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Abstract

Investigating the relationship between task-related hemodynamic responses and cor-

tical excitability is challenging because it requires simultaneous measurement of

hemodynamic responses while applying noninvasive brain stimulation. Moreover, cor-

tical excitability and task-related hemodynamic responses are both associated with

inter-/intra-subject variability. To reliably assess such a relationship, we applied hier-

archical Bayesian modeling. This study involved 16 healthy subjects who underwent

simultaneous Paired Associative Stimulation (PAS10, PAS25, Sham) while monitoring

brain activity using functional Near-Infrared Spectroscopy (fNIRS), targeting the pri-

mary motor cortex (M1). Cortical excitability was measured by Motor Evoked Poten-

tials (MEPs), and the motor task-related hemodynamic responses were measured

using fNIRS 3D reconstructions. We constructed three models to investigate: (1) PAS

effects on the M1 excitability, (2) PAS effects on fNIRS hemodynamic responses to a

finger tapping task, and (3) the correlation between PAS effects on M1 excitability

and PAS effects on task-related hemodynamic responses. Significant increase in corti-

cal excitability was found following PAS25, whereas a small reduction of the cortical

excitability was shown after PAS10 and a subtle increase occurred after sham. Both

HbO and HbR absolute amplitudes increased after PAS25 and decreased after

PAS10. The probability of the positive correlation between modulation of cortical

excitability and hemodynamic activity was 0.77 for HbO and 0.79 for HbR. We dem-

onstrated that PAS stimulation modulates task-related cortical hemodynamic

responses in addition to M1 excitability. Moreover, the positive correlation between
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PAS modulations of excitability and hemodynamics brought insight into understand-

ing the fundamental properties of cortical function and cortical excitability.

K E YWORD S

Bayesian data analysis, excitability, finger tapping, maximum entropy on the mean, near-infrared
spectroscopy, paired associative stimulation, transcranial magnetic stimulation

1 | INTRODUCTION

The association between hemodynamic responses to a task and excit-

ability of the corresponding cortical region helps to understand the

relationship between cortical metabolic demand and cortical readi-

ness. This knowledge might be useful to expand the field of applica-

tion of noninvasive brain stimulation for treating brain disorders in

which modulation of hemodynamic activity is desired. One way to

induce plasticity relies on the concept of Spike Timing Dependent

Plasticity (STDP; Levy & Steward, 1983; Rossini et al., 2015) and is

known as Paired Associative Stimulation (PAS; Mariorenzi et al., 1991;

Stefan, 2000). In PAS paradigm, Transcranial Magnetic Stimulation

(TMS) over the motor region (M1) excites the pyramidal cells mimick-

ing a postsynaptic spike, whereas somatosensory activations induced

by Median Nerve Stimulation (MNS) propagate from the wrist to pyra-

midal cells of the motor cortex, acting as a presynaptic spike. TMS and

MNS are delivered with proper timing to modulate cortical excitabil-

ity. Around 25 ms (PAS25) Interstimulus Interval (ISI) between MNS

and TMS increases excitability, whereas 10 ms (PAS10) ISI inhibits the

primary motor cortex. To measure the level of cortical excitability eli-

cited by such a technique, the peak-to-peak amplitude of Motor

Evoked Potentials (MEPs) measured by electromyography (EMG) on

the hand muscle while delivering single-pulse TMS (spTMS) to the pri-

mary motor cortex, is usually considered (Suppa et al., 2017).

The effects of noninvasive brain stimulation are not limited to

cortical excitability, but also involve brain metabolism. In animal stud-

ies using invasive optical imaging, Allen et al. (2007) demonstrated

that low-frequency repetitive Transcranial Magnetic Stimulation

(rTMS) applied to the cat's visual cortex, a paradigm known for reduc-

ing cortical excitability, induced an immediate increase of tissue oxy-

genation followed by a prolonged reduction of oxygenation lasting

approximately 2 min. More recently, Seewoo et al. (2019) conducted

a study on rats combining functional Magnetic Resonance Imaging

(fMRI) and proton Magnetic Resonance Spectroscopy (MRS) and

showed: (1) increases in resting-state connectivity (e.g., Interoceptive/

default mode network, cortico-striatal-thalamic network and Basal

ganglia network), GABA, glutamine and glutamate levels following

high-frequency rTMS (known for increasing cortical excitability) and

(2) Reduced connectivity and glutamine levels after low-frequency

rTMS stimulations.

In human studies, similar investigations are more challenging since

they require the combination of noninvasive neuroimaging and nonin-

vasive brain stimulation approaches. For instance, fMRI (Bandettini

et al., 1992; Glover, 2011; Kwong et al., 1992) is a widely used

modality to measure the hemodynamic activity, and could be

exploited to assess the hemodynamic fluctuations related to TMS

interventions (Navarro De Lara et al., 2015; Tik et al., 2017). Alterna-

tively, functional Near-InfraRed Spectroscopy (fNIRS) noninvasively

measures fluctuations of both oxygenated- and deoxygenated-

hemoglobin concentration changes in the human cortex (i.e., HbO and

HbR), usually offering better temporal resolution than fMRI

(Jöbsis, 1977; Scholkmann et al., 2014). fNIRS relies on the optical sig-

nal, which is not sensitive to fluctuations of electromagnetic fields, as

opposed to the fMRI. Therefore, fNIRS offers better compatibility for

simultaneous acquisition during TMS (Curtin et al., 2019).

All neuromodulatory techniques are known to produce variable

results (Ridding & Ziemann, 2010). This aspect goes beyond the tech-

nical difficulties and challenges encountered when studying the rela-

tionship between excitability and hemodynamic activity and involves

both intra- and inter-subject variability inherent to the effects of brain

stimulation and hemodynamic activity associated with a task. The abil-

ity of PAS in eliciting significant changes in cortical excitability has

been replicated by several studies (Lee et al., 2017; Stefan, 2000;

Suppa et al., 2017; Tsang et al., 2015; Wolters et al., 2005), but some

studies have observed that only 39% of subjects showed expected

MEP amplitude increase after conducting PAS25 (L�opez-Alonso

et al., 2014). Similar PAS efficiency (lower than 50%) has been sug-

gested in a review study (Suppa et al., 2017). Inter-subject variability

of the task-evoked hemodynamic response has also been reported,

whether measured using fMRI (Witt et al., 2008) or fNIRS (Novi

et al., 2020).

These variability issues may explain negative findings when

reporting the correlation between cortical excitability and hemody-

namic activities. For instance, Kriváneková et al. (2013) investigated

the relationship between excitability and Blood-Oxygen-Level-

Dependent (BOLD) signal in the primary motor cortex (M1) using PAS

stimulation and “offline” fMRI acquisitions and reported no significant

correlation. In our previous study (Cai et al., 2022b), using fNIRS and

PAS we first found a significant positive correlation between fluctua-

tions of cortical excitability (represented by MEP amplitude) and the

fluctuations of HbO activity. However, when further investigating the

relationship between PAS effects on task-related HbO/HbR changes

(estimated using the HbO or HbR ratio, calculated as the post- over

pre-intervention amplitudes) and its effects on M1 excitability (esti-

mated using the ratio of MEP, calculated as the post- over pre-

intervention amplitudes), we found no significant correlations. There-

fore, it seems essential to carefully take into account the intrinsic vari-

ability of both cortical excitability and hemodynamic responses to
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tasks, when investigating such correlations. Note that this is not a lim-

itation specific to PAS, but rather an inherent issue of all neuromodu-

latory techniques and depends on several factors including individual

anatomy, genetic susceptibility, hormonal activity, the position of the

coil for stimulation, and circadian fluctuations of excitability

(Giambattistelli et al., 2014; Raffin et al., 2015; Dubbioso et al., 2022).

While much of the variability is inherent and nonavoidable, it is how-

ever possible to properly model it. This could be achieved by applying

Bayesian modeling.

To conduct accurate and robust investigations, we propose to

incorporate the variability of data using a hierarchical Bayesian model

to assess PAS effects on both cortical excitability and hemodynamic

responses, as well as the correlation between these two measures.

Hierarchical Bayesian modeling allows taking into account heteroge-

neity of the variables of interest (i.e., MEP, HbO/HbR) at each level

(i.e., intra-subject, inter-subject, intervention type: PAS25, PAS10,

sham) of the analysis (Betancourt & Girolami, 2015; Papaspiliopoulos

et al., 2007). Moreover, when considering a hierarchical structure, par-

tial pooling can reduce the uncertainty of estimated parameters

(Gelman et al., 2013; McElreath, 2020). This means that group-level

and individual-level estimations could inform each other to regularize

the estimation of the uncertainty of each parameter. Moreover,

Bayesian inference allows estimating the statistical expectation of

each parameter of the model by sampling the joint posterior distribu-

tions. Thanks to the developments in Bayesian data analysis workflow

during the last decade, Bayesian inference has become more accessi-

ble and can provide accurate and reliable estimations of the posterior

distribution. For instance, the most recent implementations of the

Hamiltonian Monte Carlo (HMC) algorithm (Duane et al., 1987) called

the dynamic HMC (Betancourt, 2017, 2019) is available as an open-

source Bayesian statistical modeling and computation platform called

Stan (Stan Development Team, 2020a). This technique not only accu-

rately and efficiently samples the joint posterior distribution, but also

provides robust estimations by quantitatively diagnosing pathological

behaviors of Markov Chain Monte Carlo (MCMC) chains that are used

to sample the joint posterior distributions (Betancourt, 2017;

Betancourt & Girolami, 2015).

Considering the above advantages of the Bayesian approach, in

this study, we applied a Bayesian data analysis workflow (Gabry

et al., 2019; Gelman et al., 2020b) on our TMS/fNIRS dataset to fur-

ther investigate the relationship between the PAS effects on task-

related hemodynamic responses and its effects on M1 excitability, for

which we reported small effects using conventional analysis in Cai

et al. (2022b). Bayesian inference allows us to handle the intrinsic var-

iability of the data. Moreover, it also offers the unique opportunity to

apply posterior predictive simulations (Gabry et al., 2019; Gelman

et al., 2020b) to investigate new questions that could not be

addressed using conventional analysis. We hypothesize that enhanced

brain excitability should be associated with higher hemodynamic

activity elicited by a finger tapping task, and decreased excitability

should be associated with a reduced hemodynamic response to the

task. In this work, we first summarize the study design, data acquisi-

tion, and data preprocessing prior to the Bayesian framework. Then,

we proposed three hierarchical Bayesian models: Model#1: PAS

effects on M1 excitability measured using MEP; Model#2: PAS effects

on task-related hemodynamic responses measured using fNIRS, and

Model#3: correlation between PAS modulated excitability changes

and PAS modulated hemodynamic changes. The variability of each

measurement was carefully considered in each model and at each

level to conduct reliable estimations of the intervention effects and

correlations. Statistical inferences were made via posterior predictive

simulations (McElreath, 2020). Diagnostics of the models were con-

ducted to ensure the robustness of the estimated posterior

distributions.

2 | MATERIALS AND METHODS

2.1 | Study design and subjects

Nineteen subjects [19–35 years old, 24�5 mean�SDð Þ, male and

right-handed] with no history of neurological disorders and no medi-

cations acting on the central nervous system were selected to partici-

pate in the study. We only included male participants in order to

minimize the confounding of cortical excitability changes due to the

menstrual cycle (Hattemer et al., 2007; Lee et al., 2017). This study

was approved by the Central Committee of Research Ethics of the

Minister of Health and Social Services Research Ethics Board (CCER),

Québec, Canada. All subjects signed written informed consent prior to

participation. They also underwent a screening procedure to confirm

no contraindications to MRI or TMS (Rossi et al., 2009; Suppa

et al., 2017). Subjects were instructed to have a regular sleep cycle for

the days before the experiment, and not to take caffeine for at least

90min before the data acquisition.

The experiment design of this study is illustrated in Figure 1a.

Three different intervention sessions were performed at least 2 days

apart to minimize carryover effects. The order of experimental ses-

sions was randomly decided by the experimenter, each session con-

sisted of five time-ordered sections, defined as follows:

1. A block-designed finger-tapping task composed of 20 blocks, 10 s of

finger-tapping followed by 30–60 s of resting was conducted within

each block. Subjects were asked to tap their left thumb to the other

four digits sequentially at a frequency of about 2 Hz (Figure 1a1).

This long-range jitter was designed to prevent the task responses

from phase locking to the undergoing physiological hemodynamic

oscillations (Aarabi et al., 2017), therefore, reducing the physiologi-

cal confounding on the task-related response at the stage of

experiment design. Tapping onsets/offsets were instructed by

auditory cues.

2. An event-related designed single-pulse TMS (spTMS) composed of

75 events, jittered from 5 to 25 s (Figure 1a2). TMS procedures

were performed with neuronavigation (Brainsight neuronavigation

system—Rogue-Research Inc, Canada) and based on subject-

specific anatomical MRI. TMS was delivered with a figure-8 coil

(Magstim double 70 mm remote control coil) connected to a
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Magstim 2002 stimulator (Magstim Company, U.K.). In order to tar-

get M1, the coil was placed tangentially to the scalp and at a 45�

angle to the midline of the head (Figure 1c), so to maximize stimu-

lation efficiency (Raffin et al., 2015; Thomson et al., 2013). The

individual “hot spot” was defined for each session as the location

with the largest Motor Evoked Potentials (MEPs) amplitude mea-

sured on the left thumb (Abductor Pollicis Brevis, APB) using elec-

tromyography (EMG). Stimulation intensity was set to 120% of the

resting motor threshold (RMT), defined according to the

maximum-likelihood parameter estimation by a sequential testing

approach using MTAT 2.0 (http://www.clinicalresearcher.org/

software.html; Ah Sen et al., 2017; Awiszus et al., 1999). All TMS

procedures followed the recommendations of the International

Federation of Clinical Neurophysiology (Rossi et al., 2009) and no

participants reported any considerable discomfort or side effects.

3. A PAS session to modulate the M1 cortical excitability (Figure 1a3).

PAS intervention consisted either of PAS25 to increase excitability,

PAS10 to decrease excitability or sham-PAS. PAS was conducted

with 100 pairs of electrical median nerve stimulation (MNS) on the

left wrist, followed by TMS pulse delivered over the right M1, with

a fixed interval of 10 s between paired stimulations, for a total

intervention of 18 min, as suggested in Suppa et al. (2017). MNS

was delivered with a Digitimer (Digitimer DS7A, U.K) at the left

median nerve and with an intensity equal to 300% of the subject-

specific perceptual threshold, as suggested in Stefan, 2000. TMS

intensity was the same as for spTMS paradigm, that is, 120% of

RMT. After estimating subject-specific N20 response to electrical

MNS using bipolar electroencephalogram (EEG) (BrainAmp ExG,

Brain Products GmbH, Germany) on CP3 and CP4 electrodes, the

interstimulus intervals (ISI) between MNS and TMS were deter-

mined based on individual N20 values: as N20 + 5 ms for PAS25

and N20-5 ms for PAS10 (Carson & Kennedy, 2013). Sham param-

eters (e.g., MNS intensity, coil position, ISI) were the same as

PAS25, but TMS was not delivered, and instead, its sound (TMS

click) was played via a stereo speaker.

4. Repetition of the event-related designed spTMS (Figure 1a4) after the

intervention. By comparing the MEPs measured during pre-

intervention and post-intervention sessions, PAS intervention

effects on M1 cortical excitability could be assessed.

5. Repetition of the block-designed finger tapping task (Figure 1a5) after

the intervention. Similarly, the corresponding effects on task-

evoked hemodynamic responses could be assessed by comparing

HbO/HbR concentration changes measured during pre-

intervention and post-intervention sessions.

F IGURE 1 Experimental paradigm and set-up. (a) Experimental paradigm ordered by time: (1) a block designed finger-tapping task consisted
of 20 blocks, each contained 10 s task and 30–60 s rest; subjects were informed to tap their left thumb to the other four digits sequentially at
around 2 Hz; (2) an event-related designed single-pulse TMS (spTMS) run consisted of 75 events jittered from 5 to 25 s. (3) PAS25/PAS10/sham-
PAS consisted of 100 pairs of stimulations, interleaved by 10 s; (4) and (5) repeated (2) and (1), respectively, after the PAS intervention. b)
Personalized optimal montage for fNIRS acquisition. Three sources (red dots) and 15 detectors (green dots) were selected to optimize the
sensitivity of fNIRS montage to a predefined ROI, the right primary motor cortex (M1) hand knob (outlined using a black profile) along the cortical
surface. (c) an overview of the experimental set-up, the personalized optimal montage was glued on the scalp using clinical adhesive—Collodion;
TMS coil was placed on top of the fNIRS optodes to target the “hot spot” which corresponded to subject's left thumb, note that the low-profile
feature of the fNIRS optodes allowed less TMS intensity decreases when departing from the scalp surface; a neuro-navigation system was used
to guide the placement of the TMS coil and the digitization of the fNIRS optodes
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2.2 | Data acquisitions

2.2.1 | Anatomical MRI

Individual anatomical MRI was acquired to guide TMS and to calculate

the head model required for fNIRS acquisition planning and fNIRS

reconstructions. A General Electric Discovery MR750 3 T scanner at

the PERFORM Center of Concordia University, Montréal, Canada,

was used to scan: (1) T1-weighted images using the 3D BRAVO

sequence (1�1�1 mm3, 192 axial slices, 256�256 matrix) and

(2) T2-weighted images using the 3D Cube T2 sequence (1�1�1

mm3 voxels, 168 sagittal slices, 256�256 matrix).

2.2.2 | Motor evoked potentials

MEPs induced by spTMS pulses were measured to assess the M1 cor-

tical excitability. A BrainAmp ExG bipolar system (BrainAmp ExG,

Brain Products GmbH, Germany) was used to record EMG of the

abductor pollicis brevis (APB) muscle, with two TECA disposable

20 mm disk electromyography (EMG) electrodes attached with a stan-

dard belly-tendon montage (Figure 1c).

2.2.3 | Functional near-infrared spectroscopy

fNIRS data were acquired to estimate the finger-tapping evoked

hemodynamic responses (i.e., HbO/HbR responses). fNIRS data were

acquired at 10 Hz using a Brainsight fNIRS system (Rogue-Research

Inc, Canada) with two wavelengths—685 and 830 nm. fNIRS optodes

were placed on the subject's scalp using a clinical adhesive called col-

lodion (Figure 1c) to reduce motion artifacts (Machado et al., 2018;

Pellegrino et al., 2016; Yücel et al., 2014) and to ensure a better con-

tact with the skin when compared to standard fNIRS caps. A personal-

ized optimal montage developed by our group (Cai et al., 2021;

Machado et al., 2014, 2018; Pellegrino et al., 2016) was used to maxi-

mize the sensitivity of fNIRS channels to a predefined region of inter-

est (ROI)—the individual “hand knob” region (Figure 1b) manually

defined along the right M1 cortical surface which controls the left-

hand movement (Raffin et al., 2015). Resulting personalized optimal

montage consisted of 3 sources and 15 detectors (Figure 1b). The dis-

tance between each source-detector pair was constrained to range

from 2.0 to 4.5 cm. Each source was positioned to construct at least

13 channels among the 15 detectors ensuring a high spatial overlap

between channels, to allow accurate local reconstruction along the

cortical surface (Cai et al., 2021, 2022a). A proximity detector was

added at the center of three sources to record the physiological

hemodynamics fluctuations within the scalp. A Brainsight neuronavi-

gation system coregistered with the subject's specific T1 MRI was

used to guide the installation and to digitize the position of fNIRS

sources and detectors glued at their optimal positions. Additional

150 points were digitized on the head surface to allow accurate

montage registration with the anatomical MRI, as a prerequisite for

computing the fNIRS forward model. fNIRS data were acquired con-

tinuously during the whole experimental session, as described in

Figure 1a.

From the 19 subjects selected for this study, one was excluded

due to low sensitivity to TMS, and two were excluded because they

exhibited poor fNIRS signal qualities. Four subjects dropped out after

the first session due to personal reasons, resulting in 16 PAS25,

12 PAS10, and 12 sham sessions. Please note that starting from here,

we will denote: as Session, one specific acquisition, consisting of any

PAS intervention type, of one subject including experiments 1–5 illus-

trated in Figure 1a (e.g., PAS25 for Sub01); as Run, one specific experi-

ment (spTMS or finger tapping), before or after any PAS intervention

type, for one subject (e.g., pre-PAS25 spTMS for Sub01); and as Time,

the differentiation whether one specific experiment was conducted

before or after PAS intervention (e.g., pre-PAS25 vs. post-PAS25).

2.3 | Data preprocessing

2.3.1 | EMG data processing

EMG data collected during spTMS runs were processed using Brain-

storm software (Tadel et al., 2011; https://neuroimage.usc.edu/

brainstorm/) to extract MEP amplitudes. Raw EMG data were first

band-pass filtered between 3 and 2000 Hz. A time window from �10

to 100 ms around the stimulation onset was defined to extract MEP

trials. These trials were then baseline corrected (�10 to 0 ms), and the

peak-to-peak amplitude of each MEP trial was calculated. Note that

throughout the analysis reported in this study, none of the single MEP

trials was excluded to preserve the intrinsic variability of MEP peak-

to-peak amplitude measures. Hereby, for convenience, we will denote

as “MEP”, the actual MEP peak-to-peak amplitude, as usually consid-

ered in TMS literature (Lee et al., 2017; Stefan, 2000; Suppa

et al., 2017; Tsang et al., 2015; Wolters et al., 2005).

The output of the whole EMG data preprocessing section was a

set of 75 MEPs estimated for each participant (specified by subject ID

from 1 to 16), each intervention (PAS25, PAS10, or sham), and time

(pre-PAS or post-PAS).

2.3.2 | fNIRS data processing

fNIRS data processing was performed using the open-source fNIRS

processing plugin—NIRSTORM (https://github.com/Nirstorm/

nirstorm) developed in our lab within Brainstorm software environ-

ment (Tadel et al., 2011; https://neuroimage.usc.edu/brainstorm/).

Raw fNIRS data were first preprocessed following standard recom-

mendations (Yücel et al., 2021) and then converted to optical density

changes (i.e., ΔOD). For each task run, 20 ΔOD epochs were

extracted within a time window ranging from �10 to 30 s around task

onsets. To reduce motion artifacts and obtain the distribution of
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averaged ΔOD epochs for each run, we sub-averaged 16 out of

20 ΔOD epochs for all possible unique combinations (i.e., C16
20 ¼4845

possibilities) and selected 50 of these sub-averaged ΔOD epochs that

were ranging below and above the median of the signal to noise ratio

(SNR) of all sub-averaged trials, therefore resulting in 101 sub-

averaged ΔODs. This approach was to exclude eventual motion arti-

facts contaminated epochs while preserving the variability of task-

evoked fNIRS signal changes in each run (Cai et al., 2022b). To obtain

the distribution of spatiotemporal map of HbO/HbR responses for

each finger-tapping run along the cortical surface, we applied a 3D

fNIRS reconstruction workflow (Cai et al., 2021, 2022a) using person-

alized optimal montage and maximum entropy on the mean (MEM) to

these 101 sub-averaged ΔODs. The resulting HbO/HbR spatiotempo-

ral maps of each subject during each finger-tapping run (e.g., 101

HbO maps for Sub01 during pre-PAS25 finger-tapping) were finally

co-registered to the mid-surface of the MNI ICBM152 template

(Fonov et al., 2009, 2011), using FreeSurfer spherical transformation.

A region of interest (ROI) was defined along the template surface as

the “hand knob”, to cover the cortical regions that control finger tap-

ping. Finally, reconstructed HbO/HbR time courses (0–30 s) within

this “hand knob” ROI were averaged to represent the hemodynamic

responses of each specific finger-tapping run. The output of the whole

fNIRS data preprocessing section was a set of 80 runs: 40 Sessions

(16 PAS25+12 PAS10+12 sham)�2 Times (pre- and post-interven-

tion) of 101 reconstructed HbO/HbR time course, for each run speci-

fied by subject (ID 1–16), intervention (PAS25, PAS10, or sham) and

time (pre-PAS or post-PAS). Further details describing fNIRS data pro-

cessing are provided in Appendix.

2.4 | Hierarchical Bayesian modeling

For the notation in the following model equations, we used small let-

ters to denote a variable (e.g., μ for the mean of a Gaussian distribu-

tion) and capital letters to denote a matrix (e.g., Σ for the covariance

matrix of a multivariate Gaussian distribution). A list of values from

one specific variable is represented by a small letter along with a sub-

script letter, for instance, a symbol μs refers to a list of means, and the

subscript s represents each individual element of this list (mean for

the sth session). The dimensionality of each list is given by the range

of s (e.g., s¼1, 2, 3,…40, for sth session). If the subscript letter is con-

tained in square brackets, it means that the elements in this list vari-

able are differentiated by the model using index variables. For

instance, i in intercept i¼1,2,3½ � indicates our model differentiates the

intercept parameter for each intervention type by index variable

i¼1, 2, 3, 1 for PAS25, 2 for PAS10, and 3 for sham.

F IGURE 2 The hierarchical model of PAS effects on either cortical excitability (MEP) or hemodynamic responses (Hb). From bottom to top,
(1) a measurement error model assuming the mean of the variable of interest (either the observed MEPs, e.g., MEPprese,s for Model #1, or a spline
weight of HbO/HbR time course, e.g., wpre

obs,s,n for Model #2) for each run at a different time (pre-/post-) was drawn from a Gaussian distribution.
The mean of this Gaussian distribution is the “true” value of the variable of interest, and the scale is the corresponding standard error; (2) each
subject and (3) intervention were differentiated using index variables; (4) PAS effects were modeled by linear regression in which the “true” post-
variable of interest was predicted by the “true” pre-variable of interest. Solving this hierarchical model by Bayesian allows partial pooling on each
parameter to reduce the uncertainty
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2.4.1 | Hierarchical Bayesian Model #1: Assessment
of PAS effects on cortical excitability

We proposed a first hierarchical Bayesian model to assess PAS effects

on M1 cortical excitability (Figure 2), which was evaluated using the

MEPs measured during spTMS runs before (pre-) and after (post-)

each PAS intervention. This model consists of two parts: (1) a mea-

surement error model taking into account the variability of MEPs

within each spTMS run and (2) a hierarchical model describing post-

intervention MEP as a linear function of pre-intervention MEP.

1. A model of measurement error

We assume the “empirical” mean of the observed MEP in each

run to be drawn from a Gaussian distribution with the mean equal to

the “true” MEP amplitude and the scale equal to the standard error of

all MEPs trials. The “true” and observed (obs) MEP of the pre-PAS

spTMS run can be expressed as follows,

MEPpreobs,s �Normal MEPpretrue,s, MEPprese,s

� �
MEPpretrue,s �Normal 0:5, 1ð Þ

s¼1, 2, 3,…40, for sth session

ð1Þ

where MEPpretrue,s is the “true” value of the pre-PAS mean MEP for ses-

sion s. MEPpreobs,s is the “empirical” mean of the observed MEP from the

same run expressed as,

MEPpreobs,s ¼
PN

k¼1MEPprek,s

N
k¼1, 2, 3,…75, for kth trial

ð2Þ

where MEPprek,s represents the pre-PAS MEP of the kth trial from a total

of N = 75 trials in session s. The corresponding measurement error

MEPprese,s is then represented by the standard error of the MEP over all

75 trials, estimated as in Equation (3). Note that we considered here

the standard error of MEP samples to represent the scale of the popu-

lation distribution in Equation (1),

MEPprese,s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
k¼1 MEPprek,s �MEPpreobs,s

� �2
N N�1ð Þ

vuut ð3Þ

Finally, substituting (2) and (3) into (1), both empirical mean and vari-

ance estimated over the 75 observed pre-PAS MEPs of a specific ses-

sion were modeled to estimate the “true” corresponding amplitude.

For the prior distribution of MEPpretrue,s, we applied a weakly informed

prior (Gabry et al., 2019; Gelman et al., 2008, 2017) consisting of a

Gaussian distribution Normal 0:5,1ð Þ. Note that all observed MEPs

(MEPpre,postobs,s and MEPpre,postse,s , for

40Sessions�2Times pre�and post�PASð Þ¼80) were normalized

by the global maximum value of MEPpre,postobs,s to ensure MEP values were

covering the 0, 1½ � range. Therefore, 0.5 appeared as an appropriate

prior of the mean when nothing is known about the MEP amplitude,

except the range (i.e., 0þ1ð Þ=2¼0:5).

The “true” MEP in the post-PAS spTMS run was then modeled as

follows,

MEPpostobs,s �Normal MEPposttrue,s,MEPpostse,s

� �
MEPpostobs,s ¼

PN
k¼1MEPpostk,s

N

MEPpostse,s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
k¼1 MEPpostk,s �MEPpostobs,s

� �2
N N�1ð Þ

vuut
ð4Þ

Note that the prior distribution of the parameter MEPposttrue,s is defined

as a function of pre-PAS MEP measures in the next section, within

the context of hierarchical linear regression.

2. Hierarchical linear regression

PAS effects on M1 cortical excitability were then modeled using a

linear regression model, in which MEPposttrue,s and MEPpretrue,s were consid-

ered as the dependent and predictor variables, respectively.

MEPposttrue,s �Normal μs, σð Þ
μs ¼ intercept i½ � þ group i½ � þactor a,i½ �

� � �MEPpretrue,s

i¼1, 2, and3, for ith intervention

a¼1, 2, 3,…16, for ath subject

s¼1, 2, 3,…40, for sth session

ð5Þ

where μs is the mean of MEPposttrue,s, predicted by MEPpretrue,s using the fol-

lowing linear model:

μs ¼ intercept i½ � þ group i½ � þactor a,i½ �
� � �MEPpretrue,s, and σ is the error

of the linear regression (i.e., the scale of this normal distribution). We

added the following index variables to differentiate subject, interven-

tion (PAS25/PAS10/sham), and time (pre-/post-PAS) in the model.

intercept i½ � is the intercept of the linear regression, for the i th inter-

vention, in which i¼1, 2, and3 refers to PAS25, PAS10, and sham,

respectively. The slope parameter is modeled using two parts, a

group-level slope parameter group i½ �, specific for each intervention i,

and a parameter modeling inter-subject variability, denoted as

actor a,i½ � , for each intervention i and each subject a, associated with

the following prior model:

actor a,i¼1½ �

actor a,i¼2½ �

actor a,i¼3½ �

2664
3775�MultiNormal

0

0

0

2664
3775,Σ

0BB@
1CCA

Σ¼Σactor �Rho �Σactor

¼
σ1 0 0

0 σ2 0

0 0 σ3

0BB@
1CCA

1 ρ12 ρ13

ρ21 1 ρ23

ρ31 ρ32 1

0BB@
1CCA

σ1 0 0

0 σ2 0

0 0 σ3

0BB@
1CCA

ð6Þ

where MultiNormal �ð Þ is a multivariate Gaussian distribution to model

the interaction, which allows the effects of each specific intervention
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to vary for each subject, meaning each subject can respond to each

intervention differently. We defined this multivariate Gaussian prior

distribution to have zero means (3 elements vector) therefore assum-

ing all the subjects to have zero mean deviation around the group-

level slope parameter group i½ �. Rho and Σactor denote respectively the

correlation matrix and the scale matrix of the covariance matrix Σ of

this multivariate Gaussian distribution. σ1,2,3 is the scale among all sub-

jects within each intervention group, for example, σ3 is the scale of

the vector actor a,i¼3½ � for sham. ρ is the correlation between pair-wised

interventions, for instance, ρ12 represents the correlation between

actor a,i¼1½ � for PAS25 and actor a,i¼2½ � for PAS10.

Weakly informed priors were assigned to the parameters intro-

duced in equations (5) and (6) as follows,

intercept i½ � �Normal 0, 0:1ð Þ
group i½ � � logNormal log 1ð Þ, 0:5ð Þ
ρ� LKJcorr 2ð Þ
σ�HalfNormal 0, 1ð Þ

ð7Þ

Normal 0, 0:1ð Þ was chosen as prior distribution for intercept i½ � con-

sidering that when MEPpretrue,s ¼0, the correspondingMEPposttrue,s should

not be too much apart from 0. logNormal log 1ð Þ, 0:5ð Þ was selected

for the group-level slope to ensure a positive value with a median of

1. Therefore, without knowing any intervention type, the slope should

be equal to 1, assuming there is no averaged PAS effect among sub-

jects when the intervention type is not known. The Lewandowski–

Kurowicka–Joe distribution LKJcorr η¼2ð Þ, (Lewandowski

et al., 2009), was chosen as a weakly informative prior for the correla-

tion parameter ρ that does not prioritize extreme correlation values

such as �1, where η is a positive parameter. η¼1 would denote uni-

form density of ρ from �1 to +1. The larger η is (when compared to

1), the least likely the extreme correlation values would occur (sharper

probability density distribution). We selected η¼2 as a weakly

informed prior commonly considered in Bayesian data analysis

(McElreath, 2020). Finally, HalfNormal 0, 1ð Þ was chosen as the prior

distribution for variance parameter to ensure a positive semi-definite

value. When variance increase, the corresponding likelihood

decreases following the bell shape of the positive half of Normal 0, 1ð Þ
distribution. As denoted previously, we normalized all data MEPprek,s and

MEPpostk,s within the range [0,1], therefore Normal 0, 1ð Þ was considered

as a conservative (flat) prior, when modeling the variance.

2.4.2 | Hierarchical Bayesian Model #2: Assessment
of PAS effects on task-related hemodynamic responses

A hierarchical model was proposed to assess PAS effects on task-

related fNIRS hemodynamic responses. This model is very similar to

previous Model #1, the main difference being that the input variables

to the model are now “features” representing hemodynamic

responses to the finger-tapping task. Conventional approaches would

extract amplitudes at a specific time sample of HbO/HbR responses

(e.g., the hemodynamic peak amplitude), or perform a local average of

HbO/HbR responses within a specific time window. However, in this

Model #2, we conducted a procedure to model PAS effects over the

whole time course of HbO/HbR responses to finger tapping.

To do so, after 3D reconstruction using MEM of all 101 sub-

averaged of the fNIRS responses, HbO/HbR time courses were first

averaged within the selected M1 ROI in the selected time range [0 s,

30 s]. To lower the dimension of the input to the model, resulting time

courses were projected on B-splines temporal basis functions

(de Boor, 2001; Gelman et al., 2013; Hastie, 2017). Therefore, hemo-

dynamic responses were expressed as a weighted linear combination

of B-splines basis functions and included as input in our proposed

hierarchical Bayesian model (Figure 3). Please note that Hb refers here

to either HbO or HbR in the model. The model was fitted separately

for each chromophore.

Hbpreobs,s tð Þ�Normal μpres tð Þ, Hbpresd,s tð Þ
� �

μpres tð Þ¼wpre
obs,s,nBn tð Þ

Hbpostobs,s tð Þ�Normal μposts tð Þ, Hbpostsd,s tð Þ
� �

μposts tð Þ¼wpost
obs,s,nBn tð Þ

n¼1, 2, 3,…10, for nth weight

t¼0s to30swith a step of 0:5s

s¼1, 2, 3,…40, for sth session

ð8Þ

where Hbpreobs,s tð Þ is the observed empirical mean of pre-PAS HbO/HbR

responses over all 101 sub-averaged time courses, for a specific

finger-tapping run (e.g., finger-tapping run in pre-PAS25 of Sub01) for

a specific session s at a specific time point t: Hbpreobs,s tð Þ is assumed to

follow a Gaussian distribution with a mean of μpres tð Þ and a scale of

Hbpresd,s tð Þ, where Hbpresd,s tð Þ is the corresponding standard deviation esti-

mated over all 101 sub-averaged time courses. Note that all pre- and

post-PAS HbO/HbR time courses in one session were normalized by

session-specific global maximum absolute amplitude (considering both

HbO and HbR) to be within the range [�1,1], since HbR usually

exhibits negative amplitude. Then, μpres tð Þ representing the mean time

course of the true pre-PAS HbO/HbR for time sample t and session s,

was defined as a linear combination of n¼10 B-spline basis functions

Bn tð Þ (n� t matrix) with the corresponding 10 weights wpre
obs,s,n (n-vec-

tor). Each basis function Bn tð Þ was defined as a third-order polynomial

function. A similar model structure was applied to data and parame-

ters when modeling HbO/HbR responses from the post-PAS finger-

tapping runs.

To model the temporal hemodynamic HbO/HbR responses using

B-spline, we selected 10 knots pivoted at the percentiles of time

sequence t¼0 s to30 s with a step of 0:5 s; therefore, 10 correspond-

ing weights and basis functions, as illustrated in the second column of

Figure 3. Using this Bayesian spline model, not only the averaged time

course of HbO/HbR, but also their corresponding standard deviation

over the 101 sub-averaged, for each time point, were projected in this

“spline space.” This means the averaged time course of HbO/HbR can

be recovered by the linear combination of the mean of each weight

(over 101 sub-averaged) and basis functions Bn tð Þ, whereas the stan-

dard deviation of HbO/HbR time course is reflected by the linear

combination of the standard deviation of each weight (over 101 sub-
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averaged) and Bn tð Þ. Note that the use of spline basis functions in this

study was mainly to reduce the dimensionality of the HbO/HbR time

course from 60 sampling points to 10 weights while preserving the

variability structure to be modeled. Therefore, selecting 10 spline

knots was a trade-off: (1) choosing fewer knots that would result in

distortions of the HbO/HbR time courses, involving too much tempo-

ral smoothness; (2) adding more knots would increase the dimension-

ality of the data after projection. Hence, our empirical choice allowed

us to ensure an exact representation of the whole HbO/HbR time

courses with a minimum dimensionality. Importantly, projecting to

spline space also preserved the autocorrelation of HbO/HbR time

courses per se, which could not be achieved when simply applying the

same hierarchical model to each of the 60 data time points

independently.

We then embedded this spline model of the hemodynamic

response within the same hierarchical model proposed in the previous

section (Model#1), this time replacing variables MEPpreobs,s by the spline

weights wpre
obs,s,n as follows, (see the third column of Figure 3).

wpost
obs,s,n �Normal wpost

true,s,n,w
post
sd,s,n

� �
wpre

obs,s,n �Normal wpre
true,s,n,w

pre
sd,s,n

� �
wpost

true,s,n �Normal μs, σð Þ
μs ¼ intercept i½ � þ group i½ � þactor a,i½ �

� � �wpre
true,s,n

wpre
true,s,n �Normal 0, 10ð Þ

ð9Þ

where wpost
obs,s,n wpre

obs,s,n,w
post
sd,s,n, and wpre

sd,s,n were all calculated from the

corresponding posterior of spline weights estimated from Equation (8).

wpost
obs,s,n and wpre

obs,s,n are referring to the mean of each spline weight for

either pre- or post-PAS HbO/HbR for session s, estimated from the

corresponding posterior of spline weights in Equation (8). The scale of

Gaussian distribution in the measurement error model was estimated

as the standard deviation of the spline weights, wpost
sd,s,n and wpre

sd,s,n,

respectively.

Note that Equation (8) resulted in the estimated posterior distri-

bution of wpost
obs,s,n and wpre

obs,s,n after projecting HbO or HbR time course

to the spline space, the scales of Gaussian distributions used for the

measurement error model in (9) were directly reflected by the stan-

dard deviation of the posterior distribution (denoted as sd in sub-

script). Finally, the intervention, subject index variables, and priors

considered for this model, were similar to those previously introduced

for Model#1, so the PAS effects on HbO/HbR whole time course

were then encapsulated in the hierarchical model of spline weights.

2.4.3 | Hierarchical Bayesian Model #3:
Relationship between PAS effects on task-related
hemodynamic responses and PAS effects on cortical
excitability

In this third model presented in Figure 4, we propose to investigate

the interactions between (1) PAS effects on M1 excitability (PAS

effects on MEP, represented by the slope parameter in Model#1), and

(2) PAS effects on reconstructed hemodynamic finger tapping

responses (PAS effects on HbO/HbR, represented by the slope

parameter in Model#2 for a specific weight wn). We assumed the rela-

tionship between task-related hemodynamic responses and M1 excit-

ability was not intervention specific, therefore, only the index variable

F IGURE 3 The hierarchical model for PAS effects on the whole HbO/HbR time course. HbO/HbR time courses, from 0 to 30 s, before and
after each intervention session were selected as the inputs of the model. They were first projected into the spline space which was composed of
10 predefined basis functions (third-order polynomial with 10 knots). The linear combination of basis function using 10 corresponding weights

w1�10 was able to fully recover the HbO/HbR time course. The resulting pre- and post-PAS spline weights were then fed into the hierarchical
model, similar to Model #1 to estimate the PAS effects on each weight. Therefore, the associations between each pair of weights encapsulated
the PAS effects over the whole time course of HbO/HbR hemodynamic responses
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of session s was used, whereas intervention and actor index i and a

were ignored.

slopeMEP
s½ �

slopeHbs½ �

24 35�MultiNormal
0

0

" #
,Σslope

 !
Σslope ¼Σsession �Rhoslope �Σsession

¼
σMEP 0

0 σHb

 !
1 ρMEP�Hb

ρMEP�Hb 1

 !
σMEP 0

0 σHb

 !
s¼1, 2, 3,…40, for sth session

ð10Þ

The interactions between task-related hemodynamic responses

and cortical excitability were modeled using a multinormal

distribution, in which the parameter ρMEP�Hb in the Rhoslope matrix

denotes the correlation between the two slopes (representing PAS

effects in both linear models). The same model was fitted separately

when investigating either the relationship between MEP and HbO or

between MEP and HbR. slopeMEP
s½ � is the session-specific slope parame-

ter in Model#1. Similarly, slopeHbs½ � (either HbO or HbR) is the session-

specific slope parameter in Model#2 for one of the corresponding

spline weights w1�10. σMEP and σHb are the standard deviations of

slopeMEP
s½ � or slopeHbs½ � , respectively. Note that this model was fitted for

each spline weight separately—therefore, we conducted n¼10 corre-

lation investigations between MEPs and each spline weight for HbO

and then for HbR. The posterior distribution of ρMEP�Hb inferred for a

specific spline weight can then be interpreted as the correlation

between brain excitability and task-related hemodynamic responses

at a specific time period. For instance, w5 reflects HbO/HbR fluctua-

tions around the peak time point of the hemodynamic response. For

the other parameters of the Multinormal distribution, we considered

the same weakly informed priors as those proposed in Model#1 and

Model#2.

2.5 | Prior predictive simulation

To justify our choices of “weakly informed” priors in Model #1, a prior

predictive simulation was conducted and the corresponding results

are presented in Figure 5. The prior predictive simulation consists of a

F IGURE 4 Modeling the relationship between task-related
hemodynamic responses and cortical excitability. For MEP, which
represented the M1 excitability, the previous Model #1 was modified
to be session-specific only. For spline weights, which represented the
features of task-related HbO/HbR time course, the previous Model

#2 was also modified to be session-specific only. The association
between the slopeMEP in MEP model and slopeHb represented by any
of the spline weight of the HbO/HbR time course model were
described by a multinormal distribution

F IGURE 5 Prior predictive simulations for the hierarchical model
of PAS effects on cortical excitability. Each blue line represents one
prior predictive simulation obtained by drawing simultaneously the
intercept and the slope parameters when considering only the priors
proposed in Model#1. For comparison purposes, as a reference, we
first represented a control line suggesting no PAS effect (intercept of
0, slope of 1), then two lines referring to MEP ratio outliers (intercept
of 0 and slope of 0.2 and 3, respectively)
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generative process simply checking what kind of data we would

expect to generate from our hierarchical models, when applying all

possible values of the parameters associated with the proposed prior

distributions of the model, therefore assessing only the generative

properties of our model. Then by comparing the distribution of data

generated by our model, to the domain knowledge, one can assess

whether the proposed priors could be overregulating or not objective

(e.g., too strongly informed). In our study, PAS effects were modeled

using linear regression. To perform prior predictive simulation, we

draw 1000 lines following the prior distributions of the intercept and

slope in the normalized pre-MEP versus post-MEP amplitude plane.

Then the distribution of generated regression lines was compared to

three reference lines summarizing our knowledge of the problem. In

further detail, these three reference lines were featuring a slope of

0.2, 1, and 3, respectively, and an intercept of 0. When the intercept

is set to 0, the slope just refers to the ratio of post- over pre-PAS

MEP amplitude, which was used in conventional analysis to represent

the PAS effects (Cai et al., 2022b). Whereas a slope of 1 would then

correspond to no effect (post-/pre-PAS ratio of 1), the reference

slopes of 0.2 and 3 represented the thresholds for outliers of

extremely small or large MEP ratios (Kriváneková et al., 2013).

2.6 | Hierarchical Bayesian model fitting

In this study, we used the R Version 4.0.3 (R Core Team, 2020) distri-

bution of the Stan Probabilistic programming languages (Stan Develop-

ment Team, 2020a)—RStan package Version 2.21.2 (Stan Development

Team, 2020b) to implement and solve the proposed Bayesian models.

Specifically, the joint posterior distribution was sampled using the

implementation of dynamic HMC in Stan (Betancourt, 2017, 2019), as

an improved version of HMC algorithm (Betancourt & Girolami, 2015;

Neal, 2010). In total, four MCMC chains were used to sample each

model and they were initialized randomly to ensure a better explora-

tion of the joint posterior distribution while allowing diagnosis of the

convergence. Each chain consisted of 2000 samples, including a first

half warm-up phase (1000 samples) for the adaptation of the HMC

parameters. Therefore, when combining all 4 chains, we obtained 4000

samples of each parameter of the models mentioned above, drawn

respectively to estimate the corresponding posterior distributions.

Regarding computation time, using an Intel 10750H laptop CPU and

parallel computation (one core per chain), dynamic HMC took 66 s for

sampling once Model#1, 59 s for Model#2, and 53 s for Model#3

(including compiling time and calculation of the diagnostics).

Diagnosing the HMC sampling process is a crucial step when eval-

uating the accuracy and biases of the estimated posterior distribu-

tions. This is also known as a unique and advanced feature of HMC

when compared to other MCMC algorithms (Roberts &

Rosenthal, 2004). In this study, we considered the diagnostic approach

recommended by Stan to evaluate pathological behaviors of HMC

sampling (Betancourt, 2017; Gabry et al., 2019; Gelman et al., 2020b).

1. Divergent transitions for real samples were drawn after the warm-up

phase. This diagnostic statistic is specific for the HMC sampler,

mainly invigilating the miss-match between the step size of the

MCMC chain and the target distribution geometries (Betancourt

et al., 2017). While sampling a “high curvature” region of the target

distribution, an inappropriate large step size may miss-sample it,

therefore biasing the resulting posterior distribution. MCMC

chains will approach infinite energy immediately—called divergent

transitions—when approaching such regions (Betancourt, 2017;

Neal, 2010). These divergences are recorded and reported by Stan.

Note that divergence is usually related to the parameterization of

the model, especially when involving hierarchical structures.

Parameters may usually be dependent on each other in these

models, therefore, creating a “high curvature” distribution land-

scape, also denoted as Neal's Funnel (Neal, 2003), which is difficult

to sample. In our study, in order to reduce the chances of such

divergences, we considered the reparameterization of the model

into noncentered forms when sampling with HMC.

2. The Energy-Bayesian Fraction of Missing Information (E-BFMI) is a

specific diagnostic statistic for HMC sampler, evaluating the efficiency

of the sampling process (Betancourt, 2016). Poorly chosen parame-

ters of the HMC can decrease the efficiency of the sampling pro-

cess or even result in incomplete exploration of the target

distribution, especially when considering distributions with heavy

tails. Such a behavior can be diagnosed by taking advantage of the

physics feature of HMC, that is, by comparing the marginal energy

density (denoted as πE ) and energy transition density (denoted as

πΔE ) of the chain. When superimposing the histograms of πE and

πΔE , the higher the efficiency, the more overlap between the two

distributions. The Energy Bayesian Fraction of Missing Information

(E-BFMI; Rubin, 2004) is used in Stan to quantify such comparison,

by calculating the statistical expectation of the variance of πΔE

over the variance of πE . Empirically, an E-BFMI value below 0.3 is

considered as problematic (Betancourt, 2016, 2017).

3. bR as a general and primary diagnostic statistic when evaluating con-

vergence of MCMC chains (Brooks & Gelman, 1998; Gelman &

Rubin, 1992). bR is estimated for each parameter of the model as

the ratio of between-chains variance over the within-chain vari-

ance. In detail, the between-chains variance is calculated as the

standard deviation among all chains, whereas the within-chain var-

iance is calculated as the weighted sum of the root mean square of

the standard deviation within every chain. The recommended cri-

teria for convergence is bR<1:05 (Gabry et al., 2019; Vehtari

et al., 2020).

Finally, we used tidyverse package (Wickham et al., 2019) in R (R Core

Team, 2020) for general data wrangling and visualization. Tidybayes

package (Kay, 2020) was used for visualizing the posterior distribu-

tions whereas bayesplot package (Gabry et al., 2019; Gabry &

Mahr, 2020) was used for visualizing the diagnostics of HMC chains.

2.7 | Statistical inferences of the models

We considered two types of statistical inferences in this study. To

infer PAS effects on MEP and HbO/HbR time course, we first applied
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the posterior predictive simulation technique in which the distribution of

MEP after each intervention type was estimated by feeding the fitted

model (e.g., Model#1) with specific pre-intervention MEP values (the

same approach was applied to HbO or HbR time courses in Model #2,

respectively). Then, the distribution of percentage change of post-

intervention MEP relative to pre-intervention MEP was used to infer

the PAS effects on MEP (the same approach was applied to HbO or

HbR time course, respectively). To assess the correlation between

PAS effects on MEP and its effects on HbO/HbR, we directly consid-

ered the posterior distribution of the correlation parameter in

Model#3. Please find further details as follows.

1. When investigating the effect of PAS on MEP, we answer the following

question—what will be the distribution of MEP after a certain PAS inter-

vention when providing a specific pre-PAS MEP amplitude as input? This

approach is more direct and convenient compared to the process of

checking the posterior distribution of each parameter of the model

one by one. This technique is referred to as the posterior predictive

simulation (Gabry et al., 2019; Gelman et al., 2020b). For instance, to

infer the PAS effects on the M1 cortical excitability, we used the aver-

aged MEP (i.e., equal to 1.0 mV, in the original data scale before nor-

malizing) among all pre-PAS runs to represent the group-level pre-

PAS M1 cortical excitability. This amplitude was then substituted into

the fitted Model#1 along with all posterior distributions of parame-

ters (e.g., intervention-specific intercepts and slopes) to estimate a

group-level post-PAS MEP distribution. By comparing the distribu-

tions of the percentage change of this post-PAS MEP distribution rel-

ative to the pre-PAS MEP amplitude, the effects of each intervention

can be inferred. We also performed this type of inference using a set

of different pre-PAS MEPs values, such as 0.2, 0.6, 1.2, 2.2, and

2.8 mV according to the observed range of all individual pre-PAS

MEP (i.e., ranging from 0.1 to 3.0 mV), therefore investigating how

PAS effects could be related to the pre-PAS MEP amplitude. Note

that these pre-PAS MEP amplitudes were also scaled by dividing the

global maximum value ofMEPpre,postobs,s before being fed into the model.

Finally, our resulting posterior predicted post-PAS MEP amplitudes

were rescaled back to the original data scale.

We considered a similar approach to statistically assess the PAS

effects on task-related hemodynamic using the following steps:

(1) select any preferred pre-PAS HbO/HbR time course (e.g., the

averaged HbO/HbR of all pre-PAS runs demonstrated in the

results); (2) calculate the 10 weights corresponding to this specific

time course; (3) inferring the 10 post-weights along with their vari-

ance by posterior predictive simulations of the fitted hierarchical

Model#2; (4) apply a linear combination of 10 post-weight and basis

functions to obtain the distribution of post-PAS HbO/HbR whole

time course. Note that we also calculated the PAS effects on

HbO/HbR by contrasting post-PAS25 or post-PAS10 hemodynamic

responses to the one obtained in post-sham condition, in order to

provide inferences not biased by the control condition (i.e., sham

intervention). To do so, we subtracted from the posterior predicted

distributions of post-PAS25 HbO/HbR time courses (or post-

PAS10) the posterior predicted post-sham HbO/HbR time course.

Therefore, the final inference of PAS effects on post-PAS HbO/HbR

whole time course can be considered as unbiased effects relative to

the control condition (i.e., sham).

2. The correlation between M1 cortical excitability and task-related

hemodynamic responses can be estimated by directly inferring the

posterior distribution of the correlation parameter ρMEP�Hb per

se. Note that this correlation distribution was estimated for each

spline weight separately, therefore, the resulting posteriors can be

used indirectly to infer the excitability association for each specific

time point of the HbO/HbR time course. For instance, the poste-

rior distribution of the correlation between slopeMEP
s½ � and slopeHb w5ð Þ

s½ �
indicated the relationship between the peak period (e.g., w5 refer-

ring to a few seconds around the expected peak timing of the

hemodynamic response) of task-related HbO/HbR and M1 cortical

excitability. Moreover, we also conducted typical frequentist infer-

ences of this relationship using the linear fit and Pearson's correla-

tion over all 40 sessions on the resulted mean of posterior

distributions of slopeMEP
s½ � and slopeHb w5ð Þ

s½ � , for both HbO and HbR.

Note that for summary statistics, we reported the median and the

median absolute deviation (i.e., madsd), which was suggested by

Gelman et al., 2020a and estimated as follows:

madsd ¼1:483 �medianni¼1 zi�Mj j, where zi is a certain value of a set of

values zi¼1,2,3…n and M is the median of all zi. The madsd is a more uni-

versal representation of the variance, which is comparable to the stan-

dard deviation, without considering the parametric/nonparametric

distribution of zi and is more computationally stable.

3 | RESULTS

3.1 | Prior predictive simulation

As illustrated in Figure 5, the resulting prior predictive simulation lines

were distributed symmetrically around the control line suggesting no

PAS effect (i.e., intercept = 0, slope = 1). This means our priors exhib-

ited no preference toward a slope <1 or >1. Moreover, within the

post-PAS MEP versus pre-PAS MEP plane, the area spanned by all

simulated lines covered a larger area than the area enfolded by the

reference lines, 0 intercepts, and the slope ranging from 0.2 to 3.0.

These results confirm that the priors in our hierarchical model are not

biased to the expected PAS effect and are more conservative than the

conventional MEP ratio thresholding approach. Note that similar prior

predictive simulation results could also be expected for PAS effects

on HbO/HbR responses, since fNIRS responses were normalized simi-

larly to MEP values and we also considered similar priors in the linear

regression Models #1 and #2.

3.2 | Diagnosis of HMC

All of the models considered in this study resulted in 0 divergences

reported by Stan, indicating they were well parameterized, and HMC
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chains explored sufficiently well the target distribution

(Betancourt, 2017; Gabry et al., 2019; Gelman et al., 2020b). Figure 6

reports the evaluation of diagnostic statistics of bR and E-BFMI. In each

column of Figure 6, a specific model sampling process for a specific

model is being diagnosed (see further details in Figure 6 caption). The

first row illustrates the histogram of bR for all parameters in each corre-

sponding model. No parameters resulted in bR>1:05 indicating the

corresponding HMC chains converged properly. The second row dem-

onstrated the superimposed histograms of πE (i.e., marginal energy

density) and πΔE (i.e., energy transition density), which overlapped well

for all models. This evaluation was also quantified by reporting E-

BFMI values for each model, which were all smaller than 0.3.

3.3 | PAS effects on cortical excitability

When considering Model#1, the estimated regression lines (using

the averaged intercept and slope parameters calculated from their

posterior distributions) linking pre- and post-PAS MEPs are reported

in Figure 7a for each intervention. The regression line estimated for

sham intervention (black line) was found, as expected, between the

regression lines estimated for PAS25 (red line) and PAS10 (blue

line), and it was almost identical to the reference line reporting no

effect (intercept = 0, slope = 1). Observed pairs of post-PAS MEP

and pre-PAS MEP mean amplitude over all trials are presented as

solid points (observed data), whereas corresponding estimated

“true” amplitudes from posterior distributions are presented as

empty points. The black lines connecting each pair of solid

(observed mean) and empty (estimated “true”’ mean) points illus-

trate the shrinkage, also known as the result of partial pooling

obtained when considering hierarchical Bayesian modeling. This

demonstrated the regularization property of the model, where the

estimated ‘true’ MEPs corresponding to each intervention group

shrank toward the corresponding regression line. Moreover, when

considering the variance of the MEPs, the larger the MEP variability

of a certain run, the more shrinkage there was.

Results of posterior predictive simulation at the group-level are

presented in Figure 7b. Considering a pre-PAS MEP amplitude of

1.0 mV, the posterior distribution of relative changes of post-PAS

MEP amplitudes (in %) after each intervention. PAS25 intervention

resulted in a substantial relative increase in post-PAS MEP amplitude

(median�madsd = 30:6%�14:6%), consisting of a posterior probabil-

ity of 0.97 for obtaining an increase in MEP amplitude. The posterior

distribution of post-sham MEP amplitude exhibited a slight increase

of 2:3%�14:5%. The effects of PAS10 were subtle, showing a slight

shift towards the negative side consisting of a relative decrease of

�1:80%�11:0%, and a probability of 0.57 of obtaining a decrease in

MEP amplitude. Individual-level inferences are presented in Figure S1,

where both PAS25 and PAS10 effects are showing a relatively large

between-subject variability.

F IGURE 6 Diagnostic statistics of key features of the models considered in this study. Diagnostic statistics for (a) Model#1—PAS effects on
MEP amplitude, (b) Model#2—PAS effects on w5 of task-evoked HbO, (c) Model#2—PAS effects on w5 of task-evoked HbR, (d) Model#3—
correlation between PAS effects on MEP and PAS effects on w5 of task-evoked HbO, and (e) Model#3—correlation between PAS effects on MEP
and PAS effects on w5 of task-evoked HbR. The first row presents the histogram of bR values for all parameters among all chains of each model.
No bR value was above 1.05, suggesting that all chains converged well. The second row presents the superimposed distributions of the marginal
energy density πE and the energy transition density πΔE for all Hamiltonian Monte Carlo (HMC) chains sampled for each model. E�E represents
the centered energy. The corresponding quantification metric energy-Bayesian fraction of missing information (E-BFMI) was smaller than 0.3,
indicating a good overlapping between the two distributions. Similar results (data not shown) were found for other weights
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Figure 8 presents the effects of simulating different pre-PAS MEP

amplitudes as inputs, on the relative change of post-PAS MEP ampli-

tude for each intervention, at the group level. For both PAS25 and

PAS10, the higher the pre-PAS MEP amplitude was, the higher the

relative change in MEP amplitude was. In further details, PAS25

resulted in an increase of post-PAS MEP amplitude of

þ26:2%�15:7% (Prob¼0:95), þ31:4%�15:1% (Prob¼0:97),

þ33:5%�17:7% (Prob¼0:96) and þ33:9%�18:7% (Prob¼0:95)

when considering an input pre-PAS MEP amplitude of 0.6, 1.2, 2.2,

and 2.8mV, respectively. Similarly, PAS10 resulted in an increase of

post-PAS MEP amplitude of þ4:2%�18:9% (Prob¼0:59Þ, when con-

sidering an input pre-PAS MEP amplitude of 0.6mV, followed respec-

tively by decreases of�3:1%�10:5% (Prob¼0:62), �6:5%�12:6%

(Prob¼0:70) and �7:51%�13:8% (Prob¼0:71) when considering an

input pre-PAS MEP amplitude of 1.2, 2.2, and 2.8mV. This important

finding of our proposed Bayesian Model#1 suggests that even with-

out increasing the TMS stimulation intensity during PAS, simply

increasing the spTMS intensity considered to measure changes in

excitability could have revealed the expected PAS effects more

clearly, while reducing some variability in the data. On the other hand,

when assessing this effect on sham, we obtained similar distributions

of relative changes in post-PAS MEP amplitude, all symmetric around

0%, consisting of relative changes of 4.6%, 2.0%, 0.6%, and 0.2%,

when considering a pre-PAS MEP amplitude of 0.6, 1.2, 2.2, and

2.8mV, respectively. Overall, when considering pre-PAS MEP ampli-

tude of 0.2mV for each intervention, we found a large level of

uncertainty in spTMS responses, suggesting that small MEP amplitude

induced by spTMS should be avoided when assessing the level of

brain excitability.

3.4 | PAS effects on task-related hemodynamic
responses

Figure 9 shows the PAS effects on the whole time course HbO/HbR.

Results are reported here as a contrast between the intervention of

interest (PAS25 or PAS10) and sham condition (i.e., subtraction of cor-

responding posterior distributions). When considering the group level

averaged pre-PAS HbO/HbR responses (normalized to [�1, 1]) as

input for posterior predictive simulations (dashed red and blue curves

for HbO and HbR in Figure 9a), we found that PAS25 resulted in a rel-

ative increase of HbO amplitude (solid red curve) and negative

decrease in HbR amplitude (solid blue curve), mainly around the

expected peak of the hemodynamic response (from 8 s to 16 s, see

Figure 9a). When comparing absolute peak amplitudes, the probability

of increasing the hemodynamic response after PAS25 was 0.80 for

HbO response and 0.82 for HbR response. After PAS10, our results at

the group level suggested a subtle relative decrease of HbO and HbR

absolute amplitudes around the peak of the hemodynamic response.

The probability of obtaining a relative decrease in absolute peak

amplitudes after PAS10 was 0.66 for HbO response and 0.48 for HbR

response. Interestingly, PAS10 demonstrated a clear absolute

F IGURE 7 PAS effects on cortical excitability. (a) the regression lines of each intervention estimated by the mean of intercept and slope from
the corresponding posterior distribution, for PAS25 (red), PAS10 (blue), and sham (black). Pre- and post-PAS MEP amplitudes were normalized by
dividing by the global maximum amplitude of all 80 MEP values. Shadow areas represent the 50% interval estimated from the posterior
distribution of the regression parameters. Solid points correspond to pairs of averaged pre-/post-PAS MEP amplitudes over all trials of each
specific run. Empty points represent the “true” amplitude of the corresponding pre-/post-PAS MEP pair estimated using the proposed
hierarchical Bayesian Model#1. The black bar connecting each solid point to the corresponding empty point illustrates the shrinkage process of
Bayesian inference of the hierarchical model. (b) Posterior predictive simulations of post-PAS MEP amplitudes obtained when considering a given
pre-PAS MEP amplitude of 1 mV as input, corresponding to the averaged pre-PAS MEP amplitude over all 40 sessions. The blue area represents
the probability of obtaining a relative increase (in %) for the post-PAS MEP amplitude when compared to the pre-PAS MEP amplitude, whereas
the pink area represents the probability of obtaining a relative decrease (in %). The black dot represents the median of each posterior distribution,
and the surrounding horizontal lines show the corresponding 50% and 90% credibility intervals
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amplitude decrease within a period ranging from the peak to the end

of the response (11–25 s) for both HbO and HbR. The aforemen-

tioned observations can be further illustrated by studying the poste-

rior distribution of the response for specific time points along the

window of the hemodynamic response. These results are reported in

Figure 9b,c, assessing the hemodynamic response changes after PAS

using posterior distributions for each selected time point. For

instance, Figure 9b,c illustrate the distributions of percentage changes

in HbO (HbR, respectively), at each time point (i.e., 4, 8, 10, 12, 14,

and 18 s) after PAS25 and PAS10, relative to the corresponding value

at the same time but before the interventions.

3.5 | Relationship between PAS effects on task-
related hemodynamic responses and PAS effects on
cortical excitability

Inferences on the relationship between PAS effects on task-related

hemodynamic responses and PAS effects on M1 excitability are pre-

sented in Figure 10a. We are reporting the posterior distribution of

correlations between the slope of MEP amplitudes (post-PAS versus

pre-PAS) and the slope of spline weight w5 (post-PAS versus pre-PAS)

for either HbO or HbR task-related responses. Since our previous

observations of the PAS effects were conducted for the whole

HbO/HbR time course (Figure 9), we selected w5 as the spline weight

of interest. Indeed, w5 spline corresponded to the basis function exhi-

biting a peak at 12.5 s, therefore consisting in the closest temporal

pattern when compared to the expected hemodynamic response

reported in Figure 9. The probability of obtaining a positive correla-

tion between PAS effects on MEP amplitude and PAS effects on HbO

response was 0.77. The probability of obtaining a positive correlation

between PAS effects on MEP amplitude and PAS effects on HbR

response was 0.79. The corresponding 90% highest posterior density

interval (HPDI) of this correlation was [�0.30, 0.88] for HbO; and

[�0.22, 0.84] for HbR. Additionally, the linear fits between the poste-

rior mean of slopeMEP
s½ � and the posterior mean of slopeHb w5ð Þ

s½ � obtained

for each session s among all 40 sessions is presented in Figure 10b.

The corresponding estimated Pearson's correlation was 0.58 between

MEP and HbO (p< .0001, CI95% = [0.33, 0.75]) and 0.56 between

MEP and HbR (p< .001, CI95% = [0.30, 0.74]).

Figure 11 illustrates the posterior distribution of the correlation

between slopeMEP
s½ � and slopeHb wnð Þ

s½ � , when considering each spline

weight for n¼2, 3, 4, 5, 6, 7, and8, respectively. The closer the corre-

sponding peak of the spline basis function associated with the weight

wn was to the expected peak of the HbO/HbR response, the higher

the correlation between slopeMEP
s½ � and slopeHb wnð Þ

s½ � was. In further

details, the median of these correlation values was respectively

�0.05, 0.13, 0.28, 0.31, 0.13, �0.10, and 0.01 when considering

wn¼2,3,4,5,6,7,8 for HbO; and a median value of 0.06, 0.17, 0.31, 0.32,

0.15, �0.06, and 0.03 when considering wn¼2,3,4,5,6,7,8 for HbR, there-

fore confirming this trend. Our results are suggesting that the

expected positive correlation between PAS effects on task-related

hemodynamic responses and PAS effects on M1 excitability appeared

mostly around the peak of HbO/HbR time course (e.g., w5), in agree-

ment with PAS effects on hemodynamic responses, previously

reported in Figure 9. On the other hand, for the earliest aspects of the

hemodynamic response (modeled using w2,3) as well as for the end of

the response (modeled using w7,8), we found a posterior correlation

with a median close to zero, suggesting no relationship between

slopeMEP
s½ � and slopeHb wnð Þ

s½ � for the corresponding time periods of the

hemodynamic response.

F IGURE 8 Effects of spTMS intensity on PAS assessment. We
applied posterior predicting simulations when considering five levels
of pre-PAS MEP amplitudes input, to evaluate the impact of five
levels spTMS intensities. Posterior distributions of the corresponding
relative changes in post-PAS MEP amplitude relative to pre-PAS MEP
amplitudes are presented in each row. The expected effects of PAS25

(positive % increase) and PAS10 (negative % decrease) became clearer
when increasing the single pulse TMS (spTMS) intensity. On the other
hand, when considering the sham intervention, we found no effect of
relative changes in post-PAS MEP amplitude, for all intensity levels,
whereas all posterior distribution remained symmetric at around 0%
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4 | DISCUSSION

4.1 | PAS effects on cortical excitability

Using hierarchical Bayesian modeling, we first investigated PAS

effects on cortical excitability, which was measured using MEP ampli-

tude induced by spTMS. Probability distributions of the relative

changes (in %) of post-PAS MEP amplitudes, when compared to pre-

PAS MEP amplitudes, were estimated using posterior predictive simu-

lations. Our results showed a substantial increase in MEP amplitude

after PAS25, a subtle decrease after PAS10, and a subtle increase

after control (sham). These results are consistent with previous work

performed with conventional analysis, calculating the ratio between

the averaged MEP amplitude after PAS over the one before PAS (Lee

et al., 2017; Stefan, 2000; Suppa et al., 2017; Tsang et al., 2015;

Wolters et al., 2005). Therefore, when the MEP ratio was larger than

1, it indicated an excitability increase and vice versa. In contrast, here

we applied a full Bayesian workflow using an advanced sampling algo-

rithm. There are several methodological advantages of our proposed

procedure, as listed below: (1) linear regression allowed the differenti-

ation of interventions and subjects, hence modeling the heterogeneity

of intervention effects exhibited in different groups of data; (2) involv-

ing intercept in the linear regression reduced the influences of low

MEP amplitudes runs when compared to the conventional ratio calcu-

lation of post- over pre-PAS MEPs; (3) the variability of MEP ampli-

tudes were considered in the estimation of the PAS effects rather

than only using the averaged amplitudes of each run and ignoring the

variance; (4) parameters of the model were estimated by Bayesian

F IGURE 9 PAS effects on the whole time course of HbO/HbR. (a) Posterior predictive simulations of post-PAS HbO/HbR time course (solid
curves: HbO in red and HbR in blue) when considering pre-PAS HbO/HbR input defined as the group-level averaged pre-PAS HbO/HbR
response (normalized to [�1,1]) over all 40 sessions (dashed curves: HbO in red and HbR in blue). The shadow area represents the 90% credibility
interval of resulted post-PAS HbO/HbR responses. Note that sham effects were subtracted from PAS25 and PAS10 to obtain so-called
“unbiased” effects. The overlapping of curves (solid and dashed) in the sham panel are therefore shown as a sanity check of the contrast.
(b) Posterior distributions of the corresponding relative changes inferred at a set of different time points along the hemodynamic response (i.e., 4,
8, 10, 12, 14, and 18 s). Post-PAS25 HbO amplitude relative to pre-PAS25 HbO amplitudes (red), post-PAS25 HbR amplitude relative to pre-
PAS25 HbR amplitudes (blue). The x-axis is the % changes relative to the value (HbO or HbR) before PAS. (c) Similar posterior distributions as in
(b) but for PAS10 results
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inferences using dynamic HMC algorithm sampling posterior distribu-

tions using a hierarchical structure and weakly informed priors, there-

fore, allowing partial pooling to reduce the estimation uncertainty;

(5) flexible and intuitive statistical inferences of the modeled PAS

effects were obtained by conducting posterior predictive simulations

from the model learned from the data. This means that by giving any

pre-PAS MEP amplitude and intervention index, the distribution of

the corresponding group-level post-PAS MEP amplitude could be esti-

mated; Finally, (6) the estimated PAS effects were reliable and infor-

mative, as suggested by their posterior probability distributions, rather

than considering only a statistical significance test providing a dichot-

omous output.

Moreover, our model also allowed assessing the effects of MEP

amplitude itself on the effect size of the resulted excitability changes

modulated by PAS. In Figure 8, we reported a pattern suggesting that

the higher the MEP amplitude was, the larger the effect size of both

PAS25 and PAS10. This pattern was not biased when compared to

the sham session, which showed no effects for different pre-PAS

MEP amplitudes. Our results are in line with previous work on meta-

plasticity and state-dependence. We refer the reader to previous

work on the topic for further details (Siebner et al., 2004; Silvanto &

Pascual-Leone, 2008). It is important to mention that when consider-

ing posterior predictive simulation, the intensity of the TMS pulse dur-

ing the intervention session (i.e., during PAS25 or PAS10 or sham) did

not change. This means that the underlying intervention effects did

not change. Therefore, considering spTMS as the assessment proce-

dure to measure brain excitability, our results are suggesting that a

high enough spTMS intensity might help to measure more accurately

and reliably PAS effects. Please also note that the pre-PAS MEP

amplitudes (0.2, 0.6, 1.2, 2.2, and 2.8 mV) used in this posterior pre-

dictive simulation were selected based on the observed range of all

individual pre-PAS MEP in our data (ranging from 0.1 to 3.0 mV). This

observed range of MEP in our data from 16 subjects is also consistent

with the spTMS evoked MEP distribution estimated by a recent meta-

analysis study in which 687 healthy subjects' data were considered

among 35 studies (Corp et al., 2021). More importantly, this meta-

F IGURE 10 The relationship between PAS effects on task-related hemodynamic responses and PAS effects on cortical excitability. (a) The
posterior distribution of the correlation between slopeMEP

s½ � and slopeHb w5ð Þ
s½ � for HbO (top) and HbR (bottom). The blue area represents the

probability of observing a positive correlation (ρ>0). The black dot represents the mode of each posterior distribution, and the surrounding lines
show the corresponding 50% and 90% credibility intervals. (b) Linear fit (blue line) between the posterior mean of slopeMEP

s½ � and the posterior
mean of slopeHb w5ð Þ

s½ � obtained for all 40 sessions (each represented by a grey dot). The grey area indicates 95% confidence interval of the
regression. Estimated Pearson's correlation between slopeMEP

s½ � and slopeHb w5ð Þ
s½ � over the 40 sessions together with corresponding p values and 95%

confidence intervals are shown on top of each panel. The marginal histograms and fitted density functions are shown on the side of each
corresponding axis
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analysis study also investigated the relationship between the baseline

MEP (referred to as the test stimulation) amplitude and the short

interval intracortical inhibition (SICI) by pooling data from 15 studies

consisting of 295 healthy subjects. They confirmed a significant nega-

tive relationship between the baseline MEP amplitude and SICI, sug-

gesting that “SICI is best probed by high relative test stimulation

intensities” (Corp et al., 2021). This result is also concordant with our

finding on PAS10, in which the higher the pre-PAS MEP (test stimula-

tion) was, the more PAS10 was exhibiting clear inhibitory effects

(decreased post-PAS MEP compared to the pre-PAS MEP). This con-

sistency demonstrated the power of our Bayesian analysis to infer

similar findings from relatively small sample-sized data when com-

pared with meta-analysis results consisting of a much larger

sample size.

4.2 | PAS effects on the whole HbO/HbR time
course of finger tapping response

To the best of our knowledge, this study demonstrated for the first

time PAS effects on the whole time course of task-related HbO/HbR

time courses. In contrast, only a few time segments within selected

time windows were considered in previous studies, in which HbO or

HbR amplitudes were just averaged at those selected time segments

and compared before and after interventions (Chiang et al., 2007;

Yamanaka et al., 2010). In our previous study using conventional data

analysis (Cai et al., 2022b), we also simply averaged the HbO/HbR

amplitude within a 5 s long time window centered around the peak of

the hemodynamic response to represent the total amount of hemo-

globin delivered to the region of interest. The Bayesian approach pro-

posed in this study brings more insight into the investigation of PAS

effects on hemodynamics, considering not only the peak amplitude

before and after interventions, but whole HbO/HbR time courses. For

instance, in Figure 9b,c, we can quantify the percentage change of

HbO/HbR amplitude after either PAS25 or PAS10 interventions using

their estimated probability distributions. Such quantification can be

performed at any time point of interest (e.g., 4, 8, 10, 12, and 14 s in

Figure 9b,c). These results demonstrated the benefits of Bayesian

approach when compared to conventional statistics—quantifying any

effect of interest using its distribution. Visual inspections of results

presented in Figure 9a suggest that PAS effects are indeed more pro-

nounced around the peak of the expected hemodynamic response.

This is expected if we can assume that the underlying hemodynamic

response function (HRF) is not much affected by interventions. If so,

the expected task-related hemodynamic response would result from a

convolution with a higher or lower amplitude boxcar function repre-

senting the amount of excited or inhibited neuronal activity patterns

(Sotero & Trujillo-Barreto, 2007). Therefore, the effect of intervention

should appear mostly around the peak, and the closer to the peak the

higher the effect size. Consequently, averaging HbO or HbR ampli-

tude within a certain time window would “dilute” the estimation of

the effect of interest, especially when considering the effect size was

F IGURE 11 Posterior distributions of the correlations between slopeMEP
s½ � and slopeHb wnð Þ

s½ � . The posterior distribution of the correlation between
slopeMEP

s½ � and slopeHb wnð Þ
s½ � , when considering each spline weights for n¼2, 3, 4, 5, 6, 7 and8 for HbO (left) and for HbR (right). The prior distribution

of the correlation value (i.e., Lewandowski–Kurowicka–Joe [LKJ] prior) is presented on the first row and is clearly exhibiting a symmetric
distribution around the 0 correlation value. We found a trend suggesting that the closer the corresponding peak of the spline basis function
associated with the weight wn was to the expected peak of the HbO/HbR response, the higher the correlation between slopeMEP

s½ � and slopeHb wnð Þ
s½ �

was. w5 showed the highest correlation values for both HbO and HbR as it corresponded to the spline basis function exhibiting the peak at 12.5 s,
therefore the closest temporal pattern when compared to the expected hemodynamic response. In contrast, the earliest aspects of the
hemodynamic response (modeled using w2,3) and the end of the response (modeled using w7,8), exhibited posterior distributions that are almost
identical to the prior, therefore suggesting no effect
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not large. For instance, we found an HbO increase of around 25%

after PAS25 (Figure 9a). Further averaging in time HbO response

would reduce this percentage.

The fact that PAS intervention effects could be observed mainly

around the peak of hemodynamic time courses may also explain the

difficulty of investigating similar questions using fMRI. Indeed, a typi-

cal BOLD signal is sampled around 0.5 Hz using standard fMRI

sequences (as opposed to 10 Hz in our fNIRS data). Such low tempo-

ral resolution may not be sufficient to sample well the effects around

the peak and could possibly explain why no PAS effects were found

on BOLD signal changes in the PAS and fMRI study reported by Krivá-

neková et al. (2013). Besides, depending on how well fMRI BOLD

samples and the actual peak of the hemodynamic response were

phased-locked, the mismatch between the time of BOLD signal sam-

pling and the actual peak of the response may introduce some con-

founds, when comparing BOLD signal changes before and after PAS

interventions.

Another benefit of modeling the whole HbO/HbR time course is

the possibility to offer alternative interpretations of PAS effects. For

instance, our results in Figure 9 showed a slight time shift for HbO

after PAS25 and a larger one after PAS10. Indeed, after PAS10 inter-

vention, the peak time of HbO response shifted from 12 s in pre-

intervention to 10 s in post-intervention. The decrease of HbO ampli-

tudes after PAS10 was also mainly exhibited from 11 to 25 s of the

response time courses. These observations may suggest a more com-

plex underlying mechanism of the effect of neuronal plasticity on neu-

rovascular coupling. Further analysis using the deconvolution

technique (Machado et al., 2021) to estimate the underlying hemody-

namic response function associated to these hemodynamic responses

may help us to better investigate such a potential mechanism but this

was beyond the scope of this study.

It is important to mention that we did not perform a specific anal-

ysis for every time sample of the hemodynamic response. We regular-

ized and reduced the dimensionality of the problem by projecting

HbO/HbR responses on B-splines, as temporal basis functions. There-

fore, PAS effects on hemodynamic responses were modeled using

only 10 spline weights instead of 60 data points, whereas the actual

post-PAS HbO/HbR time courses could then be fully retrieved from

the estimated weights and the spline basis functions. The choice of

the number and locations of knots might have limited the “resolution”
of our proposed correlation analysis. More advanced Bayesian spline

approaches have been proposed, such as the penalized spline (P-

spline; Eilers & Marx, 2010; Ventrucci & Rue, 2016), which introduces

an extra prior to regularize the number of effective knots. Nonpara-

metric time series modeling techniques were also proposed in this

context, without assuming the location of the knots along the time

course. For instance, Gaussian process regression (Neal, 1998) charac-

terizes the time course, such as the hemodynamic response, as an

unknown function. Samples of the time course are then drawn from a

multinormal distribution providing a full covariance matrix of all time

samples. Our analysis could benefit from these nonparametric

approaches to avoid limitations associated with the choice of the

knots, but this was beyond the scope of this study.

It is also worth mentioning that these results of PAS effects on

the whole HbO/HbR time courses also benefit from accurate time

courses estimated by our fNIRS reconstruction workflow (Cai

et al., 2021, 2022a). In this workflow, the fNIRS acquisition montage

was personalized in order to maximize detection sensitivity to a tar-

geted ROI. Meanwhile, the MEM framework adapted from our previ-

ous works in the context of electro-/magneto-encephalogram source

imaging (Abdallah et al., 2022; Chowdhury et al., 2013, 2016; Grova

et al., 2016; Hedrich et al., 2017; Heers et al., 2016; Pellegrino

et al., 2018, 2020) for conducting fNIRS reconstruction (Cai

et al., 2021, 2022a) also ensured accurate estimation of HbO/HbR

time courses from reconstructed spatiotemporal maps. For instance,

delays between HbO and HbR peak times were around 1 s (Figure 9),

which is consistent with our previous findings (Cai et al., 2022b) and

fNIRS literature (Jasdzewski et al., 2003; Steinbrink et al., 2006).

4.3 | Relationship between PAS effects on task-
related hemodynamic responses and PAS effects on
cortical excitability

We finally investigated the relationship between PAS effects on task-

related hemodynamic responses and PAS effects on cortical excitability

along the whole HbO/HbR time course. Here, the benefits of the

Bayesian approach consist of two aspects. First, the estimation of PAS

effects on MEP and HbO/HbR was more accurate by taking advantage

of the partial pooling feature of hierarchical Bayesian Model #1 and

Model #2. Therefore, when we applied a conventional Pearson's corre-

lation analysis using the mean PAS effects on MEP and HbO/HbR

(values on x- and y-axis in Figure 10b), summarized from their poste-

riors while ignoring the variance, we found statistically significant cor-

relation values. This new analysis, applying Pearson's correlation on

estimated posterior mean, showed an improvement when compared to

our previous inferences (Cai et al., 2022b), in which we reported non-

significant correlations when considering a fully conventional analysis

approach. Our new finding is therefore illustrating the importance of

extensive handling of data variability to conduct more accurate statisti-

cal inference. Second, when considering the results shown in

Figure 10a, Bayesian analysis was more informative since we could

estimate the whole posterior distribution of the correlation instead of

providing just a single correlation value in Figure 10b. Therefore, the

uncertainty of the correlation value was better estimated when com-

pared to conventional analysis. This is often considered a unique

advantage of Bayesian data analysis. Despite a rather small sample size

and the large variability of PAS effects, the hierarchical Bayesian

models demonstrated a high probability of positive correlations

between MEP and hemodynamic slopes (around the peak of HbO and

HbR responses). This finding is consistent with previous results

reported in animal studies (Allen et al., 2007; Seewoo et al., 2019). The

reliability of our approach was further confirmed by the small correla-

tion values between PAS effects on MEP and hemodynamic responses,

when considering other time windows, such as the start and the end of

the hemodynamic response (Figure 11).
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4.4 | HMC sampling and diagnostic

Taking advantage of dynamic HMC to sample the hierarchical Bayes-

ian models in this study, we were able to carefully diagnose the patho-

logical behavior of MCMC sampling chains (Betancourt, 2017, 2019).

This diagnostic procedure is an essential step when applying Bayesian

data analysis (Gelman et al., 2020b). To allow accurate and reliable

inferences, MCMC chains must explore well the typical set of the pos-

terior distributions, in which most of the probability density is con-

tained. For instance, the convergence of MCMC chains needs to be

confirmed and quantified to ensure full explorations of posterior dis-

tributions. When inappropriate parameters of the chain are chosen

(e.g., the step size), abnormalities such as divergences should be

detected to avoid eventual sampling biases. In our study, we reported

several diagnostic statistics for all key components of three models

using both visualization and quantified metrics, following the recom-

mendations of the Stan team (Gabry et al., 2019; Gelman et al., 2013;

Stan Development Team, 2020a). The proposed diagnostic statistics

considered here also constitute a unique feature of HMC sampling,

when compared to conventional MCMC algorithms such as Gibbs

sampling (Gelfand & Smith, 1990; Geman & Geman, 1984). HMC is

also considered to be more accurate by taking advantage of sampling

all parameters at the same time, compared to Gibbs sampling in which

parameters are sampled alternatively one after the other which may

bias the resulting posterior distribution due to the inherent correla-

tions between parameters. Overall, the diagnostic analysis of the sam-

pling process in this study is suggesting that our inferences are built

upon well-sampled posterior distributions. Similar HMC sampling and

diagnostic approaches were also reported in several recent studies,

such as a Bayesian virtual epileptic patient to model the spread of epi-

leptic activity (Hashemi et al., 2020); a Bayesian latent spatial model

for mapping biomarkers of the progression of Alzheimer's disease (Dai

et al., 2021); the Bayesian multilevel modeling to improve statistical

inferences in fMRI analysis (Chen et al., 2021; Chen, Bürkner,

et al., 2019; Chen, Xiao, et al., 2019) and a hierarchical Bayesian

model to investigate mechanisms of reinforcement learning and

decision-making (Ahn et al., 2017).

4.5 | Limitations and perspectives

We only involved one model for each investigation in this study. It is

indeed recommended to construct multiple models based on different

hypotheses of the same question and then quantitatively compare

these models using techniques such as cross-validation to choose the

most reliable one, providing a trade-off between overfitting and

underfitting (Gelman et al., 2020b). For instance, we proposed a linear

relationship between cortical excitability and hemodynamic responses

evoked by a finger-tapping task. However, such an association might

reach a plateau when excitability changes are either too low or too

high, suggesting some nonlinear effects. Moreover, the neurovascular

coupling process includes different aspects like excitatory and inhibi-

tory neurons, glial cells, the vasculature components like pericytes

(Iadecola, 2017). The interaction between inhibitory and excitatory

neurons, the glial cell mediated signaling pathways, and their role in

neurovascular coupling has been highly simplified in this linear model.

A more detailed metabolism model involving blood flow dynamics

(Buxton, 2021) may improve our inferences by comparing it with the

model proposed in this study. Another Bayesian approach based on

the dynamic causal modelling (DCM) has been applied to both fMRI

(Bönstrup et al., 2016; Tak et al., 2018; Tik et al., 2018) and fNIRS

(Bulgarelli et al., 2018) data to study the hemodynamic response and

connectivity in relation to the brain activity modulated by different

experiment conditions. Such a casual inference may improve the

model specification of the relationship between cortical excitability

and task-evoked hemodynamic responses. Considering advanced

model comparisons, applied within a Bayesian framework, could be of

great interest but was out of the scope of this study. Moreover, we

conducted TMS following the recommendations of the International

Federation of Clinical Neurophysiology (Rossi et al., 2009), which

means our data set should not explore extreme conditions between

excitability and hemodynamic responses, which are more likely to

exhibit eventual nonlinear relationships.

Another limitation of our study was that M1 excitability was not

assessed at the same time as the finger-tapping task, but sequentially,

hence we could not apply a fusion model to pool the relationship

between cortical excitability and hemodynamic responses at the

single-trial level. We considered the mean and variance of MEP ampli-

tudes and HbO/HbR time courses within the whole session as the

input for the correlation analysis. This might reduce the resulted cor-

relation values considering additional fluctuations of the baseline

excitability and hemodynamic responses. However, since it has been

shown that PAS modulated excitability changes could last for more

than 30 min (Lee et al., 2017; Stefan, 2000), we are confident that our

investigation of cortical excitability using MEP after spTMS and

hemodynamic responses elicited by finger tapping was indeed still

within this PAS effective duration window. In this study, we opted for

a sham setup that does not include a somatosensory input, which is

fully associated with a real TMS stimulation. Some studies have sug-

gested using a different coil orientation, but biological effects of TMS

cannot be ruled out in this case (Thielscher et al., 2011). More realistic

sham procedures have been proposed to better control for the sen-

sory input but, as of today, there is no consensus on the perfect sham

setup for TMS (Gordon et al., 2021; Takano et al., 2021).

As perspectives for this study, it would be of great interest to

investigate the relationship between spTMS evoked HbO/HbR and

the corresponding MEP amplitude when occurring exactly at the same

time, therefore, preventing confounds introduced by fluctuations of

excitability and hemodynamic responses along the time. Such an

investigation may help us in understanding the integrity of neurovas-

cular coupling during transient cortical excitability changes induced by

spTMS. Furthermore, the effect of stable cortical excitability changes

(induced by PAS) on this integrity can be explored by comparing the

spTMS evoked hemodynamic responses before and after PAS inter-

ventions. Additionally, since fNIRS data were recorded during the

whole experiments (i.e., also during spTMS and PAS intervention), our
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data would allow assessing dynamically the evolution of MEP and

hemodynamic responses during PAS. Such analysis would require

modeling fNIRS response using advanced deconvolution techniques

to handle the overlapping of TMS pulses-induced hemodynamic

responses (Machado et al., 2021), and will be considered in our future

investigations.

5 | CONCLUSION

In this study, we proposed hierarchical Bayesian modeling to investi-

gate the relationship between motor task-related hemodynamic

responses and M1 excitability. When compared with a sham control

condition, a substantial M1 excitability increase was found after

PAS25, and a subtle reduction of M1 excitability was found after

PAS10. PAS effects on motor task-related hemodynamic responses

were observed mainly around the peak of HbO/HbR time courses.

We showed a high probability of positive correlations between PAS

effects on MEP amplitudes and hemodynamic responses. Such corre-

lations were also mainly exhibited around the peak of HbO/HbR time

courses. Diagnostics of sampling MCMC chains showed no pathologi-

cal behavior, ensuring the reliability of our results. Finally, this study

also demonstrated the power of the Bayesian data analysis dealing

with relatively high variability and small sample size data while provid-

ing informative inferences.
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APPENDIX

fNIRS data processing

In this section, we are describing in further detail our fNIRS data anal-

ysis workflow. Raw fNIRS data were first preprocessed following stan-

dard recommendations (Yücel et al., 2021). (a) bad channel rejections

of channels exhibiting either a negative raw amplitude during the

whole time course and a coefficient of variation (CV) larger than 8%

(Eggebrecht et al., 2012; Piper et al., 2014; Schmitz et al., 2005;

Schneider et al., 2011). (b) Linear regression of superficial physiologi-

cal fluctuations using the average of all proximity channels (Zeff

et al., 2007); (c) Band-pass filtering (i.e., 0.01–0.1 Hz) using a third

order Butterworth filter (zero-phase); (d) conversion in optical density

changes (i.e., ΔOD) using logarithm conversion; (e) ΔOD epochs

extraction within a time window ranging from �10 s to 30 s around

task onsets. Instead of the conventional process of averaging

extracted ΔOD epochs, we then conducted a resampling process to

estimate not one but a set of “possible” averaged ΔODs (Cai

et al., 2022b). Our rationale was to propose an evaluation preserving

the intrinsic variance of averaged ΔOD related to the underlying

physiological fluctuations and eventual measurement errors such as

motion artifacts. To do so, we first averaged 16 out of 20 prepro-

cessed ΔOD epochs for all possible unique combinations

(i.e., C16
20 ¼4845 possibilities). Then, the averaged signal to noise ratio

(SNR) of the resulting averaged ΔODs, for each wavelength, was esti-

mated as the peak amplitude over the averaged standard deviation of

baseline (within �10 s to 0 s) among all channels. Lastly, we selected

101 of these resampled averaged ΔODs, distributed around the

median SNR (50 averaged below and 50 averaged above the median

SNR), to obtain a distribution of “possible” responses evoked by one

finger-tapping run. The selection of 16 blocks out of 20 trials and

101 resampled averaged ΔODs maintained a good coverage of the

data distribution. This number was empirically defined according to

the observation that usually there were less than four blocks contami-

nated with artifacts in one finger-tapping run. Selecting sub-averaged

trials around the median SNR ensured a good representation of fNIRS

responses while discarding artifacts in the meantime. Indeed, in arti-

facts contaminated data, large motion artifacts would result in high

SNR of corresponding sub-averaged trials.

We then applied 3D fNIRS reconstruction workflow using per-

sonalized optimal montage and maximum entropy on the mean

(MEM), as further described and validated in our earlier work (Cai

et al., 2021, 2022a, 2022b), to the 101 sub-averaged ΔODs. There-

fore, “all possible” HbO/HbR responses for each finger-tapping run

were reconstructed as spatiotemporal maps along the cortical surface.

To do so, the subject-specific fNIRS forward model was first esti-

mated according to the following steps: (a) five tissues head segmen-

tation (e.g., scalp, skull, Cerebrospinal fluid, grey matter, and white

matter) calculated using FreeSurfer6.0 (Fischl et al., 2002) (https://

surfer.nmr.mgh.harvard.edu) and SPM12 (Penny et al., 2011) (https://

www.fil.ion.ucl.ac.uk/spm/software/spm12/); (b) light fluences at

each optode location, and for each wavelength (i.e., 685 and 830 nm),

were calculated by simulating 108 photons, using MCXLAB toolbox—a

Monte Carlo photon simulator for modeling light transport in 3D tur-

bid media, developed by Fang and Boas (2009) and Yu et al. (2018);

(c) sensitivity of each voxel was computed using the adjoint formula-

tion and was normalized by Rytov approximation (Arridge, 1999);

(d) surface space sensitivity was finally obtained by projecting volu-

metric sensitivity map to subject's cortical surface (i.e., mid-surface, a

middle layer of the gray matter, between pia mater and gray–white

matter interface, 25,000 vertices) using the Voronoi based method

proposed by Grova et al., 2006. Finally, each 101 averaged ΔOD

epoch was down-sampled to 2 Hz and MEM method proposed previ-

ously by our group for fNIRS reconstruction (Cai et al., 2021, 2022a)

was applied to estimate the HbO/HbR spatiotemporal maps (0–30 s)

along the subject-specific cortical surface.
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