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Abstract

The new era in systems pharmacology has revolutionized the human biology. Its applicability, precise treatment, adequate
response and safety measures fit into all the paradigm of medical/clinical practice. The importance of mathematical models
in understanding the disease pathology and epideomology is now being realized. The advent of high-throughput technolo-
gies and the emergence of systems biology have resulted in the creation of systems pharmacogenomics and the focus is
now on personalized medicine. However, there are some regulatory issues that need to be addresssed; are we ready for this
universal adoption? This article details some of the infectious disease pharmacogenomics to the developments in this area.

Key words: system pharamcogenomics; biological networks; infectious disease

Introduction

Systems’s pharmacogenomics encompases disease character-
ization at the genomic level and its relation with modern tech-
nologies of drug discovery. Computational modeling of
molecular pathways, deciphering sequence to structure activity
relationships, gene and whole genome assembly techniques
have been possible owing to advancement in computational
biology and high-throughput technologies. Today computa-
tional methods are increasingly being used to understand gene
expression and protein–protein interactions and to carry out
genome-wide association studies [1]. The focus is on the identi-
fication of pathogenic pathways and the disease phenotypes to
improve target identification, drug selection and clinical trial
design. Owing to the large-scale data generation as a result of
high-throughput technologies, computational pharmacogen-
omics has become an evolving science, which not only aims at
sequence retrieval but also focusses on the data mining. This
has made the prediction of drug targets, mode of action of a
drug and its response relatively easier. In this process, one of

the major challenges faced is the interpretation of the large
amount of data being generated. To achieve this, various data
mining techniques are now being developed. These techniques
use methods derived from computational linguistics, language
processing and artificial intelligence to retrieve the data in a
much faster manner, enabling the understanding of patterns
underlying a particular disease [2]. This would particularly
prove to be useful in drug designing, as the reasons behind drug
failure or success can be easily understood.

Network medicine

It is known that drugs interact with the molecular targets like
receptors and enzymes. They thus can act as agonists and en-
hance the acitivity of the molecular targets or also act as antag-
onists and inhibit the functioning of the target proteins. This
results in the alteration of not only the function of several biolo-
gical networks but also tissue- or organ-level modifications [3–
5]. Therefore drug interactome modeling is essential to derive a
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systems level understanding about any particular drug and its
effect on the body.

It is imperative that drugs have their own set of adverse ef-
fects along with the required therapeutic effect. For example,
the side effects of non-nuceloside reverse-transcriptase inhibi-
tors (NNRTIs) that are used as antiretroviral medication are that
they also cause skin rashes. To avoid these effects, appropriate
dosing of the drug has to be determined. During the dose opti-
mization process, genetic differences of an individual have to
be accounted for, as genomic variations could significantly alter
the metabolism and therapeutic response of a drug. This also
justifies the need for identifying and classifying genetic changes
and genomic variations in individuals for the design of person-
alized therapy [6]. Owing to the similarity of the molecular tar-
gets in different tissues and organs, side effects of drugs can be
extended to multiple tissues and organs. For example, anti-
cancer drugs cause hair loss by affecting the hair follicles. Some
drugs can induce harmful off-target effects like the antihista-
minic drug terfenadine, which was withdrawn by the Food and
Drug Administration, as it was found to interfere with cardiac
potassium channel currents, leading to fatal arrythmias. Thus,
the effect of any particular drug and the patients ability to toler-
ate the dose and side effects of a drug depends on many factors,
including the patient’s age, genetic makeup, preexisting illness
if any, the dose of the drug administered and the interaction of
the drug with any other drugs the patient might be taking [7].

Systems pharmacogenomics in the area of
personalized medicine

Pharmacogenomics and pharmacogenetics deal with the
study of the role of inheritance and its role in inducing vari-
ation in drug response. Herein, studies usually focus on the
monogenetic traits, i.e. genetic variation in drug metabolism.
The rapid advances in the field of human genomics has re-
sulted in the evolution of pharmacogenetics to pharmacogenom-
ics. At the same time, with the increasing importance
of pharmocotranscriptomics and pharmacometabolomics, sys-
tems pharmacogenomics has begun to emerge [8, 9]. Systems
pharmacogenomics deals with not only the effect of a drug on
one particular target. The aim is to derive a systemic view of the
possible interactions a drug may have. This helps to understand
not only the effect of drug but also the associated side effects of a
drug by looking at the effects of a drug in context of cellular net-
works as well as exploring relationships between drugs [10, 11].
Thus the individual patient susceptibility and the side effects can
be accounted for and the off-target effects can be reduced.

Bioinformatics analysis of data sets that arise as a result of de
novo genome sequencing, gene expression studies or targeted
resequencing helps in the identification of druggable targets in
the system under question. The massive data generated as a re-
sult of sequencing of genes and genomes have resulted in the
identification of genotype/phenotype correlation with drug re-
sponses [12]. Thus, the basic mechanism behind the therapeutic
intervention for any disease can be dissected in a piecewise man-
ner by comparing the genomic scenario with the transcripiton
and translation patterns of genes. In this regard, techniques such
as hierararchial clustering, k means of clustering, deterministic
annealing, self-organizing maps and graph theory approaches
are being used to analyze reproducibility of data and correlate ex-
pression patterns with the disease progression [13].

Models such as Artificial Neural Networks (ANNs) and Gene
Regulatory Networks (GRNs) are capable of statistically validat-
ing the data sets, recognizing patterns and the interplay of

thousands of genes/omics data sets [14]. The nonlinear dy-
namics behind biological systems and the associated genomic
control are well solved with interaction networks and mathem-
atical models such as GRN, Protein-Protein Interactions (PPI)
and metabolic networks. Quantitative network diagrams, proba-
bilistic graphical models such as Bayesian networks, prediction
models based on differential equations and state space models
aid in better understanding about biological pathways at sys-
tems level [15]. This is particularly useful for therapeutic inter-
ventions and drug design, as the focus is not on the one target–
one drug model but rather on deriving a systemic view of a par-
ticular disease.

Biological networks

Network approaches in biology are useful for organizing high-
dimensional biological data sets and extracting meaningful in-
formation. Biological networks are composed of the nodes and
edges; nodes can be either genes, proteins or metabolites, which
are in turn connected by edges. Edges represent the regulatory
interactions, relations and other shared relationships between
the nodes. A biological network is generally built to describe a
biological process. To obtain relevant information pertaining to
the network, networks have to be modeled, visualized and in-
terpreted. Network visualization is a key method, which helps
biologists understand the network and interpret the informa-
tion that lies within the large data sets. Networks are built from
the basic building blocks like genes, proteins, and metabolites
according to which a network is classified. While the gene regu-
latory networks and signaling networks describe how genes can
be activated or repressed, protein–protein interaction networks
describe the interaction among the proteins, and the metabolic
networks depict the flow of metabolites and how they are trans-
formed [16–18] (Figure 1). Networks are visualized in the form of
network graphs, which can be analyzed using several algo-
rithms that are largely based on the graph theory. While per-
forming the analysis, properties such as the degree of nodes,
betweeness and centrality measures are used, which provide in-
formation about the importance of different nodes within the
network. Network analysis is particularly useful in the identifi-
cation of important nodes, which are generally referred to as
the ‘hubs’. Hubs are classified either as party or date hubs based
on their connectivity and their ability to influence other compo-
nents in the network. The ‘party hubs’ generally coordinate a
specific cellular process or protein complex, while the ‘date
hubs’ are co-expressed, link together and convey information
between modules or complexes (Figure 2).

Systems biology for infectious diseases

Infectious diseases are a huge social, economic and health bur-
den especially in the tropical countries. With the lack of ad-
equate drugs to treat the diseases and the growing problem of
drug resistance, it has become essential to identify druggable
targets in the causative organism. The role and importance of
mathematical models in increasingly being realized in the field
of infectious diseases. These predictive models provide a frame-
work for understanding the initiation, progression and outcome
of a disease. Using integrated data sets generated from a com-
bination of ‘omics’ technologies, system-wide host/pathogen
interaction networks can be generated. By studying such mod-
els, the overall complexity of the molecular processes within
the microbial organisms and their interaction with the host can
be easily understood. A model is an abstract representation of
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Figure 1: System pharmacogenomics and biological networks. (A colour version of this figure is available online at: https://academic.oup.com/bfg)

Figure 2: Application of biomodels in dealing with infectious diseases. (A colour version of this figure is available online at: https://academic.oup.com/bfg)
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the disease progress and dynamics and its complex structure
needs to be resolved. Models are used for a variety of purposes
but by large are used to make clinical and biological observa-
tions about a particular disease. In the present review, we aim
to discuss the possibility of using systems biology as a tool for
guiding research toward personalized medicine in the field of
infectious diseases [19].

HIV

HIV is an infectious viral disease that affects nearly 36.7 million
people worldwide. The mortality rate of this disease is 1.1 mil-
lion (www.who.org). It is known now that viral proteins that
play a major role in the infection frequently interact with the
host genes. Dickerson, 2010 [20] has proved that proteins with a
high degree of nodes are likely to be HIV-interacting proteins
and are likely to be essential. Several HIV proteins like Gag, VPR,
Tat, Env, Nef, Pol, Vpu, Rev and Vif are known to interact with
several host proteins. These proteins are hubs and bottlenecks
of the host [20]. Of all the HIV proteins, Tat and Gp120 proteins
have more connections than other proteins. Based on the cen-
trality, betweeness and number of connected nodes, the virus–
host dynamics are defined. Some of the other proteins that are
highly connected are the HIV dependency factors. Network ana-
lysis indicated that HIV reprioritizes cellular processes such as
transcription and proteasome activity by hijacking the tran-
scriptional machinery of the host. Also, the rate of replication of
the virus is much faster than the immune response of the host
[21]. This is probably the reason why development of vaccine
for HIV is proving to be difficult. Studies carried out in ma-
caques have revolved around systems analysis of RNA expres-
sion profiling of peripheral blood mononuclear cells (PBMCs)
and lymph nodes, which was useful to predict the CD4 and the
CD8 T cell responses. Similarly, analysis also revealed that viral
load was lesser in people who carry B27, B57 and B58 HLA al-
leles. This was associated with more enhanced CD8 response
[22]. Systems analysis can also demonstrate the association of
antibody titers with immune pathways like the toll-like receptor
(TLR) pathway. It is an onus to identify the protective genetic
variations and the functional differences in the HIV-specific
CD8 T cells and their controlling molecular networks for a more
rational vaccine design.

Tuberculosis

Mycobacterium tuberculosis is the causative agent of tuberculosis.
This infectious disease affects nearly 2 million people world-
wide every year. The disease is prominent in parts of India
where extensively drug resistant (XDR) cases of tuberculosis are
also reported. Tuberculosis is generally treated with drugs like
isoniazid, ethambutol, pyrazinamide and rifampicin. There are
around 12 vaccines that are currently in clinical trials to treat
tuberculosis. The most frequently used vaccine is Bacillus
Calmette-Guerin (BCG). However, this vaccine fails to induce
immunity especially in adults who have a weakened immune
system. To improve tuberculosis vaccines, it becomes essential
to re-engineer BCG to achieve better priming. Progress in this
direction would need a systems level understanding of the
mechanisms that are involved with the immune protection
against Mycobacterium tuberculosis (MtB). This would involve
understanding the transcriptional signatures of infected indi-
viduals. The whole genome sequencing of the virulent strain of
MtB (H37Rv) by Cole and his group has been a landmark in the
field of tuberculosis (TB). Since then, focus was laid on using

‘omics’ approaches to better understand the disease progression
and the associated immune responses of the host. Berry et al. [23]
have identified 393 transcript signatures for active TB in the
intermediate and the high burden settings and around 86 tran-
script signatures that discriminate active TB from other inflam-
matory and infectious diseases. Pathway analysis indicated that
TB signature was dominated by interferon (IFN)-inducible gene
profile, which consisted of both IFN-c and type I IFN-ab signaling
[23]. Maertzdorf et al. [24] have studied a set of differentially ex-
pressed genes from a systems point of view and identified Fc
gamma receptor 1B as one of the most differentially expressed
genes. The group has also identified that higher expression of
particular gene clusters involved in apoptosis and natural killer
(NK) cell activity in latently infected TB cases are likely to be con-
trolling the dormancy of tuberculosis bacilli in the host [24]. In
addition to the transcriptomics, metabolic pathways such as
mycolic acid synthesis, which is essential for the infectivity of
MtB, have been modeled in the form of mathematical model. A
detailed model of the mycolic acid synthesis pathway has been
built by Raman et al., and the pathway was studied by flux bal-
ance analysis. In silico gene knockouts and exposure of the sys-
tem to various drugs have been done in silico, which has led to
the identification of genes that are essential to the pathway [25].
Similarly, Singh and Ghosh [26] have developed kinetic models of
the tricarboxylic acid (TCA) cycle and the glyoxylate cycle of Mtb
to understand the importance of various enzymes in the path-
way. Their observation indicates that isocitrate dehydrogenase 2
is required for a flux through the glyoxylate bypass in the per-
sistent mycobacteria. Thus, isocitrate dehydrogenase could be a
good drug target for treating tuberculosis [26]. Studies have also
focused on modeling the host–pathogen interactions in tubercu-
losis. Boolean networks such as the model developed by Raman
and his group have focused on understanding and predicting the
outcome of tuberculosis based on the host–pathogen inter-
actions. It was observed that processes such as phagocytosis and
phagolysosome maturation can be impaired by reducing the lev-
els of cytokines such as tumor necrosis factor alpha (TNFalpha)
and IFN gamma. In addition, enhancing the production of IL10
and defense proteins like SapM favors clearance of MtB from the
host macrophages [27]. Even a multi-level workflow in terms of
genome-wide gene expression profile, growth analysis by flux
balance analysis (FBA), studying the protein–protein interaction
networks and identifying the evolutionary conservedness of the
set of genomes to trace the functional basis of essential genes
can be done. Study by Ghosh et al. has identified 283 genes that
are highly essential for MtB survival [28]. Last but not the least,
even the problem of drug resistance can be solved by developing
a drug–target interaction network. One of the examples in this
direction is the identification of RecA, Rv0832c, Rv0892 and
DnaE1 proteins, which can be drug targets for combating drug re-
sistance in MtB [29].

Influenza

A decade of high-throughput screening of human viruses has
led to the construction of intraviral and virus–host interaction
networks. Theories on various factors governing the interac-
tome organization have led to the computational analysis of
various intraviral networks such as that of Epstein-Barr Virus
(EBV), Influenza Virus Type A (FLUAV), Hepatitis C Virus (HCV),
herpes simplex virus type 1 (HSV1), Kaposi’s sarcoma-associ-
ated herpes virus (KSHV), SARS coronavirus, Vaccinia virus
(VACV) and Varicella zoster virus (VZV). The host and viral
interactome and their interplay determine the rate of virus
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replication and eventually the pathogenesis of a virus. One not-
able example of a model developed to determine the phenotypic
consequences of viral–host interactions is by Gulbahce et al.
[30]. Together the team has developed a model of two DNA
tumor viruses, i.e. the Epstein–Barr virus and the human papil-
lomavirus, for understanding the viral–host interactions of
these two viruses. Analysis of the interactome gives insight into
various proteins targeted by the virus. Chassey et al. [31] have
identified two of the proteins expressed by influenza (NS1 and
NS2), which interact with around 79 different proteins belong-
ing to the host. The interacting host proteins were seen to regu-
late viral replication. The major protein that was found after
interactome analysis was ADAR1, which colocalizes with NS1
protein of the virus and helps in improving viral infectivity [31].
Similarly, Neveu et al. [32] have developed viral–host interac-
tome networks of E6 and E7 oncoproteins belonging to 11 dis-
tinct human papillomaviruses [32].

Malaria

Malaria caused by the parasite plasmodium is one of the oldest
infections known to mankind. Today, around 243 million people
are affected by this disease. Lack of effective vaccine and
reduced efficacy of antimalarial drugs with the increasing drug
resistance has contributed to increase in the incidence of mal-
aria. One of the earliest mathematical model built pertaining to
the infectious diseases is the Ross model, which clearly high-
lighted the power of prediction of disease transmission using
mathematical models. Since then, a lot of complex models have
been developed that deal with various epidemiological aspects
of malaria as well as drug target identification. These models
are a function of host- and parasite-specific factors, their inter-
actions and environmental conditions. While the basic Ross
model focused on the susceptibility of humans to malaria, mod-
els such as the Macdonald, Anderson-May models have gone
deeper into the parasitic life cycle within the host [33, 34]. More
complex models have accounted for the age-specific immunity
[35] and the immune response and reoccurrence of the disease
[36]. In addition to the disease transmission, models have also
been used to depict drug sensitivity of the host [37] and the en-
vironmental factors affecting the mosquito population [38]. In
addition to the epidemiological models, recent trend has been
the identification of druggable target proteins that are directly
associated with the pathogenesis of malarial parasite [39].

Dengue

Dengue is an infectious disease prevalent in the tropical and the
subtropical regions of the world. As many as 400 million people
are infected with dengue annually. It is a viral disease that is
transmitted by mosquitoes. The most effective protective meas-
ures so far used to prevent the disease has been to avoid mos-
quito bites. Mathematical models such as the Derouich model
have highlighted that partial vaccination along with vector con-
trol is essential for controlling the disease. They have shown that
number of mosquitoes and the vaccination level of the suscep-
tible population appear to be the two most important variables in
the model [40]. Other models such as that of Feng model suggests
that mosquito activity levels appear to have higher impact on the
outbreak [41]. The probability of getting bitten by the mosquito
and its relevance has been explored in the model developed by
Syafruddin and Noorani in the year 2013 [42]. Currently there are
no therapeutics used to treat dengue, and the only ways and
means of controlling dengue have been the vector control. Hence,

most of the models developed have laid their focus on the popu-
lation dynamics of the susceptible, infected, exposure and
removed vector transmission of dengue fever.

Schistosomiasis

Schistosomiasis, an infectious disease caused by the nematode
Schistosoma affects nearly 210 million people in 76 countries.
The parasites reside in water bodies and can penetrate the skin
of people who come in contact with the contaminated fresh-
water. Lipids play an important part of parasitic membranes. In
a study done by Shinde et al., genome scale reconstruction of
the lipid metabolism of the parasite has resulted in the identifi-
cation of choline-phosphate cytidyltransferase (CCT) as an im-
portant drug target [43]. It was observed that targeting CCT
would cause result in developmental defects in the parasite.
Schistosomiasis is a relatively understudied disease and there
is an urgent need to identify drug targets in the parasite, as
there are reports that the parasite is developing resistance to
existing drugs such as Praziquantel [42].

Leishmaniasis

Leishmaniasis is an infectious disease that affects nearly 12
million people worldwide (www.who.org). Identification of
novel drug targets has become increasingly important for this
disease, as the existing chemotherapy suffers from drawbacks
like side effects and the problem of drug resistance. Targeting
metabolic networks could lead to the identification of probable
chemotherapeutics. This could be done by assessing the role of
enzymes in the production of metabolites, which directly regu-
lates the growth and survival of the parasite. Essential reactions
in the pathways can be probed for categorizing the drug targets.
In this direction, models such as iAC560 and iAC142 developed
by Subramanian et al. and Chavli et al. quantitatively access the
importance, essentiality and the role of chemotherapeutic tar-
gets in the growth of parasites like Leishmania. These studies
based on the amastigote stage of the parasite have predicted by
flux balance analysis the reactions that exert the maximum ef-
fect on the parasite survival. Further in silico reaction knockout
analysis has resulted in identification of a minimum inhibition
threshold that a chemotherapeutic drug needs to exert to re-
duce the parasite growth. One of the major challenges faced in
the construction of the models is that Leishmania major is not
well-characterized experimentally. Hence, models need to be
updated as and when adequate information is obtained.
Mandlik et al. have shown the importance of mathematical
models in the identification of drug targets. Analysis of the
model pertaining to the sphingolipid metabolism of the parasite
has revealed that enzymes such as Inositol phosphorylceramide
synthase (IPCS), Sphingosine-1-P lyase (SPL) and Serine palmi-
toyl transferase (SPT) are crucial for the production of metabol-
ites like ethanolamine phosphate and sphingolipids like
inositol phosphoryl ceramide [44]. Subramanian et al. have re-
ported that reactions catalyzed by glutamate dehydrogenase
and phosphosphogluctamate that are essential for the parasite
growth. It was observed that any reduction in the enzyme activ-
ity and or reaction flux leads to reduction in the survival rate of
the parasite, suggesting that both these enzymes could be good
druggable targets. In addition to the in silico predicted flux pro-
files of L. major metabolism, the importance of evolutionary
rates of these metabolic enzymes has also been highlighted [45].
On similar lines, in a study done by Chavli et al., evaluation of
fluxes through the F0F1-ATP synthase reaction resulted in the
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construction of iAC560 MODEL. Lethal double deletions were
identified, which are some of the promising drug targets in the
leishmania genome. A comparison with the metabolic networks
of the host created a framework for probing the difference in
the host parasite metabolome. This type of novel network ana-
lysis is particularly useful for the identification of unique drug
targets, which can be targeted for controlling the emergence of
diseases like leishmaniasis [46]. Models can also be built for epi-
demiological purpose such that the transmission dynamics of
leishmania can be understood. Stauch et al. have built an ordi-
nary differential equation-based model for Leishmania donovani,
which highlights the infection dynamics in sand-fly, the animal
hosts and immunocompromised patients. This model provides
information about the various stages of the infection and re-
lates it to the immune response of the host, thereby improving
existing chemotherapeutic interventions [47].

Future prospects

Systems level understanding of biological systems has led to
the advent of P4 (personalized, preventive, predictive and par-
ticipative) medicine. As models represent an abstraction of real-
world systems, the importance of mathematical models has
been increasing among biologists. To obtain a clear understand-
ing of the disease pathology, its advent, transmission and
impeding problem of drug resistance, a clear logical under-
standing about a systems behavior is important. Model analysis
would help in understanding hitherto unknown scenarios that
are important in disease progression and spread. The effect of
variables and parameter changes directly correlate with the pre-
dictions made from a model. One of the challenges faced in
model building is the non-availability of several parameters. It
is therefore essential to estimate the variables well and build
models that can incorporate the essentials of host–parasite–
vector interactions and clinical outcomes of any infectious dis-
ease. The importance of mathematical models has been first
realized in the field of infectious diseases and it is imperative
that our efforts further facilitate research in this area.

Conclusion

Although the integration of systems biology with pharmacology
has its own facets, opening a myriad of biological questions to
the researchers at present, the coming age has evolved on its
own with expert clinicians playing a prominent role. Clinical
candidates need to expand vertically by licensing technologies
for product development. The systems pharmacogenomics has
the potential to herald into a new era with financially sustain-
ing deals. Collaboration may impact the commercial develop-
ment trajectory centering on systems pharmacogenomics.

Key Points

• The central task of systems biology is to gather infor-
mation, integrate and analyze data sets in the form of
biological networks.

• Disease-specific gene regulatory, metabolic and pro-
tein–protein interaction networks can throw light on the
various nodes that are perturbed in the diseased state.

• Aiding systems pharmacogenomics with the interdis-
ciplinary approaches may herald into a new area of
therapeutic intervention against infectious disease.
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