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Abstract: Among various aspects of environmental epidemiology, one is to assess the relationships
between ambient air pollution and health outcomes. The goal of this work is to estimate the associa-
tions in the form of the parametric concentration–response functions (C-RF). Various forms of the
C-RFs are proposed in this short-term health effect study. Emergency department (ED) visits for all
respiratory health problems are analyzed as an illustrative example. A case-crossover (CC) technique
is applied as a study design. Daily cases are organized as daily counts by the same day of the
week in one common month. A conditional Poisson regression is used in the constructed statistical
models. Temperature and relative humidity are included in the statistical models in the form of
natural splines. Ground-level ozone concentration is considered an exposure. Ozone concentration
values are transformed and submitted to the statistical models. The parameters of the transformation
are determined by using the goodness of fit criterion. Counts of ED visits are analyzed in relation
to a sequence of lagged exposure to ozone. The C-RF shapes are constructed for each individual
lag. In a final step, the set of the estimated C-RF shapes is used to create a pooled C-RF shape. The
results are positive and statistically significant for nine lagged exposures, from 0 to 8 days. The
following relative risks (RR) were estimated from the constructed C-RFs at 30 ppb concentration
of ozone: RR = 1.0531 (95% confidence interval: 1.0231, 1.0718), 1.0462 (1.0253, 1.0677), and 1.0387,
(1.0240, 1.0531), realizing the CC method, CC method + transformation, and CC method + flexible
transformation, respectively. The pooled C-RF shape gives a summary of the associations between ED
visits for respiratory conditions and ambient ozone. The estimated shapes indicate lower air health
effects than the standard CC methods. Among three considered statistical models, the CC method +
flexible transformation is the most appropriate to use according to the goodness of fit criterion.

Keywords: air pollution; case-crossover; concentration; ozone; respiratory problems; response

1. Introduction

In this paper, a technique to estimate the associations between the concentration levels
of ambient air pollution and health outcomes is presented. The described technique is
realized in a short-term air health effect scenario. The main goal of this work is to estimate
the association in the form of a parametric algebraic function, which is the concentration–
response function (C-RF). The C-RF shape determines the health risk as a function of the air
pollutant concentration levels. These shapes are important tools in estimating air pollution
health effects [1–5]. The CR-F profile provides knowledge of both the shape (profile) and
magnitude of the relative risk along the concentration values. The C-RF shapes allow
for the determination of a potential threshold. The ranges of air pollution concentration
are studied in the short-term exposure effects. Daily counts of health data and daily air
pollutant concentration levels are used in this study. In addition, two weather factors,
temperature and relative humidity, are included in the constructed statistical models. The
air health effect of exposure to air pollutants is analyzed for a series of daily lags. In the
literature, the results from these types of studies are usually obtained for individually
considered lags [6,7]. Traditionally, associations are reported for the lags, which indicate the
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largest estimated health effects among the considered lagged exposure. Another approach
to analyzing the impact of the lagged exposures is to show the associations between the
realized lags by applying distributed lag methods [8,9].

The traditional approach to estimating risk related to short-term health effects is to use
a time-series analysis (based on counts) or case-crossover (based on separate health events).
Usually, two kinds of functions are used to represent the relative risk as a function of
concentration. One is an exponential function with the coefficients estimated on a log-linear
scale, and another is to use the splines to adjust for the fluctuations related to air pollution
concentrations. Here, other kinds of relationships are described.

This work proposes a technique that merges the estimated C-RF shapes constructed
for the individual lags. The C-RF shapes are usually different in their forms by the applied
individual lags. These C-RF shapes are well-described by their parameters. The used
statistical models allow for the estimation of an optimal set of parameters. The applied
fit criteria provide a measure of goodness of fit for the constructed statistical models. An
optimal set of parameters is chosen using a measure of goodness of fit. In this work, the
Akaike information criterion (AIC) is used to classify the generated estimations [10,11].

The results of the associations are reported as the concentration–response function
(C-RF) for each individually considered lag. The next step in the proposed methodology
is to execute a kind of meta-analysis using the constructed algebraic functions and to
obtain a pooled single risk estimate value for all lag days. In this work, the estimation of a
global concentration–response function, which summarizes the results, is proposed. As a
result, a single concentration–response function is built based on a series of these functions
produced for the individually considered lags.

The main contribution of this paper is to construct an algebraic C-RF, which sum-
marizes the results generated for a series of lagged exposure. The main motivation of
the paper is to present a tool for policymakers to assess the risks for various air pollutant
concentrations.

Constructing the concentration–response relationship of air pollutant levels and health
conditions is very important and often a challenging problem. One of the problems is
to detect the presence of a potential threshold, such that air pollutant levels below this
threshold are not expected to generate adverse health effects. Another problem is to prevent
the responses when the estimated risk is decreasing for increasing concentration levels.
This is mainly due to the situation that higher levels than “normal” ones are relatively rare.
As a consequence, the air health effects are not reflected properly. In the presented study, a
very high concentration of ambient ozone does not necessarily increase the number of ED
visits for respiratory conditions. These situations are not very common, but they produce a
decreasing risk. This is usually observed when in the study splines are used to model the
C-RFs. The technique presented here resolves these two problems; it identifies a threshold,
and the constructed C-RF is always a non-decreasing monotiling function.

2. Materials and Methods
2.1. Health Data

The health data are values related to emergency department (ED) visits in Edmonton,
Canada, in the period from April 1992 to March 2002. The ED visit data were collected
from five different hospitals in the greater Edmonton region over a 10-year period. These
data are implemented here for an illustrative purpose. The time period consists of a total
of 3652 consecutive days. All ED visits diagnosed as diseases of the respiratory system
(International Classification of Diseases, ICD-9; classified by the ICD-9 codes: 460–519)
were considered the same with one common health problem. For the presented technique,
the data were organized as daily counts of the ED visits. Among over 2 million records
stored in the used health database, 292,285 ED visits were identified, retrieved, and used in
the study.

An air pollutant ambient ozone (O3) concentration was considered. Its levels were
estimated and represented as an 8 h daily maximum concentration. Daily average ambient
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temperature and relative humidity were applied to represent these weather values. The
weather parameters in the constructed models were included in the form of natural spines.
The environmental data were retrieved from the National Air Pollution Surveillance (NAPS)
database, maintained by Environment and Climate Change Canada [12].

2.2. Statistical Model

Let Z denote daily air pollution concentration levels. In the present study, Z = O3,
where ambient ozone is measured as a maximum of averaged concentrations over an 8
h period. The constructed models are realized by implementing a conditional Poisson
regression. The conditional Poisson model is conditioning on the total event count in each
stratum. The time stratified case-crossover (CC) technique is applied to determine the
strata, which are composed of 4 or 5 days [13,14]. The constructed strata match days are
based on a hierarchical calendar structure, which is as follows: same day of the week,
calendar month, and year. These constructions have previously been used to minimize bias
among various approaches to define control periods for the case event in the case-crossover
models [13]. This construction can eliminate time-invariant factors such as sex, smoking,
and socioeconomic position. It has been shown that a conditional Poisson regression model
gives equivalent estimates as the conditional logistic regression model [15]. The models
realized here allow adjusting for over-dispersion (using the option: quasi-Poisson). In this
case, there is no AIC value.

The models are implemented in the R statistical software (R Foundation for Statistical
Computing, Vienna, Austriay) [16] and have the following form:

ModelFit = gnm (Health ~ AP(L) + ns(Temp(L),3) + ns(RHum(L),3), data = data, family = Poisson, eliminate = factor(stratum))

where AP, Temp, and RHum are values of the used air pollutant (ozone), temperature, and
relative humidity, respectively. All these three factors are lagged by the same number
of days, as marked here by the letter L (Lag). The used stratum indicator has the form
<year:month:day-of-week>. The variable Health represents daily counts of the considered
health conditions. In the presented situation, these are daily ED visits for respiratory
problems. The gnm package fits generalized non-linear models [16,17]. The estimated
coefficient for AP, called Beta (slope), with its standard error (SE), is used to calculate
relative risk (RR) and its 95% confidence interval (95%CI).

2.3. Transformation

The statistical models are built for various transformations of the AP represented by
the variable Z. The models are constructed using AP in the form AP = T(Z), where T(Z) is
the transformation of Z. The following techniques are proposed and conducted.

a. No transformation; AP = T(Z) = Z, and RR(Z) = exp(Beta× Z). It is a classical
approach on the log-linear scale. Here, it is called the CC method.

b. The transformation has the form T(Z) = f (Z) × LWF(Z), where f(Z) is a sim-
ple function of Z, such as Z, log(Z), sqrt(Z) (=

√
Z), or some other powers of Z

( f (Z) = ZP), with P greater or lower than 1, i.e., convex and concave functions of
the variable Z, respectively.

c. The transformation has the following form T(Z) = f (Z) × LWF(Z), with the
function f (Z) = log(1 + Z/A), where A is a parameter. This form is also used to
represent a pooled C-RF shape.

In the above notation, LWF represents a logistic weighting function. This function is
described by the following formula:

LWF(Z) =
1

1 + exp
{

µ−Z
r∗τ

} ,



Int. J. Environ. Res. Public Health 2022, 19, 8116 4 of 11

where mu and tau (µ, τ) are the parameters, and r is the concentration level range, i.e., the
range of Z measured in the study. The parameters µ, τ, and A (mu, tau, and A), for a given
initial guess, are determined by an iterative algorithm, which minimizes the AIC value for
the fitted models. Another approach to determine an optimal transformation is to tabulate
the transformation functions with various values of its parameters. It is a reasonable
method to realize the variant (b) presented above. In this situation, the values of mu are
taken as percentiles of Z, and tau is tested for two values, 0.1 and 0.2 [18]. The coefficient
Beta and its standard error are estimated by the realized statistical models applied to fit the
health data.

The classical CC technique traditionally calculates the relative risk as RR(Z) =
exp(Beta× Z). The present approach gives the risk as RR(Z) = exp(Beta× T(Z)). The
logistic function used in the transformation, LWF(Z), allows adapting to various shapes of
the concentration–response. The proposed method usually gives the results with a better fit
than the standard CC method, i.e., with no-transformation T(Z). The presented technique
estimates the best model according to the criteria used and provides the coefficient Beta
and its standard error (SE).

The next step is to summarize the generated C-RF shapes by a sequence of the used
lags. The relative risk RR at a point Z is represented as RR(Z) = exp(β(Z)), where

β(Z) = θ × log(1 + Z/A)× LWF(Z, τ, µ).

The final C-RF shape has the following form (RR(Z))

RR(Z) : (1 + Z/A)θ∗LWF

In this step, the parameters A, τ, µ, and θ {A, tau, mu, and Theta} are estimated using
a least-square approximation. The function C− RF is fitted to the series of C-RF shapes
generated for the individual lags.

In addition, knowing the standard error of the estimated Betas, the set of lower and
upper values of the C-RF shapes are produced and fitted with the function of the same
forms. Thus, the upper 95% confidence interval limits (a set of C-RFs) and corresponding
lower limits (a set of C-RFs) are used to construct two limits. One is based on the upper
and another on the lower set of profiles. These two C-RF shapes provide some boundaries
for the C-RF shape.

At the following location, https://github.com/szyszkowiczm/FitCRF, (accessed on
28 June 2022) in the form of a pdf file called ProgramToFitCRF, two programs in R are
presented. Program 1 fits CR-F for individual lags. Program 2 generates a common CR-F
using the results from the applied lagged concentrations. These programs allow the better
presentation and interpretation of the proposed methodology. It should be noted that a
set of non-linear equations are resolved to determine the constructed C-RF. Moreover, the
C-RFs are well-described by the estimated parameters {A, tau, mu, and Theta}.

3. Results

Table 1 presents the results for ED visits for respiratory conditions in Edmonton,
Canada, 1992–2002. The table has three parts, which correspond to the above method
description of three approaches (a) Z is not transformed, and as a consequence, the standard
CC method is realized, (b) Z is transformed using the simple function f (Z) and LWF(Z), and
(c) Z is transformed using f (Z) of the form log(1 + Z/A) and LWF(Z). The calculations were
performed by lags from 0 to 9.

https://github.com/szyszkowiczm/FitCRF
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Table 1. The estimations obtained by the case-crossover approach: (a) no transformation, (b) trans-
formation with f (Z) (=Z, log(Z), or sqrt(Z)), and (c) transformation with f (Z) = log(1 + Z/A). The
transformation is submitted into the models in the form f (Z) × LWF(Z) to represent concentrations.
ED visits for all respiratory conditions. Edmonton, Canada, 1992–2002.

(a) RR(Z) = exp(Beta × Z)

Lag Beta SE Lag Beta SE

0 0.00183 0.00039 5 0.00131 0.00039
1 0.00115 0.00039 6 0.00151 0.00039
2 0.00104 0.00039 7 0.00171 0.00039
3 0.00184 0.00039 8 0.00144 0.00039
4 0.00195 0.00039 9 −0.00004 0.00039

(b) RR(Z) = exp(β(Z)), β(Z) = Beta × f (Z) × LWF(Z,τ,µ), τ = 0.1

Lag Beta SE % µ f(Z)

0 0.0099 0.0019 39 15.0 sqrt
1 0.0069 0.0020 34 13.8 sqrt
2 0.0010 0.0003 31 13.0 z
3 0.0165 0.0032 26 11.6 log
4 0.0182 0.0032 26 11.6 log
5 0.0146 0.0033 60 20.6 log
6 0.0087 0.0019 57 19.6 sqrt
7 0.0095 0.0020 27 12.0 sqrt
8 0.0014 0.0003 49 17.6 z
9 −0.0041 0.0041 0 1.2 log

(c) RR(Z) = exp(β(Z)), β(Z) = Beta × log(1 + Z/A) × LWF(Z,τ,µ)

Lag Beta SE µ τ A

0 0.0467 0.0070 14.0 0.005 15.2
1 0.0035 0.0006 14.0 0.005 0.1
2 0.1220 0.0325 13.8 0.005 106.5
3 0.0047 0.0007 13.9 0.005 0.4
4 0.0414 0.0064 10.8 0.005 11.0
5 7.3226 1.4687 16.0 0.005 5690.1
6 4.3945 0.9644 17.4 0.061 3250.2
7 0.0650 0.0118 10.9 0.005 28.0
8 326.6490 77.3902 17.4 0.081 243,940.0
9 −0.0085 0.0018 3.1 0.005 0.0

The results for lag 9 were negative (Beta < 0). Thus, the C-RF shapes estimated for
lagged exposure from 0 to 8 were used to construct a pooled shape as a sort of summary.
Table 2 shows the obtained parameters for all three forms of the considered transformations.

Table 2. Estimations based on the RR values calculated for lag from 0 to 8. Three forms of the input
(a)–(c) are realized. ED visits for all respiratory conditions. Edmonton, Canada, 1992–2002.

Parameters Value SE Low Value SE Upper Value SE

Output (a) Input: RR(Z) = exp(Beta × Z)

θ 0.4 4.5 2.9 5052.0 2.3 1715.4
A 130.7 1805.4 3275.0 6,745,000.0 748.9 745,095.2
µ −27.6 655.0 −1158.0 822,200.0 −388.6 415,055.2
τ 2.3 27.6 12.9 7879.0 7.0 1336.5



Int. J. Environ. Res. Public Health 2022, 19, 8116 6 of 11

Table 2. Cont.

Parameters Value SE Low Value SE Upper Value SE

Output (b) Input: RR(Z) = exp(β(Z)),β = Beta × f (Z) × LWF(Z,τ,µ)

θ 0.0313 0.0027 0.0164 0.0020 0.0465 0.0034
A 8.1101 1.4794 6.9103 1.8306 8.6736 1.3260
µ 14.2728 0.3625 14.2329 0.5102 14.2752 0.3073
τ 0.1190 0.0020 0.1188 0.0027 0.1190 0.0018

Output (c) Input: RR(Z) = exp(β(Z)), β(Z) = θ × log(1 + Z/A) × LF(Z,τ,µ)

θ 0.0816 0.0047 0.0420 0.0025 0.1240 0.0073
A 50.9900 3.6630 39.6000 3.0700 57.8600 4.1180
µ 13.0700 0.0491 13.0100 0.0567 13.1000 0.0469
τ 0.0274 0.0009 0.0267 0.0010 0.0277 0.0008

For an illustrative purpose, the relative risks were calculated at point Z = ozone = 30
ppb. The C-RF shapes defined in Table 2 give the following estimations: (a) RR = 1.0531
[1.0231, 1.0718], (b) RR = 1.0462 [1.0253, 1.0677], and (c) RR = 1.0387 [1.0240, 1.0531].
These values correspond to fit all results (lag 0 to lag 8) with the C-RF shape of the
form RR(Z) = exp(β(Z)) where β(Z) = θ × log(1 + Z/A)× LWF(Z, τ, µ). The listed
intervals (say [1.0240, 1.0531]) are based on the same fitted type of function as the set of
lower and upper boundaries of the 95% confidence intervals. Table 3 shows the assessed
RRs at Z = 30 ppb for lag 0 estimated by the methods (a)–(c) (given in Table 1) and pooled
C-RF shapes (given in Table 2).

Table 3. Relative risks (RR) estimated from the presented approaches at Z = O3 = 30 ppb.

Lags Method RR 95%CI AIC Value

Lag 0 Table 1a 1.0564 1.0325, 1.0809 3.25140 × 104

Lag 0 Table 1b 1.0530 1.0327, 1.0737 3.25099 × 104

Lag 0 Table 1c 1.0522 1.0366, 1.0681 3.24914 × 104

All lags Table 2a 1.0531 1.0231, 1.0718 N/A
All lags Table 2b 1.0462 1.0253, 1.0677 N/A
All lags Table 2c 1.0387 1.0240, 1.0531 N/A

Figure 1 presents the histograms of the considered factors in the analysis; health
responses—daily ED visits, ozone, temperature, and relative humidity. The histogram
for ozone is mainly interesting in relation to the estimated C-RF shapes. It illustrates
the frequencies of various daily concentrations and allows for estimating the intensity of
occurring levels with effects on health conditions.
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Figure 1. Daily values during the study period (3652 days). Histogram of ED visits (daily counts),
ozone (ppb), temperature (◦C), and relative humidity (%).

Figures 2–4 visualize the situation presented numerically in Tables 1 and 2. Their left
panels show the individual components of the constructed C-RF shapes for lags from 0 to 8.
Their right panels show the constructed summary, a pooled C-RF shape. To be clear, these
C-RF shapes are RR(Z) = exp(β(Z)). The lower and upper boundaries are also shown.
The figures illustrate the results for the transformation as follows: Figure 2 for (a), Figure 3
for (b), and Figure 4 for (c).

Figure 2. Left panel: C-RF shapes by lags. Right panel: a pooled C-RF shape. No transformation
( f (Z) = Z).
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Figure 3. Left panel: C-RF shapes by lags. Right panel: a pooled C-RF shape. Transformation with
f(Z) chosen among three simple functions.

Figure 4. Left panel: C-RF shapes by lags. Right panel: a pooled C-RF shape. Transformation with
f (Z) = log(1 + Z/A).

Figure 4 indicates the presence of the threshold in the considered range of concentra-
tions. The ambient ozone with levels below 10 ppb does not show any health effects on
human respiratory health conditions.

4. Discussion

Exposure to ozone in ambient air has been associated with various health outcomes,
but mainly with health problems diagnosed as respiratory conditions. This study supports
these associations and indicates a relatively long period of the relations measured by used
lags. The positive associations are observed for lagged exposure from 0 to 8 days.

The constructed C-RFs in their forms are algebraic parametric functions. For the
positive coefficient (Beta) for air pollutants, the constructed C-RFs are non-decreasing
monotonic functions. It implies that for higher concentration levels, the estimated RR is not
lower than for lower levels. The risk does not decrease as the concentration increases.

The fitted C-RFs are considered in two aspects. One of them is their risk estimate
values at a specific O3 concentration. Another is their profile and shape. The estimated
values of RR have almost the same range for the three proposed approaches (a–c). The
main differences are in their shape. The methods, which have a better fit to the data, using
the goodness of fit criterion, give the lowest estimation at the point of 30 ppb (see Table 3,
AIC values). Moreover, this method suggests the presence of a threshold.

To the best of my knowledge, this is the first study in the literature to use such
methodology for estimating the health risks of short-term exposure to air pollutants, mainly
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to provide a summary risk estimate from all lagged exposure concentration–response
functions. The method proposed here collects the results not from various centers but
from the same study area using the results obtained for a series of lags. The presented
C-RFs indicate that the methodology is reliable. The estimated RR values are very similar
in their magnitudes. A least-square method does not include variability and correlations
among the generated C-RFs. Another approach is to use the technique presented by
other authors [18–20]. In this case, the applied methodology is realized in cohort studies
(longitudinal studies) using Cox regression. The parameters of the transformations are
determined by applying their tabulated values. The algorithm used in [18] to determine the
parameters of the weighing functions is as follows: “Step 1. Create four weighting variables
based on values of µ defined at the 0th, 25th, 50th, and 75th percentiles of the air pollution
distribution with τ = 0.1 and an additional four variables with τ = 0.2.” To have more
accurate values of the location parameter (µ), additional steps are realized: “Given the best
fitting µ value based on Step 1, fit two models setting µ to five percentile values greater than
and less than the best fitting µ. For µ equal to the minimum concentration, subtract and
increment equal to the difference between the 5th percentile and minimum concentration
from the minimum concentration and denote this value as−5th percentile. Continue to take
differences of minimum—10% of increment and minimum—15% of increment until log-
likelihood is maximized.”—see the details in [18]. In contrast, here, the parameters of the
weighting functions are found by applying a minimization function (not the tabulation as
in [18]. In this approach [18], the proposed parameters are submitted to the used statistical
models. A set of probable values are tried in a series of models. The used criterion to accept
a specific set is the log-likelihood value [18]. In contrast, in this presentation, the parameters
of the models are determined by resolving non-linear equations. The technique realized to
construct an ensemble model (presented in [19], used in [20]) based on the models derived
in various centers can be shortly characterized as [19]: “An ensemble estimate is then
constructed of all of the shapes examined weighted by their respective likelihood values.
Bootstrap methods were used to obtain uncertainty intervals.” Here, the ensemble model is
generated by using the models for individual lags. The practical details are given in the
form of the included computer programs (see file ProgramToFitCRF [16,17]).

The approach presented here (case-crossover with the transformation) was also tested
for ozone and mortality in Toronto [21,22]. The estimated relative risks (Z = 55 µg/m3)
were RR = 1.01947 (95%CI: 1.00295, 1.03627) using the standard case-crossover model, and
RR = 1.00391 (95%CI: 1.00181, 1.00601) using the case-crossover model with the transforma-
tion. The corresponding AIC values were 78,707.7 vs. 78,699.3 [22].

In the presented work, short-term air health effects are analyzed. The presented
methodology allows for the determination of a threshold. It is conducted without any
special construction of the concentration–response function. Here, air pollutant concentra-
tions are transformed, but the realized statistical method (case-crossover) is standard. This
applied transformation results in the C-RF, which is a non-decreasing function of the air
pollutant concentration levels.

5. Conclusions

It is often observed that epidemiological studies related to health conditions and
short-term exposure usually do not detect a threshold. As Figure 2 in this work shows,
it may be related to the form of the C-RF shape. In the standard CC method, RR has the
form exp(Beta × Dose). These functions do not allow for the identification of a threshold.
Using splines to construct the C-RF profiles often results in decreasing risks for increasing
concentrations. The proposed here methodology prevents such situations.

As indicated in Nasari et al. [18] (their Figure 1), the form proposed here of the C-RF
allows the construction of a variety of shapes from the model specification. These shapes
are flexible, and they resolve the problem of the threshold and decrease the risk of higher
air pollutant concentration levels.
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The present approach allows unifying the forms of relative risks represented as the
C-RF profiles constructed for various lags. Using the proposed methods allows detection of
a potential threshold. The results demonstrate that the best approach among the considered
approaches is the CC method with flexible transformation.
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