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Tumor markers are one of the important indicators for early cancer diagnosis. As a new
analytical method, electrochemical immunosensing analysis has the advantages of high
sensitivity, good selectivity, and rapid detection, which is of great significance for the
detection of tumor markers. In this work, an AuNP/reduced graphene oxide (AuNP/rGO)
composite was synthesized. We used it for electrochemical sensor fabrication with the
assistance of the biotin–streptavidin protein (SA) system to further amplify the signal to
achieve sensitive detection of carcinoembryonic antigen (CEA). In addition, AuNPs have
been incorporated due to their good electrical conductivity and biocompatibility, which can
accelerate electron transfer at the electrode interface and improve the loading capacity to
capture antibodies. The fabricated AuNPs/SA/rGO has a large working surface area and
high material utilization ratio, which improves the catalytic capacity of H2O2 reduction and
effectively amplifies the current signal. The linear range of the response current signal of the
sensor toward the CEA concentration is 20 fg/ml to 200 ng/ml, and the limit of detection
can achieve 6.2 fg/ml. In addition, the fabricated immunosensor has good reproducibility,
selectivity, and stability.
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INTRODUCTION

Among the problems about human health, cancer has the characteristics of being painful and
difficult to cure, has long treatment cycle, and is expensive, which seriously threaten people’s life,
health, and safety, as well as the whole family life. Early cancer is generally not easy to detect, but early
cancer detection is the golden period of treatment. The cure rate of early cancer can reach more than
80% (Mohammadi et al., 2019;Wang H et al., 2020). Clinical diagnosis of cancer mainly uses imaging
detection methods, such as B ultrasound, CT, magnetic resonance imaging (MRI), and other
methods, but these require expensive equipment and complex operation. When a site or tissue
becomes cancerous, corresponding tumor markers will be generated, and these tumor markers will
generally enter the blood and body fluids. Therefore, the detection of tumor markers in blood
samples is one of the simple and effective methods for early diagnosis of cancer such as breast cancer
(Filik and Avan, 2019; Vajhadin et al., 2020; Zhang et al., 2021). Tumor markers are molecules that
are characterized in malignant tumor cells with main components including proteins and sugars,
which are released by their own synthesis or generated by the body’s reaction. In recent years, great
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progress has been made in the study of tumor markers, and many
tumor markers have been discovered and applied in the detection
of malignant tumors (Wang J et al., 2020; Karimi-Maleh et al.,
2021b; Wei et al., 2021). The abnormal increase of tumor markers
can indicate the occurrence of tumor, and the sensitive detection
of tumor markers is of great significance for the diagnosis,
treatment, and prognosis monitoring of cancer.

Carcinoembryonic antigen (CEA) is a broad-spectrum tumor
marker found in fetal and colon tissues (Sadighbayan et al., 2019;
Wen et al., 2020). The normal value of serum CEA in normal
people is less than 5 μg/L, but breast cancer will lead to an increase
in the serum CEA concentration. CEA plays an important role in
diagnosis and treatment, prognosis monitoring, and recurrence
assessment of cancer (El Aamri et al., 2020; Chen et al., 2021).
Sensitive detection of tumor markers has always been one of the
goals of researchers. In recent years, the detection methods of
tumor markers have been optimized, such as radioimmunoassay,
enzyme-linked immunosorbent assay, and electrochemical
immunosensor (Karaman, 2021; Karimi-Maleh et al., 2022a;
Karimi-Maleh et al., 2022c; Mehrizi et al., 2022; Mubashir
et al., 2022). The electrochemical immunosensor performs
qualitative or quantitative analysis by measuring the
electrochemical or electrical properties of the analyte (Sfragano
et al., 2021). Compared with traditional analytical techniques, the
electrochemical immunosensor has the advantages of low cost,
fast analytical speed, and simple operation (Song et al., 2019;
Mani et al., 2021).

Nanomaterials are introduced into the field of electrochemical
analysis. On the one hand, nanomaterials are applied to the
surface modification of the electrode, which can greatly improve
the conductivity of the electrode (Cui et al., 2019; Sharifi et al.,
2019). At the same time, it can catalyze the accelerated reaction
process, shorten the time of analysis and detection, and
immobilize more antibodies or antigens to achieve rapid and
sensitive detection of the analyte. Graphene is a typical two-
dimensional nanomaterial consisting of a single layer of carbon
atoms (Xu et al., 2021). The special two-dimensional structure of
graphene makes it have a great theoretical specific surface area,
ultra-high electron mobility, excellent optical and mechanical
properties, and other characteristics (Shahzad et al., 2020). This
makes graphene have broad application prospects in sensors,
supercapacitors, luminescent electronic components, batteries,
and other fields. In order to further expand the application of
graphene in electrochemical sensors, a lot of work has been
carried out to further optimize the performance of graphene
by means of doping other materials, chemical functionalization,
and synthesis of composite materials (Reddy et al., 2020). Gold is
the most chemically stable metal, with good electrical
conductivity and biocompatibility, and can be combined with

biologically active proteins, enzymes, and other molecules
without destroying their activity (Karimi-Maleh et al., 2021a;
Wang et al., 2021; Zheng et al., 2021; Karimi-Maleh et al., 2022b;
Pothipor et al., 2022). Gold nanomaterials are often modified on
the electrode surface as substrate materials to immobilize antigens
or antibodies and provide a good channel environment for
electron transfer on the electrode surface. In addition, gold
nanomaterials have the characteristics of easy functionalization
(Akbari jonous et al., 2019; Tran et al., 2021; Fu et al., 2022).
Therefore, gold nanomaterials can also be combined with other
materials to achieve the effect of amplifying electrical signals. In
this study, graphene oxide (GO) and AuNPs were used as
electroactive materials for the signal amplification of the
sensor. In order to improve the sensitivity of the
immunosensor, a biotin–streptavidin (SA) system was adopted
(Xia et al., 2020; Liu et al., 2021a; Liu et al., 2021b; Xia et al., 2021).
The biotin-SA CEA antibody (Bio-Ab) was captured because of
the high affinity between biotin and SA. After the non-specific
sites were sealed with bovine serum albumin (BSA), the CEA to
be measured was bound to the immunosensor through antigen-
and antibody-specific reactions. Finally, the constructed
electrochemical immunosensor obtained an excellent
electrochemical response signal by reducing H2O2. The
fabricated electrochemical immunosensor has the advantages
of high sensitivity, high specificity, good repeatability, and
wide detection range.

MATERIALS AND EXPERIMENTS

Materials and Instrument
CEA and CEA antibodies were purchased from Shanghai
Lingchao Biotechnology Co., Ltd. Bovine serum albumin (BSA,
96–99%) was purchased from Sigma Reagents Ltd. Chloroauric
acid (HAuCl4`4H2O) was purchased from Beijing Sigma-Aldrich
China Co., Ltd. Streptavidin protein (SA) and biotin-labeled
cancer embryo antigen monoclonal antibody (anti-CEA/
Biotin) were purchased from Beijing Boaosen Biotechnology
Co., Ltd. Sodium borohydride (NaBH4) was purchased from
Shanghai Energy Chemical Co., Ltd. Reduced graphene oxide
(rGO) was purchased from Jiangsu Xianfeng Nanomaterials
Technology Co., Ltd. H2O2 was purchased from Chongqing
Chuandong Chemical Co., Ltd. The pH 6.8 phosphate buffer
solution (PBS, composed of 0.1 MNa2HPO4, 0.1 M KH2PO4, and
0.1 M KCl) was used as the working buffer solution. Then, 0.01M
PBS (consisting of 8 mM Na2HPO4, 2 mM KH2PO4, 0.1 M NaCl,
and 3 mM KCl) was used as the diluent of CEA, SA, and anti-
CEA/biotin. All other reagents are analytically pure and can be
used directly without purification.

FIGURE 1 | Scheme of the preparation of BSA/Bio-Ab/SA/AuNPs/rGO/GCE.
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Preparation of AuNPs and AuNPs/rGO
First, 1.0 ml of HAuCl4 4H2O with a concentration of 1.0 wt%
was added to 99.0 ml water and stirred in a magnetic stirrer under
100°C oil bath to boil. Then, 2.5 ml of sodium citrate solution with
a concentration of 1.0 wt% was added, and magnetic stirring was
continued for 15 min to obtain a wine red AuNP solution.

AuNPs/rGO was prepared by using a one-step solvothermal
method. A measure of 10.0 ml of AuNP solution with a
concentration of 10.0 mg/ml was added to 50.0 ml of GO
solution with a concentration of 1.0 mg/ml. After 10 min of
magnetic stirring, the resulting mixture was transferred to a
teflon-lined high-pressure reactor, and a solvothermal reaction
was carried out at 130°C for 3 h. The AuNPs/rGOwas obtained by
freeze-drying the black precipitate obtained by continuous
washing and centrifugation with water and ethanol five times.

Fabrication of the Electrochemical
Immunosensor
First, the glassy carbon electrode (GCE) was polished successively
with 0.3 and 0.05 μm alumina powder. Then, the GCE was
ultrasonically washed with water and then ethanol for 5 min
each. After GCE drying at room temperature, 8 μl of 2 mg/ml
AuNPs/rGO was added to the surface of the electrode and dried
in air. Then, 10 μl of SA with a concentration of 1 μg/ml was
dropped onto the surface of the modified electrode, and SA
bonded to the modified electrode through the Au-NH2 bond.
The electrodes were stored and incubated at 4°C for 12 h to make
the SA protein bind to AuNPs/rGO more effectively. Next, 10 μl

of biotin-modified carcinoembryonic antigen antibody (Bio-Ab)
was dropped onto the surface of the prepared electrode and
incubated at 37°C for 60 min. This step allows the Bio-Ab to be
immobilized to the electrode by the high affinity between SA and
biotin. Then, 6 μL of BSA solution (1% w/v) was added and
incubated at 37°C for 40 min to block the non-specific binding.
After each modification step, the electrode was washed with PBS
solution to remove unbound SA, Bio-Ab, and BSA. Figure 1
shows the scheme of the sensor preparation.

CEA Detection
A volume of 10 μl of CEA standard solution with different
concentrations (ranging from 0.1 pg/ml to 1 μg/ml) was added
to the modified electrode and incubated at 37°C for 60 min. The
uncombined CEA was removed by washing with PBS. All
electrochemical tests were performed on an electrochemical
workstation in a conventional three-electrode system. Cyclic
voltammetry (CV) and electrochemical impedance (EIS)
measurements were carried out in 5 mM [Fe(CN)6]

3−/4−

solution containing 0.1 M KCl. The electrochemical impedance
method was performed at the amplitude of the frequency range
0.1–105 Hz and 10 mV. The timing current method (i-t method)
involves immersing the modified working electrode in a
phosphate buffer solution used as a working buffer solution.
At room temperature and voltage −0.4 V, after the background
current was stable, 10 μl of 2 M H2O2 was added into a small
beaker containing 10 ml of working buffer solution (pH 6.8), and
the difference in the change of the electrochemical signal in the i-t
curve was recorded.

FIGURE 2 | SEM image of (A) rGO and (B) AuNPs/rGO. EDX spectra of (C) rGO and (D) AuNPs/rGO.
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RESULTS AND DISCUSSION

The morphology of the prepared nanomaterials was
characterized by SEM. As shown in Figure 2A, rGO has a
continuous smooth surface structure accompanied by a folded
paper shape, with a large specific surface area, and is a good
substrate for loading a large number of nanoparticles. After rGO
was combined with AuNPs, the SEM image (Figure 2B) showed
that a large number of spherical metal nanoparticles were
obviously attached to the lamellar structure of rGO (Amir
et al., 2020). Figures 2C,D are EDS spectra of rGO and
AuNPs/rGO. Compared with Figure 2C, the characteristic
element peaks corresponding to Au can be clearly observed in
Figure 2D, which means AuNPs are successfully anchored
on rGO.

Figures 3A,B show nitrogen adsorption–desorption
isotherms for rGO and AuNPs/rGO, respectively. According
to the nitrogen adsorption–desorption experiment, the average

pore size of rGO is 5.22 nm with a BET surface area of 172.61 m2/
g. The average pore size of AuNPs/rGO is 12.51 nm with a BET
surface area of 366.12 m2/g. The average pore size and BET
surface area of AuNPs/rGO are significantly larger than those
of rGO, which can be attributed to the large pore structure and
surface area of AuNPs inserted into the rGO lamellar structure as
spacers (Liu S et al., 2021). This effectively proves that AuNPs/
rGO is successfully prepared, and the prepared composite has an
obvious spacer structure.

Electrochemical characterization of rGO and AuNPs/rGO was
conducted by CV and EIS. As shown in Figure 4A, the redox peak
current of rGO is larger than that of bare GCE. When using an
AuNP/rGO-modified electrode, the redox peak current is the
most obvious compared with rGO and bare GCE. CV test results
show that AuNPs/rGO has better electrocatalytic activity than
rGO. This can be attributed to the spacer structure formed by
AuNPs inserted into the rGO lamella, exposing more catalytic
active sites (Dehghani et al., 2019).

FIGURE 3 | N2 adsorption–desorption isotherm: (A) rGO; (B) AuNPs/rGO.

FIGURE 4 | (A) CV and (B) EIS spectra of GCE, rGO/GCE, and AuNPs/rGO/GCE.

Frontiers in Chemistry | www.frontiersin.org May 2022 | Volume 10 | Article 8989244

Guo and Feng Detection of Carcinoembryonic Antigen

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


In addition, the conductivity of AuNPs/rGO and rGO was
tested by EIS. The semicircle of the high-frequency region in the
EIS corresponds to surface transfer resistance (Ret). As can be
seen from Figure 4B, when the electrode surface is modified with
rGO, the semicircle diameter at a high frequency is smaller than
that of bare GCE. This shows that rGO can effectively accelerate
electron transfer (Nazarpour et al., 2020). When the electrode
surface was modified with AuNPs/rGO, the semicircle diameter
at high frequency was smaller, and the Ret was smaller than that of
rGO. After AuNPs were inserted into rGO as a spacer, the
electron transfer rate of AuNPs/rGO is faster and the
conductivity is better.

The sensor assembly was also characterized by CV (Figure 5).
After incubating SA on the AuNPs/rGO/GCE surface, the peak
current decreased significantly because the non-electroactive
protein SA blocked the electron transfer on the electrode.
Then, Bio-Ab binds to SA, and the non-electroactive
antibody–protein Bio-Ab further increases the resistance on

the electrode surface and decreases the redox peak current
(Avan and Filik, 2020). Similarly, when non-specific sites of
Bio-Ab/SA/AuNPs/rGO/GCE are blocked with BSA, the peak
current is again reduced. Then, under the antigen–antibody
reaction, high electrical resistance is produced. When the
antigenic protein CEA acts as a mass transfer barrier and
binds inert electrons with Bio-Ab, the peak current decreases
to a minimum. These results indicate that each step of the
immunosensor manufacturing process is successfully fabricated
(Ghanbari et al., 2019).

The sensitivity of the electrochemical immunosensor
depends on the electrocatalytic activity of the modified
material on the working electrode surface (Fan et al., 2020).
In order to study the mechanism of signal amplification, we
modified the GCE surface with different materials and tested it
with the i-t curve of timing current. As shown in Figure 6A,
AuNPs/GCE has a small but stable response current value,
which indicates that AuNPs, as a substrate material, can
adhere uniformly to the electrode surface and accelerate the
electron transfer between the electrode surface and the
electrolyte (Poo-arporn et al., 2019). When rGO is modified
on the GCE surface, the response current value is very small.
When AuNPs are loaded on rGO, the response current is larger
than AuNPs/GCE. This can be attributed to the synergistic
effect between AuNPs and rGO on the catalytic performance of
the H2O2 reduction reaction that greatly improved (Hashemi
et al., 2020). Therefore, AuNPs/rGO/GCE can greatly improve
the sensitivity of the immunosensor.

In order to verify the signal amplification effect of the biotin-
SA system in the immunosensor, we conducted a comparative
experiment with or without the immunosensor added with SA.
Due to the high affinity of the biotin-SA system and the
characteristic that one SA molecule can combine with four
biotin molecules (Luong and Vashist, 2019), more Bio-Ab can
be combined when using AS to modify the immunosensor. When
detecting CEA with the same content, the SA-modified
immunosensor showed a higher difference in the
electrochemical response than the immunosensor without SA
modification (Figure 6B). The aforementioned results show that

FIGURE 5 | CV curves of AuNPs/rGO/GCE, SA/AuNPs/rGO/GCE, Bio-
Ab/SA/AuNPs/rGO/GCE, BSA/Bio-Ab/SA/AuNPs/rGO/GCE, and CEA/BSA/
Bio-Ab/SA/AuNPs/rGO/GCE.

FIGURE 6 | (A) i-t curves of GCE, AuNPs/GCE, rGO/GCE, and AuNPs/rGO/GCE. (B) i-t curves of the immunosensor modified with or without SA.
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the signal amplification strategy can further improve the
sensitivity of CEA detection.

The concentration of AuNPs/rGO is an important factor
affecting the surface area of the electrode and the conductivity
of the sensor. As shown in Figure 7A, the electrochemical signal
gradually increased (from 0.5 to 2.0 mg/ml) as the concentration
of the incubated nanocomposites increased and then remained
stable. Therefore, 2.0 mg/ml was selected as the optimal
concentration of AuNPs/rGO nanocomposites.

SA concentration is a key factor that has important influence
on the performance of the immunosensor and Bio-AB
immobilization. As shown in Figure 7B, the electrochemical
signal decreased with the increase in the SA concentration.
The electrochemical signal tended to be stable at the
concentration of 1 μg/ml, indicating that the amount of SA on
the surface of the immunosensor reached the maximum.
Therefore, 1 μg/ml was selected as the best concentration of SA.

In order to synthesize more Bio-Ab immobilized on the
electrode, the concentration of Bio-Ab is also an important
parameter affecting the performance of the sensor. Figure 7C
shows that the concentration of Bio-Ab changes from 2 to 4 μg/
ml, and the electrical signal decreases significantly. However,
when the concentration is greater than 4 μg/ml, the signal
remains stable. This reflected that the biotin-labeled antibody

reached its maximum value by binding to SA. Therefore, 4 μg/ml
was used as the optimal concentration of Bio-Ab.

The specific recognition and immobilization of the target CEA
are key steps in the whole sensor construction process. As shown in
Figure 7D, as the incubation time of antigen increases, the current
decreases rapidly and then remains stable after 60 min. This
indicates that maximum immobilization of CEA was achieved
through antigen–antibody-specific recognition at this time.
Therefore, 60min was chosen as the best incubation time for CEA.

Different concentrations of CEA were detected by the i-t curve
method under optimum experimental conditions. Figure 8A
shows the response current results of different concentrations
of CEA. The response current increases with the increase in the
CEA concentration. There is a good linear relationship between
the log value of current (ΔI) and CEA concentration in the range
of 20 fg/ml–200 ng/ml. The limit of detection limit (LOD) was
calculated to be 6.2 fg/ml. The values of points in Figure 8B are
obtained by the formula ΔI = I0−It. I0 is the stable background
current value, and It is the stable current value obtained after
injecting H2O2. The linear regression equation obtained is ΔI =
−15.419lgC −80.611 (R2 = 0.9978). The results showed that the
detection range of CEA was wide and the LOD was low. Table 1
shows the sensing performance of the proposed electrochemical
sensor with other electroanalytical methods.

FIGURE 7 | Effect of (A) concentration of rGO/AuNP nanocomposites, (B) concentration of SA, (C) concentration of Bio-Ab, and (D) immobilization time of CEA on
the sensing performance (n = 3).
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Reproducibility is an important index to evaluate the accuracy
of the designed electrochemical immunosensor. We prepared five
groups of immunosensor, five in each group, to detect CEA at the
concentrations of 1 pg/ml, 10 pg/ml, 100 pg/ml, 1 ng/ml, and
10 ng/ml, respectively. Under the optimum experimental
conditions, the immunosensor was tested by the time-current
i-t curve method. Figure 9A shows the average response current
obtained by testing the five groups of electrodes, with relative

standard deviations (RSD) of 3.11%, 2.27%, 1.98%, 2.06%, and
2.24%, respectively. The results show that the designed
electrochemical immunosensor has good reproducibility.

The stability of the immunosensor is tested by periodically
measuring the current response. Five immunosensors were
prepared to detect 1 ng/ml CEA under optimal experimental
conditions. As shown in Figure 9B, the designed
immunosensor changed only 3.59% after 2 weeks and 6.61%

FIGURE 8 | (A) i-t curves of the immunosensor to different concentrations of CEA. (B) Calibration curve of CEA concentration against the value of the
immunosensor.

TABLE 1 | Linear range and LOD obtained using a proposed immunosensor and other sensors reported for CEA sensing.

Sensor Linear range LOD Reference

CEA/rGO/GCE 0.1–5 ng/ml 0.05 ng/ml Jozghorbani et al. (2021)
CPS@PANI@Au 0.006–12 ng/ml 1.56 pg/ml Song et al. (2021)
[Ag-Ag2O]/SiO2 0.5–160 ng/ml 0.14 ng/ml Yuan et al. (2010)
CS–CNT–GNP nanocomposite film 0.1–2 ng/ml 0.04 ng/ml Gao et al. (2011)
Ag@SiO2 NPs 0.5–10 ng/ml 0.01 ng/ml Singh et al. (2021)
Cu-MOF-TB/PDA 0.02 pg/ml–200 ng/ml 3.0 fg/ml Liu et al. (2020)
Pd-V2O5/CNT 0.5 pg/ml–25 ng/ml 170 fg/ml Han et al. (2016)
CD-GN-Cu@Au 0.1 pg/ml–20 ng/ml 20 fg/ml Gao et al. (2015)
Cu2O-Au 2 pg/ml–20 ng/ml 200 fg/ml Qin et al. (2018)
CEA/BSA/Bio-Ab/SA/AuNPs/rGO/GCE 20 fg/ml–200 ng/ml 6.2 fg/ml This work

FIGURE 9 | (A) Reproducibility, (B) stability, and (C) specificity of the fabricated immunosensor (n = 3).
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after 3 weeks. After 5 weeks of storage, the current value
decreased by 10.01% compared with the initial period. The
decrease in the response current value may be due to the
accumulation of gradual inactivation of CEA and CEA
antibodies. It is proven that the designed immunosensor has
good stability.

The interference experiments of AFP, HBS, PSA, and IgG were
carried out to investigate the selectivity of the designed
immunosensor. The CEA of 1 and 10 ng/ml interference
solution was determined by the designed immunosensor.
Compared with the detection results of pure CEA, the current
change caused by interfering substances in Figure 9C is less than
5%, indicating that the designed electrochemical immunosensor
has excellent selectivity and specificity.

CONCLUSION

A highly sensitive CEA electrochemical immunosensor was
successfully constructed based on the SA-biotin system and
rGO/AuNP nanocomposites as both substrate modification
materials and signal amplification molecules. rGO/AuNPs not
only significantly improved the conductivity but also showed
outstanding electrocatalytic activity in reducing hydrogen

peroxide. In addition, the introduction of the biotin-SA system
also contributes to the enhancement of the sensitivity of the
immunosensor. Based on the aforementioned advantages, the
electrochemical immunosensor proposed in this study has good
repeatability, stability, high specificity, and a wide linear range,
with a detection limit of 6.2 fg/ml. In the future, how to improve
the preparation speed of the sensor and reduce the incubation
time will become an important direction of the electrochemical
immunosensor for practical detection.
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