D∗F1 (D � F1,1,T) Linear Valid
BatchNorm 2∗D∗F1 (D � F1,1,T)
Activation (D � F1,1,T) ELU
AveragePool2D (1,4) (D � F1,1,T/4)
Dropout (D � F1,1,T/4)

2 SeparableConv2D F2 (1,16) 16∗D∗F1 þ F2 � ðDþ F1Þ (F2,1,T/4) Linear Same
BatchNorm 2∗F2 (F2,1,T/4)
Activation (F2,1,T/4) ELU
AveragePool2D (1,8) (F2,1,T/32)
Dropout (F2,1,T/32)
Flatten (F2∗T/32)
Dense (2 � F2∗T/32) N Softmax

The EEGNet architecture is identical to a previous study by our group46.
C number of channels, T number of timepoints, F1 number of temporal filters, D number of spatial filters, F2 F1∗D, N number of classes, respectively.
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time information is not sufficient to inform cognitive theory, especially since
standard EEG methods and inferences made on these methods strongly depend on
the time information in the EEG signal32. Importantly, also the source localization
method used to examine the functional neuroanatomical sources of activity
critically depends on the time information66.

Other studies44,51 designed DNN architectures that work well for the multi-
channel EEG signals. Their architectures are inspired by Filter bank common
spatial patterns (FBCSP) algorithm67. In this method, at first, some temporal filters
are employed and for each temporal filter, a spatial filter is employed. The spatial
filters are calculated via singular value decomposition (SVD) in a way that variance
in one class is maximal while in other classes is minimal. Although in FBSCP
temporal and spatial filters are designed based on prior knowledge and SVD,
respectively, these two kinds of filters are learned during training. After these
temporal and spatial filters, some convolutional and max-pooling layers are
used44,51. However, in EEGNet51 they used separable convolution, which has less
parameter to estimate than ordinary convolution, which is used in other work44.
Consequently, the model is less prone to overfit. Importantly, Schirrmeister et al.44

used a cropped training method to increase the accuracy of the model. This method
increases the number of training data by breaking each trial into several pieces of
segments (i.e., smaller than the original trail). Thus, it enlarges the training dataset,
which is very useful for classification accuracy. However, this strategy is not useful
in our research. Although the duration of each cropped data is the same, the time
information within each of the cropped data examples cannot precisely be
addressed. As a result, visualization of the model in the time domain is not possible
(reliable) making it impossible to use source localization techniques. Since the
EEGNet does not change the data structure we used this method for our study.
Moreover, EEGNet performance has already been investigated using various event-
related potential datasets51,68, which is not the case for other methods43.

Support vector machine approach. To examine whether more simple machine
learning approaches, such as support vector machines, show similar performance than
the EEGNet, we used a support vector machine (SVM). For the SVM we performed
the LOOS method for cross-validation. We used an SVM model with a RBF kernel
and hyper-parameters are selected in the validation set through grid search among
C ¼ 0:01; 0:1; 1; 10; 100f gγ ¼ f0:1; 0; 2 ; ¼ ; 1; 2; ¼ :; 10g43. However,
please note that our goal in this research is not to design a deep learning or machine
model that can reach to best accuracy for our dataset. Instead, we want to have a
model that has a good performance and for which the result of this model is inter-
pretable in term of cognitive theory. There may exist other models that have better
performance and are superior to EEGNet. However, as mentioned before, the result of
these models can be very hard to interpret or they need prior knowledge about the
data for feature extraction which can eliminate temporal information in EEG data.

Source localization (sLORETA). In this study, source localization was used to
examine the source of electrical activity, which the deep learning model turned out
to be most predictive for performance in one particular class of trials. For that, the
standard low resolution brain electromagnetic tomography (sLORETA) algorithm
was used66. It requires standard electrode coordinates according to the 10/10 or 10/
20 system as input. The method uses a three-shell spherical head model and the
covariance matrix was calculated using the single-subject’s baseline. Within this
head model, the intra-cerebral volume is partitioned into 6239 voxels using a
spatial resolution of 5 mm and the standardized current density is calculated for
every voxel, using an MNI152 head model template. The algorithm provides a
single linear solution for the inverse problem without localization bias66,69,70. The
validity of sLORETA results have been shown in combined fMRI/EEG and TMS/
EEG studies70,71. For the sLORETA contrasts, we performed a comparison against
zero. To calculate the statistics on the sLORETA sources (contrasts), we utilized
voxel-wise randomization tests with 2000 permutations and statistical nonpara-
metric mapping procedures (SnPM). Locations of voxels that were significantly
different (p < .05) are shown in the MNI-brain www.unizh.ch/keyinst/
NewLORETA/sLORETA/sLORETA.htm. The logic of a randomization test using
SnPM that if there is no condition effect, and that the labeling of the conditions is
arbitrary. Using SnPM, the significance of a source is assessed by comparison with
a distribution of values obtained when condition labels are permuted (i.e., 2000
times for the current data). This means that for the source reconstruction and
between-condition comparisons the different source reconstruction were tested
and the reported results reflect a consistent source. Activations shown in the brain
represent critical t-values corrected for multiple comparisons.

Statistics and reproducibility. The main method used was a deep learning
approach. The behavioral data were analyzed using parametric tests (t-tests, ana-
lyses of variance, ANOVAS) using SPSS 25. N= 186 healthy adult volunteers
participated in the study. Single-trial EEG data was used. Thus, the number of data
points are: number of subjects × electrode number × sampling rate × length of the
EEG intervals analysed × number of EEG epochs analyzed. For the current study,
this means that ~3,348,000,000 data points were available for the deep learning
procedure using the EEGNet architecture. For evaluating the classification per-
formance of the deep learning approach, we use the “leave one out subject”
(LOOS)-approach52 as described in the section on the deep learning procedure.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The datasets generated during and/or analysed during the current study are available
from the corresponding author on reasonable request. Source data underlying Fig. 1, Fig.
3 and Fig. 4C can be found in Supplementary data 1.

Code availability
We used standard software packages as described in the methods section. The EEGNet
architecture can be downloaded from https://github.com/vlawhern/arl-eegmodels.
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