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Automated quantification of levels of breast terminal duct
lobular (TDLU) involution using deep learning
Thomas de Bel 1,2✉, Geert Litjens1,2, Joshua Ogony3, Melody Stallings-Mann 4, Jodi M. Carter5, Tracy Hilton3, Derek C. Radisky4,
Robert A. Vierkant6, Brendan Broderick3, Tanya L. Hoskin3, Stacey J. Winham3, Marlene H. Frost7, Daniel W. Visscher5, Teresa Allers5,
Amy C. Degnim8, Mark E. Sherman 3,10 and Jeroen A. W. M. van der Laak 1,2,9,10

Convolutional neural networks (CNNs) offer the potential to generate comprehensive quantitative analysis of histologic features.
Diagnostic reporting of benign breast disease (BBD) biopsies is usually limited to subjective assessment of the most severe lesion in
a sample, while ignoring the vast majority of tissue features, including involution of background terminal duct lobular units (TDLUs),
the structures from which breast cancers arise. Studies indicate that increased levels of age-related TDLU involution in BBD biopsies
predict lower breast cancer risk, and therefore its assessment may have potential value in risk assessment and management.
However, assessment of TDLU involution is time-consuming and difficult to standardize and quantitate. Accordingly, we developed
a CNN to enable automated quantitative measurement of TDLU involution and tested its performance in 174 specimens selected
from the pathology archives at Mayo Clinic, Rochester, MN. The CNN was trained and tested on a subset of 33 biopsies, delineating
important tissue types. Nine quantitative features were extracted from delineated TDLU regions. Our CNN reached an overall dice-
score of 0.871 (±0.049) for tissue classes versus reference standard annotation. Consensus of four reviewers scoring 705 images for
TDLU involution demonstrated substantial agreement with the CNN method (unweighted κappa= 0.747 ± 0.01). Quantitative
involution measures showed anticipated associations with BBD histology, breast cancer risk, breast density, menopausal status, and
breast cancer risk prediction scores (p < 0.05). Our work demonstrates the potential to improve risk prediction for women with BBD
biopsies by applying CNN approaches to generate automated quantitative evaluation of TDLU involution.
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INTRODUCTION
Deep learning pathology methods have demonstrated potential
utility in critical diagnostic applications, including prostate cancer
grading1,2, and detection of lymph node metastases in breast
cancer (BC)3. These methods are particularly suited to quantify
multiple morphologic features, which could transform pathology
diagnosis from a largely qualitative and subjective discipline, to
one that incorporates objective measurements that cannot be
accomplished routinely by visual assessment. The assessment of
involution of terminal duct lobular units (TDLUs), which represent
the structures from which early BC precursors arise (i.e. benign
breast disease or BBD) provides a notable example. TDLUs are the
functional units of the breast that produce milk after childbirth
and represent the source of most BC precursors4,5. TDLUs are
composed of epithelial sub-structures termed acini and terminal
ducts embedded in stroma containing immune cells and vessels.
TDLU involution, a gradual physiologic process that often begins
in the fourth decade of life, results in simplification of lobules
(reduction in acini size and number) and decreased TDLU density
(reduction in lobule span and lobules per unit area)6.
Increased levels of TDLU involution in BBD biopsies, as assessed

visually, have been related to lower BC risk in large cohorts;
however, the lack of automated and quantitative methods for
assessing this feature poses barriers to its potential clinical
implementation6–8.

Data indicate that delayed involution (i.e. greater preservation
of TDLU numbers and structure with aging) modifies BC risk
among women with BBD, and complements other risk factors6–9.
Recently, first steps in automated assessment of age-related TDLU
involution have been made, in which deep learning was used for
detection of acini, and segmentation of lobular area and adipose
tissue10. Although this method generally agreed with manually
defined annotations, it did not predict BC risk among patients with
BBD, as has been demonstrated by subjective and morphometric
analyses of TDLU involution in prior reports6–9,11,12. Thus, further
studies are needed both to assess technical performance of deep
learning methods and to assess the relationship of TDLU
involution and breast cancer risk.
Accordingly, we developed convolutional neural networks

(CNNs) to measure involution in background TDLUs included in
BBD biopsies and to preliminarily demonstrate their relationships
with important clinical factors. We describe the development and
preliminary validation of a quantitative approach using CNNs to
automatically segment and characterize individual TDLUs.

RESULTS
Performance of the CNN tissue segmentation
Our CNN was trained and independently tested on 13 and
20 slides, respectively. Dice-scores for the segmentation among
the six structure classes were lowest for capillaries (0.568)
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compared to other features (weighted mean 0.871; range=
0.768–0.942) (Table 1). Representative examples of the segmenta-
tion of TDLU areas are shown in Fig. 1, which visually confirms the
accuracy of the CNN in identifying specific tissue components

within TDLUs. Although there were few discordances, areas of
misclassification between the CNN and ground truth visual
classifications included confusion between extralobular stroma
versus intralobular stroma and vessels versus stroma of both types
(Fig. 2).

Inter-rater agreement in classification of TDLU involution
scores
Four independent reviewers individually assessed up to ten TDLUs
in 161 slides, according to predefined criteria (Supplementary
Table 1). Of the 705 TDLUs scored, 572 (81%) TDLUs were included
in our analysis, after excluding images that were rated as
unsatisfactory quality by at least one reader (See the quality
section on the data collection form, Supplementary Table 1).
Substantial levels of agreement were reached among all individual
readers (Table 2), ranging from kappa= 0.656 (95% CI:
0.655–0.657) between reader 1 vs. 4, to kappa= 0.748 (95% CI:
0.747–0.749) between reader 3 vs. 4. The consensus counts for
each of the six TDLU involution levels were: 0: 90, 1: 46, 2: 51, 3: 68,
4: 166, 5: 151. Supplementary Table 2 shows the individual
agreements among the readers. Supplementary Figure 1 shows
the correlation between the original none, partial, complete labels

Table 1. Structure segmentation Dice-scores: Dice-scores of the
structure classes on the held-out test set of 20 slides.

Structure Class Dice-score

Extralobular stroma 0.882 (±0.032)

Intralobular stroma 0.768 (±0.060)

Epithelium 0.917 (±0.019)

Fat 0.942 (±0.011)

Vessel 0.568 (±0.214)

Lumen 0.839 (±0.103)

All classes (weighted mean) 0.871 (±0.049)

The Dice-score is a measure of agreement between the segmentation
output by the CNN and the annotated ground truth. Confidence intervals
were obtained using bootstrapping.

Fig. 1 Structure segmentation visual results: Visual examples of the segmentation results. The top view (a, b) shows a single TDLU with
epithelium borders removed, with (a) and without (b) segmentation overlay. The bottom view gives a broad overview (c, d). The classes are
mapped as follows: epithelium (yellow), intralobular stroma (green), extralobular stroma (blue), lumen (purple), adipose tissue (orange), small
vessel (pink), border (dark blue).
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(Table 3), which have been correlated with risk among over 13,000
patients13, and the consensus of the 6 levels of involution as
scored by the readers.

Agreement between automated method and visually scored
levels of TDLU involution
Substantial levels of agreement between individual readers and
automated method ranged from kappa= 0.662 (95% CI:
0.661–0.663) to 0.729 (95% CI: 0.728–0.731) with agreement of
the consensus visual read versus CNN yielding a kappa of 0.747
(95% CI:0.746–0.748) (Table 2).

Fig. 2 Confusion matrix of the structure segmentation results: confusion matrix of the segmentation results on the held-out test set.
These matrices show how different classes may be misclassified. The vertical axis displays the ground truth label and the horizontal axis shows
the label that was predicted by the neural network. As an example: for the lumen class 85% of the pixels are correctly classified and 10% of the
pixels are misclassified as epithelium.

Table 2. Reader study inter-observer agreement: Kappa statistics for
agreement in level of TDLU involution between four individual
readers, the consensus of their reads, and the CNN.

Anonymized reader Cohen’s Kappa score (95% Confidence interval)

Reader 1 0.687 (0.686–0.688)

Reader 2 0.662 (0.661–0.663)

Reader 3 0.729 (0.728–0.731)

Reader 4 0.680 (0.679–0.681)

Consensus 0.747 (0.746–0.748)

Confidence intervals were obtained using bootstrapping.

Table 3. Patient Characteristics: Characteristics of patients included in
analysis set for this study.

BBD case
(N= 87)

BBD control
(N= 87)

Total
(N= 174)

Age

Median 52 52 52

Range (35–74) (35–74) (35–74)

Age category, n (%)

<45 years 19 (21.8%) 19 (21.8%) 38 (21.8%)

45–55 years 33 (37.9%) 33 (37.9%) 66 (37.9%)

>55 years 35 (40.2%) 35 (40.2%) 70 (40.2%)

BBD histology n (%)

Non-proliferative 26 (29.9%) 40 (46.0%) 66 (37.9%)

Proliferative disease
without atypia

42 (48.3%) 37 (42.5%) 79 (45.4%)

Atypical hyperplasia 19 (21.8%) 10 (11.5%) 29 (16.7%)

Age-related lobular involution, n (%)

Involution data missing 7 2 9

None 22 (27.5%) 15 (17.6%) 37 (22.4%)

Partial 44 (55.0%) 39 (45.9%) 83 (50.3%)

Complete 14 (17.5%) 31 (36.5%) 45 (27.3%)
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Distributions of quantitative features
Our automatically extracted quantified features on TDLU tissue
regions revealed strong positive associations between acini count,
epithelial size, and TDLU size; and between capillary count and
capillary size. Moderate associations were seen for most other
paired sets of features. The epithelial-to-stromal ratio was not
strongly correlated with any of the other features. A scatterplot
matrix of the individual features is shown in Supplementary
Figure 2.

Comparison quantitative features and clinical data
Figure 3 reports the p values of the age-adjusted results for
individual quantified features per subject and the clinical
measurements; reported p values are not corrected for multiple
testing given the exploratory nature of analyses. Nearly all AI
measures were significantly associated with the previously
performed subjective evaluations of TDLU involution. Other AI
measures of involution showed association to varying degrees
with clinical features such as severity of BBD, BC risk by the BBD-
BC or Gail models, and case versus control status. AI measures
showed only a single marginally significant association with breast
density. Detailed association results of AI-derived features with
demographic and clinical variables are shown in Supplementary
Tables 3 and 4.

DISCUSSION
Increased levels of TDLU involution in BBD biopsies, as assessed
visually or morphometrically, have been associated with lower BC
risk6–8,13. However, lack of standardized criteria for assessing
involution and the effort required for its assessment have slowed
research on this topic and impeded prospects for its translation
into clinical practice. Increasing use of digital slide images for
research and diagnosis creates an unprecedented opportunity to
develop and apply automated computational approaches in
pathology, including assessment of TDLU involution in BBD
biopsies. Accordingly, we developed an automated method for
assessment of TDLU involution in BBD biopsies, using CNNs. Our

CNN demonstrated: (1) accurate segmentation of relevant breast
tissue structures; (2) agreement with TDLU involution levels based
on visual consensus comparable to that found among different
raters and (3) expected associations with multiple clinical and
pathologic features. Similar to many pathology classifications,
current BBD classification reflects only the most high-risk finding
in a specimen, while ignoring the totality of changes present
throughout the tissue. Therefore, computational pathology
approaches such as we describe, which comprehensively and
objectively quantify histologic features, offer the potential to
transform pathology diagnosis14.
Classic papers by Henson and Tarone suggested that involution

of TDLUs may be related to BC risk and to mammographic density,
an important BC risk factor that reflects the proportion of
fibroglandular tissue in the breast15. Further, these authors related
the initiation of TDLU involution in the fourth decade of life to the
slower rise in BC age-specific incidence as women approach
menopause and suggested that assessment of involution in
benign biopsies might have important utility in predicting BC
risk16. This view is supported by studies showing that TDLU
involution is downstream of established breast cancer risk factors,
including elevated serum levels of estradiol, testosterone,
prolactin, and growth factors, and therefore, delayed age-related
TDLU involution may represent an intermediate state in breast
carcinogenesis17,18.
Initial attempts to assess levels of involution in human samples

were based on subjective impressions of whole slides, wherein
TDLU involution classified as none, partial or complete predicted
BC risk in a large BBD cohort7. While this approach was imprecise
and subjective, it enabled rapid human analysis of thousands of
biopsies and assessment of risk19. Nonetheless, the lack of an
automated, standardized approach for scoring TDLU involution
has posed a barrier to expanding research and clinical translation.
Early work on quantitative measures, such as TDLU density, acini
count per TDLU and TDLU span, confirmed associations between
TDLU involution and BC risk, but these measurements were not
automated, and therefore, labor intensive6,9,20.
In this report, we established a CNN to automatically segment

relevant tissue structures throughout a whole slide image. Dice-

Fig. 3 Analysis of AI-derived features versus clinical variables: age-adjusted associations of AI-derived breast biopsy biomarkers with
demographic and clinical variables of subjects. Numbers indicate p values of association. Blue shades indicate negative associations
between demographic/clinical variable and AI feature (i.e., feature value decreases as variable increases), whereas red shades indicate positive
associations.
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scores indicate that our segmentation performed particularly
accurately with regard to classification of epithelium, fat, and
lumen, with dice-scores of 0.85-0.90. Disagreement between
“reference standard” expert annotation and the automated
segmentation was found predominantly for classifying stroma
and capillaries. The boundary between extralobular and intralob-
ular stroma frequently becomes ill-defined as women age and
specialized intralobular stroma are replaced by denser fibrous
stroma, which merges with extralobular stroma. Similarly, visual
annotation of small vessels (presumptive capillaries) without
immunostaining for endothelial markers may be challenging for
both humans and computers. Given evidence linking vascularity
to markers of BC risk, such as benign parenchymal enhancement
as assessed by magnetic resonance imaging, and the association
of increased microvessel density with BC risk, developing
improved recognition of microvessels may have value for risk
assessment and research integrating pathology and radiologic
imaging21. Our segmentation network effectively characterized
TDLU involution, yielding a Kappa= 0.74 (Table 3) versus the
consensus of four reviewers, applying a six-level scale, signifying
substantial agreement. Assessment of TDLU involution in routinely
prepared histopathologic 5-um tissue sections cannot fully
capture features of a three-dimensional process. However, this
applies equally to all samples, and this is unbiased misclassifica-
tion that would not substantially alter our interpretations.
In addition to expected associations with independently

assigned subjective involution status, significant expected rela-
tionships were found for severity of BBD classification, breast
density, menopausal status, and scores of BC risk prediction
models. AI features showed greater associations with the BBD-BC
risk prediction model, which incorporates TDLU involution, than
for the Gail model which does not include this parameter. Further,
relationships between involution and mammographic density
were limited, consistent with prior finding that these two factors
are independent predictors of risk among women with BBD22. Our
analyses suggest the potential relevance of AI features beyond
TDLU involution, justifying further research into using AI for
automated assessment.
Recently, Kensler et al applied a CNN method to BBD biopsies to

assess BC risk in a nested case–control study12. Although visually
assessed TDLU involution was previously reported to be
associated with BC risk in this cohort (Baer et al.), the CNN results
were not related to BC risk, prompting the authors to conclude
that TDLU involution was not a strong BC risk factor in their
cohort8. However, a potential concern with their AI analysis is the
absence of expected reductions in TDLU span, TDLU counts/unit
area, or median / mean acini counts per TDLU with increasing age
among their premenopausal controls. TDLU involution likely
begins well before menopause in many women, and has been
characterized robustly in prior studies. Analysis of 1,938 benign
breast tissues donated for research showed declines in TDLU
counts (RR-0.87, 95% CI= 0.83–0.91) and acini counts / TDLU
(RR= 0.54, 95%CI= 0.40–0.74) at ages 40–49 years versus women
aged <40 years, and declines in TDLU span between ages 30–39
years (OR= 0.64, 95% CI= 0.48–0.87) versus even younger
women6. Findings from the Mayo BBD cohort also demonstrate
that involution is underway by the 3rd decade of life, with some
degree of involution observed in 45.6% of women aged <30 years
and in 73.7% of women aged 40–49 years7. Furthermore, in
updated analyses of 13,485 cohort participants, visual assessment
of TDLU involution, masked to follow-up data, remained
significantly predictive of BC risk13. Thus, TDLU involution may
be a feature among BBD patients aged <50 years who remain BC-
free and distinguishes them from those who later develop BC. As
development of computational methods is in their infancy, we
believe it is premature to conclude that TDLU involution is not
associated with BC risk, and we remain optimistic that automated

CNN approaches will improve assessment of BC risk in BBD
biopsies.
A limitation in our study was the modest sample size;

nonetheless, our analyses generated precise estimates of associa-
tions with substantial statistical significance. Furthermore, the
CNN was trained using extensive image augmentations to make it
robust to unseen stain variations23. These findings support
proceeding with larger confirmatory studies.
In summary, our data show that a CNN can provide an

automated approach for quantifying TDLU involution, a potential
marker of BC risk in BBD biopsies. Potential future research may
include development of deriving a continuous score for age-
related lobular involution. This would allow for continuous
assessment of involution versus age, which may be important
given that lack of progressive involution in sequential BBD
biopsies predicts increased BC risk11. Although our study is limited
to measuring TDLU involution, it provides a necessary first step
towards quantitatively characterizing BBD histopathology and
demonstrates the potential convergence of pathology, computer
science and epidemiological risk assessment. In future work, we
aim to develop a fully automated system to analyze BBD biopsies
that will evaluate all lobular structures, define normal and BBD
lobules, and provide quantitative metrics for each lobule,
including level of TDLU involution for normal lobules.

METHODS
Tissue samples
This analysis evaluated BBD biopsies from an existing case–control set of
174 patients selected from the pathology archives at Mayo Clinic,
Rochester, MN between 1992 and 200119,24 (Table 3). Patients were
selected using a nested case–control design to include 87 cases who
developed BC during follow-up after BBD biopsy and 87 controls who were
BC-free with follow-up duration greater than the longest time-to-cancer
among the cases; controls were additionally frequency matched to the age
distribution of the BBD cases in the categories of age <45, 45–55, and >55.
Median age of women at biopsy was 52 years (range 35–74 years),
including 66 (37.9%) with non-proliferative BBD, 79 (45.4%) with
proliferative BBD without atypia, and 29 (16.7%) with atypical hyperplasia.
Of the 29 cases with atypical hyperplasia, 14 had ductal hyperplasia, 14
had lobular hyperplasia and 1 case had both ductal and lobular
hyperplasia. This sample set was chosen because it is representative of
BBD biopsies from our BBD cohort and had been rigorously reviewed and
was annotated with epidemiologic data.
Routinely prepared hematoxylin and eosin-stained sections from the

clinical archive at the Mayo Clinic were reviewed previously by an expert
pathologist (DV) masked to clinical outcome using a standardized data
collection instrument to characterize the full spectrum of BBD changes and
to qualitatively score the level of TDLU involution on an ordinal scale as
none, partial or complete7. Examples of the three involution levels are
shown in Fig. 4. All microscopic slides were digitized using the scanner
with a 20x objective at a resolution of 0.495 μm per pixel. The project was
approved by the Mayo Clinic Institutional Review Board.
We included 33 slides for training and testing our CNN system. An

independent sample of 161 slides was included in our reader study to
compare performance of the CNN with trained readers. There was no
overlap between slides used in the training set of the CNN and slides used
for the reader study.

Automated method development and design
To obtain a ground truth (i.e. “gold standard” classification) regarding
tissue type/segmentation, a human observer randomly selected up to five
TDLUs to be annotated in each of the selected training and evaluation
slides. A rectangular region was placed around the marked TDLUs and
subsequently exhaustively annotated, using the slide viewer ASAP (open
source available at https://github.com/computationalpathologygroup/
ASAP, version 1.9). Six relevant tissue types or features were identified:
epithelium (and myoepithelium), extralobular stroma, intralobular stroma,
adipose tissue, lumens of acini, and small caliber blood vessels
(“capillaries”). The distinction between extralobular and intralobular
stroma is defined by the proximity of epithelium, i.e., intralobular stroma

T. de Bel et al.
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lies between and around acini of the TDLUs. Vessel annotation was
restricted to small caliber vessels, as approximating the caliber of
capillaries at 25 μm, within and immediately surrounding the TDLUs. To
facilitate the detection of individual acini, a seventh class was added to
represent the border between neighboring objects. The epithelial border
class was created by carefully annotating the perimeter of individual acini
and converting the annotation outline to a border measuring on average
3 pixels (1.5 μm). An example annotation is shown in Fig. 5. An overall
number of 3,027 annotations across 48 TDLUs from 13 slides were utilized
to develop the CNN. We selected TDLUs distributed among the three
involution classes: 12 TDLUs with no involution, 18 partially involuted, and
18 with complete involution. Due to the homogeneous appearance of the
tissue classes, few annotations were required for good performance of our
CNN. We tested our network on 88 annotated TDLUs, across the 20
remaining slides.
A CNN was trained for the delineation/segmentation task, applying the

U-net architecture which has been proven to work well specifically for
medical tissue segmentation25. Apart from image flipping and rotation, the
neural network was trained with gaussian noise, gaussian blurring, and
color augmentations, to account for potential variations induced during
scanning and staining. Nine quantitative features, that are potentially
linked to TDLU involution and may be used to discriminate between
involution levels, were defined and extracted from each segmented TDLU:
TDLU area, acini count, epithelial area, proportion of epithelial area vs.
intralobular stroma area, small vessel count, small vessel area, adipose
tissue area, average acinar size and acini with large lumen count. For the
purpose of counting the acini, we merged the border class with the
intralobular stroma class and counted all epithelial components with a
total area larger than 800 pixels as a single unit. The total lobular area,
defined above as TDLU area, is composed of the total epithelial, luminal,
and intralobular stroma areas. Further details on the algorithms of the CNN

and extraction of the quantitative features are elaborated in Supplemen-
tary Note 1.

Reader study design
For visual assessment of individual TDLUs, we evaluated up to 10
previously annotated, representative “normal” appearing TDLUs showing
varying levels of involution (but not features of BBD) per whole slide image
(excluding CNN training slides, Supplementary Table 5) of each BBD biopsy
(n= 161). Digital images for TDLU scoring were made available through
the online viewer on the Grand Challenge website (https://grand-
challenge.org) and linked to an electronic data collection form that
included queries about adequacy for evaluation and levels of TDLU
involution (Supplementary Table 1). Four independent reviewers, masked
to all data, assessed levels of involution according to predefined criteria,
defined based on features identified in prior analyses6–9. Specifically,
features, and particularly categories of acini counts per TDLU, were
developed based on distributions found in normal TDLUs within BBD
biopsies7. Previously published studies demonstrate excellent intra- and
inter-observer agreement among reviewers in assessing TDLU involution.
Prior to the current review, readers participated in discussions of criteria for
rating involution and training that included microscopic review26. Four
readers (MES, MS, TH, JO) independently scored levels of involution in 705
normal TDLUs on a scale from 0–5 as follows: 0: >40 acini; 1 or 2: 26–39
acini; 3 or 4: 10–25 acini and 5: <10 acini. Distinctions of 1 versus 2 and 3
versus 4 were based on acini number plus qualitative features, with tighter
packing of acini, less dense intervening stroma, and absence of basement
membrane thickening favoring the relatively less involuted categories. This
approach enabled reviewers to subjectively assess levels of TDLU
involution when acini counts per TDLU were on the border between
categories and to compensate for incomplete representation of TDLUs,

Fig. 5 Annotation process example: An example demonstrating the process of annotation. A single TDLU region (a) is selected to be fully
annotated (b). The annotations are then converted to a ground truth map (c) using ASAP. The classes are mapped as follows: epithelium
(yellow), intralobular stroma (green), extralobular stroma (blue), lumen (purple), adipose tissue (orange), vessel (pink). The border class (dark
blue) was separately added in a post-processing step.

Fig. 4 Involution examples: Examples of different levels of involution. From left to right: no involution (a), partial involution (b), complete
involution (c).
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which are three-dimensional structures that are evaluated in 5-μm
sections. The most highly involuted TDLUs (category 5), were composed
of small acini, often associated with basement thickening and densely
hyalinized relatively avascular stroma lacking edema. Clearly defined acini
were counted, irrespective of whether the lumen was identifiable in the
plane of section. Any images judged ungradable by one or more reviewers
were excluded. Reasons for exclusion were: uncertain identification of
TDLU (i.e. possible ducts, without acini or interlobular ducts), presence of
multiple TDLUs or poor quality due to histological artifacts. The full data
collection form for each image is included in Supplementary Table 1.

Comparison quantitative features with readers’ scores
A random forest model was developed to determine the TDLU involution
score based on the nine automated measures extracted from the
segmentation. The random forest was initialized with 500 trees, using
the standard parameters of the scikit-learn package in Python. We used a
tenfold stratified cross-validation approach to assess the model perfor-
mance, which was compared to the consensus data from the four readers
(majority vote, see details below). For each fold, 90% of the readers’
consensus data (defined below) was used to fit the model, and 10% of the
data was used to calculate the performance of the model.

Statistical analysis
Data were summarized using means and standard deviations for
continuous variables, and tables and percentages for categorical variables.
Performance of the CNN tissue segmentation, versus the ground truth
tissue annotation based on visual review, was assessed with the Dice-score
per individual structure class. The Dice-score, which is a measure of overlap
between the segmentation output by the CNN and the annotated ground
truth, is calculated as 2(|S | ∩ | G | )/( | S |+ | G | ), where S is the segmenta-
tion map and G is the ground truth. The score can range from 0 (no
agreement between assigned classes) and 1 (complete agreement). The
overall Dice-Score is reported, which is calculated using the weighted
(according to samples per class) mean across all structures. The multiclass
segmentation performance was assessed on 20 held-out whole slide
images.
Inter-rater agreement between the four readers was determined using

the linear Cohen’s kappa statistic. Agreement scores are characterized with
values <0 indicating no agreement, 0–0.20 slight, 0.21–0.40 fair, 0.41–0.60
moderate, 0.61–0.80 substantial, and 0.81–1 as almost perfect agree-
ment27. We compared each individual reader with the majority vote of the
other three readers. The rounded-up average was taken in case of a three-
way split in scores. We calculated the consensus by using the majority vote
of the four readers. For comparison with our automated method, we used
the majority vote of all four readers. If no majority could be determined (in
case of a two-way split or a four-way split), the average score (rounded up)
was taken. Confidence intervals for the inter-rater agreements and Dice-
scores were calculated by performing bootstrapping (n= 2,000) on the
results28.
We used the mean quantitative feature across the included TDLUs per

subject to compare with the demographic/clinical attributes. Prior to
statistical comparisons, each CNN-derived quantitative feature was
transformed using inverse normal (van der Waerden) scores to account
for data skewness. The resulting scores can be interpreted much like
z-scores from a standard normal (Gaussian) distribution. Pairwise associa-
tions of the CNN scores were examined using scatterplot matrices. In
exploratory analyses, we compared the quantitative features with
demographic and clinical variables using linear regression analyses. These
analyses were performed to preliminarily assess whether AI measurements
generally recapitulated associations observed with visual assessment and
morphometry; the study was not designed and powered to test the
performance of the AI system in predicting case–control status, which
would require a larger dataset. For each pair of CNN score and
demographic/clinical attribute, we examined unadjusted and age-
adjusted associations. The following attributes were examined: BC case
status (case, control); TDLU involution (none, partial, complete); BBD
histology (non-proliferative disease [NP], proliferative disease without
atypia [PDWA], atypical hyperplasia [AH]); breast density (low, high); ever
parous (yes, no); menopausal status (pre-menopausal, post-menopausal);
hormone replacement therapy (HRT) use (never, former, current); estrogen
receptor (ER) status for the breast cancer cases (negative, positive); the
BBD-BC 5-year breast cancer risk score (numeric value between 0 and 1);
and the Gail Model 5-year breast cancer risk score (numeric value between

0 and 1)29–31. Resulting p values were displayed in matrix form in the style
of a heat map. All statistical tests were two-sided. Due to the exploratory
nature of the associations, p values < 0.05 were considered statistically
significant.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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