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ABSTRACT: Since glycoproteins have become increasingly recognized as key players
in a wide variety of disease processes, there is an increasing need for advanced affinity
materials for highly selective glycoprotein binding. Herein, for the first time, a surface-
initiated controlled radical polymerization is integrated with supramolecular templating
and molecular imprinting to yield highly reproducible synthetic recognition sites on
surfaces with dissociation constants (KD) in the low micromolar range for target
glycoproteins and minimal binding to nontarget glycoproteins. Importantly, it is shown
that the synthetic strategy has a remarkable ability to distinguish the glycosylated and
nonglycosylated forms of the same glycoprotein, with a >5-fold difference in binding
affinity. The precise control over the polymer film thickness and positioning of multiple carbohydrate receptors plays a crucial
role in achieving an enhanced affinity and selectivity. The generated functional materials of unprecedented glycoprotein
recognition performance open up a wealth of opportunities in the biotechnological and biomedical fields.
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■ INTRODUCTION

Glycoproteins make up the majority of human proteins, with
many having a close association with disease progression.1−3

Therefore, the recognition and quantification of glycoproteins
are of paramount importance for a variety of research purposes
and practical applications, including life sciences and medical
research, clinical diagnostics, medical devices, and imaging.4−7

However, major challenges remain regarding their specific
recognition and in particular how the structural features of
both the protein and glycan parts of the glycoprotein can be
simultaneously recognized to maximize selectivity.8,9

Antibodies raised against glycoproteins are typically specific
for the protein units,10 which are recognized irrespective of the
presence or not of particular glycan structures. On the other
hand, lectins act as affinity tools for glycans, even if they are
limited in terms of their ability to recognize a full glycan
structure,11 but are not able to provide structural information
about the protein unit of the glycoprotein. Considering these
limitations in biological recognition materials, there is
considerable motivation and opportunities to develop synthetic
materials capable of highly specific molecular recognition for
such challenging macromolecular targets.
Molecular imprinting (MI),12,13 which involves a process of

template-induced formation of molecular cavities featuring
recognition sites in a material, emerges as a very important
concept to meet such a major challenge. In MI, the synthetic
receptors used to construct the recognizing sites into the
imprinted cavity play a key role in promoting target affinity and

selectivity via the formation of multiple interactions, including
covalent bonding, hydrogen bonding, electrostatic, hydro-
phobic, and van der Waals interactions.14−16 By virtue of their
ability to covalently and reversibly bind with diols of
carbohydrates,17−20 boronic acid (BA) entities emerged as
front-runners to act as synthetic receptors for glycoprotein
recognition at imprinted cavities.
Earlier attempts to prepare synthetic recognition systems for

glycoproteins on material surfaces using MI and BA-based
carbohydrate receptors left significant room for improvement
in terms of meeting the requirements of high selectivity and
high affinity.21−24 To date, two main MI pathways have been
adopted. One strategy is based on glycoprotein immobilization
on a BA-terminated monolayer, upon which a polymer
network is formed around the template glycoprotein.21−23

Since the carbohydrate receptors are arranged in a monolayer
fashion, glycan binding to the boronic acid-terminated
monolayers occurs randomly. The strategy can, thus,
potentially promote nonspecific binding from other glyco-
proteins. The other strategy relies on an initial glycoprotein/
BA complex formation, followed by fixation of the complex on
the surface and construction of a molecular scaffold around the
glycoprotein template.24 Although this is an attractive method
to form specific glycoprotein glycan binding, the drawback is
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that the spatial arrangement of the carbohydrate receptors
occurs in a two-dimensional display.24 Thus, while these
strategies yielded surfaces with important glycoprotein binding
properties, the glycoprotein selectivity is limited by the degree
of molecular manipulation that can be achieved to create a
well-defined carbohydrate receptor pattern that is comple-
mentary to the glycoprotein template.
In the context of creating highly selective imprinted

glycoprotein cavities on surfaces, strategies that are amenable
to a three-dimensional (3D) display of the carbohydrate
receptors are particularly appealing since they can more closely
create a sterically and chemically complementary cavity to the
natural 3D glycan structure. With this proviso in mind, herein,
we demonstrate a surface imprinting methodology that meets
these criteria by relying on the precomplexation of BA-based
carbohydrate receptors with the target glycoprotein and atom
transfer radical polymerization (ATRP), which enables precise
control over the surface macromolecular structure and
functionality (Figure 1).25

Our modular strategy involves four main steps: (1)
functionalization of a gold surface with an ATRP initiator-
terminated SAM; (2) formation of a high order BA/
glycoprotein complex using protein compatible conditions;
(3) surface-initiated highly controlled ATRP polymerization in
the presence of the preformed BA/glycoprotein complexes to
create glycoprotein glycan-specific 3D interaction sites within
ultrathin, imprinted polymer films; (4) following formation of
the well-controlled molecular cavities, the glycoprotein
template can be easily removed by washing with an elution
buffer due to the reversible nature of the BA/diol
interactions.24,26 This strategy provides the ability to achieve
surface binding sites, which are complementary not only to the
glycoprotein template in their size and shape but also to the
very specific orientation and sugar sequence of the
glycoprotein glycan. This latter recognition mode is facilitated
by the initial generation of a BA/glycoprotein complex (step
2), in which the spatial arrangement of the multiple BA
receptors in the complex is preserved upon surface
incorporation via surface-initiated ATRP polymerization
(step 3). Because of the characteristic feature of a glycoprotein
glycan, i.e., one glycan bears multiple hydroxyl groups, multiple
BAs anchored at appropriate positions in the recognition
cavities interact synergistically with a glycoprotein glycan to
promote affinity and selectivity. RNase B, which comprises a
single glycosylated site with five diverse high-mannose glycans,
is chosen as our model glycoprotein template to form the

imprinted molecular cavities. The nonglycosylated RNase
form, RNase A, and two highly glycosylated glycoproteins,
α1-acid glycoprotein and horseradish peroxidase, are employed
as controls to demonstrate selectivity. The chosen control
proteins provide a range of sizes, charges, and percentages of
glycosylation (Table S1) to give a representative selection of
different properties that can contribute to the binding
response.

■ RESULTS AND DISCUSSION

The ATRP initiator-terminated SAMs were formed using a
synthesized disulfide functionalized with tert-butyl bromide
ATRP ini t ia tors , 11 ,11 ′ -d i th iobis[1-(2-bromo-2-
methylpropionyloxy)undecane] (11-DTMBD) (see the Sup-
porting Information for details on the synthesis of 11-DTMBD
and characterization). The 11-DTMBD SAMs were created by
first cleaning gold substrates using piranha solution for 10 min,
following which they were immersed in a 1 mM ethanolic
solution of 11-DTMBD for 24 h. In order to confirm the
formation of a high-quality 11-DTMBD monolayer, contact
angle, ellipsometry, and X-ray photoelectron spectroscopy
(XPS) analysis were performed. The 11-DTMBD SAM has an
advancing contact angle of 73.0 ± 1.8° and receding contact
angle of 61.8 ± 2.1°, agreeing well with the presence of a tert-
butyl bromide-terminated monolayer.27 The contact angle
hysteresis (the difference between the advancing and receding
angles) of 11.2° indicates the presence of a packed monolayer.
The ellipsometric thickness observed for the 11-DTMBD
derived SAMs is 1.7 ± 0.1 nm, which is less than the
theoretical molecular length of the 11-DTMBD moiety as
determined from ChemDraw3D, i.e., 1.9 nm. The difference
between molecular length and SAM thickness is attributed to
the tilt angle of the SAM molecules.28,29

XPS was employed to study the elemental composition of
the 11-DTMBD SAM. As anticipated, the high-resolution
scans confirmed the presence of all of the expected elements,
showing signals from S (2p), C (1s), O (1s), and Br (3d)
(Figure 2).

Figure 1. A schematic (not to scale) illustration of the molecular
imprinting process involving precomplexation of BA-based carbohy-
drate receptors with the target glycoprotein and surface-initiated
ATRP polymerization to form highly selective molecular cavities on
surfaces for glycoprotein recognition.

Figure 2. High-resolution XPS spectra of (a) S (2p), (b) C (1s), (c)
O (1s), and (d) Br (3d) of the 11-DTMBD SAM.
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The S (2p) spectra reveals two doublet peaks, with the
doublet peak at a lower binding energy, indicating that the
sulfur is chemisorbed on the gold surface.30,31 The second
doublet, weaker and at a higher binding energy, is ascribed to
the SH bonds, indicating the presence of some unbound
sulfur.31 No oxidized sulfur is observed, as demonstrated by
the absence of sulfur peaks above 166 eV. An analysis of the C
(1s) spectra shows four carbon environments consistent with
CC, CBr, CO, and CO. Furthermore, the CO
bond was observed in the O (1s) spectra at a binding energy of
533.3 eV alongside the CO bond at 531.9 eV, which further
indicates that the end groups of the 11-DTMBD molecule are
present. This observation is further supported by the high-
resolution spectra of the Br (3d) that shows the presence of
the 3d5/2 and 3d3/2 peaks consistent with the CBr bond
observed in the C (1s) spectra. Collectively, the contact angle,
ellipsometry, and XPS data are used to assess SAM quality and
to demonstrate the formation of a well-packed 11-DTMBD
SAM.
After the formation of a well-ordered ATRP initiator-

terminated SAM, attention was turned toward the generation
of very thin polymer layers. The surface-initiated ATRP
reactions from the 11-DTMBD SAMs were undertaken using
ethyl 2-bromoisobutyrate as the sacrificial initiator, N,N′-
methylenebis(acrylamide) (MEBA) as the cross-linking
monomer, 2,2′-bipyridyl as the ligand, and an optimized
1:1.5 ratio of Cu(I)Br/Cu(II)Br as the catalyst. Figure 3 shows

the thickness of the poly(MEBA) surface as a function of time.
The film thickness increases with good reproducibility over the
first 30 min and then levels off with thickness values around 8
nm. Polymerization ceases likely as a result of different
processes, such as bimolecular reaction,32 catalytic radical
termination,33 or migration−termination.34 The trend in
thickness growth over time is dependent on the ATRP
conditions, which affect the polymerization rate and cessation
of polymerization.35−37 These results demonstrate that this
system provides elegant control over the thicknesses of the
polymer layer and thus can be used to reliably grow surface-
confined ultrathin molecularly imprinted polymer (MIP) films.
Molecular imprinting polymerization was performed by

using RNase B as the glycoprotein template, wherein BA
derivatives were first complexed with RNase B prior to the
imprinting process. The BA derivative (3-acrylamidophenyl
boronic acid, APBA) contains an acrylamide moiety for cross-
linking with the tert-butyl bromide ATRP initiator-terminated
surface and the MEBA cross-linking monomer, thus allowing

for the 3D spatially controlled BA grafting within the imprinted
cavities. Complexation of RNase B with APBA was carried out
using 75% (v/v) 10× PBS and 25% (v/v) MeOH at pH 8.6.
The chosen alkaline pH promotes the formation of stable
cyclic esters between BAs and the diols of the RNase B,26

which comprises high-mannose glycans. If other carbohydrate
residues, such as sialic acid, are also present on the glycan, the
pH needs to be carefully considered. Unlike other carbohy-
drates (e.g., mannose, glucose, galactose), the binding between
BAs and sialic acid is favored at an acidic to physiological pH.38

The MeOH was introduced to circumvent the low aqueous
solubility of APBA. In order to establish that MeOH would not
adversely affect the native structure of the protein, circular
dichroism (CD) studies of RNase B were performed in
different percentages of MeOH (i.e., 0−50%). As illustrated in
Figure S1, all of the CDs show a similar spectral shape,
indicating that MeOH does not cause any conformational
changes to the tertiary structure of the glycoprotein.
The complexation and subsequent imprinting were carried

out using different RNase B/APBA mole ratios, namely, 1:10,
1:15, and 1:20. Molecular imprinting was performed by the
concurrent polymerization of the RNase B/APBA complex and
MEBA monomer for 20 min. The different ratios of the RNase
B template to APBA receptors under investigation (1:10, 1:15,
and 1:20) allowed tuning the density of BAs in the imprinted
cavities, which in turn can have a strong influence on dictating
the binding affinity and selectivity of the RNase B-imprinted
surface. Binding studies on the molecularly imprinted surfaces
as well as on nonimprinted surfaces (i.e., the same protocol as
that for imprinting, including the presence of BAs, but without
the RNase B as a template) were conducted by surface
plasmon resonance (SPR) spectroscopy. Briefly, each protein
was injected across the imprinted and nonimprinted surfaces at
a range of concentrations (i.e., 1.6−50 μM) and the responses
at equilibrium (Req) measured. Following each injection, the
surface was regenerated by an acidic wash to remove the
protein.
As illustrated in Figure 4, all of the imprinted surfaces

preferentially captured RNase B over the control proteins at all
of the concentrations tested. For each concentration, 2
measurements from 3 individual chips were taken (n = 6),
from which the average and standard deviation values were
then calculated. The small standard deviation associated with
RNase B binding into the imprinted surfaces illustrates that the
imprinting method can provide reproducible synthetic
recognition sites on surfaces. Furthermore, as shown in
Table 1, the imprinted surfaces prepared from the 1:10
RNase B/APBA ratio provided the highest affinity and
selectivity for RNase B, with an impressive 4.5-fold selectivity
over its nonglycosylated homologue, and a >5.3-fold selectivity
over other glycosylated proteins. These selectivity values are
higher than those obtained for other glycoprotein imprinting
systems,23,24 thus highlighting the efficacy of the approach to
fabricate imprinted cavities with sugar recognition properties.
The degree of selectivity is better at a 1:10 RNase B/APBA
ratio than at 1:15 and 1:20 ratios mostly due to the fact that
the RNase B binding affinity is slightly higher for the 1:10
ratio. A possible explanation for a small decrease in affinity to a
higher APBA ratio could be steric hindrance caused by
neighboring APBA moieties that hamper the diol-BA binding.
These results provide evidence that the contribution to the

binding affinity from imprinted cavities arose from shape-
matching and functional interactions. Since RNase B and its

Figure 3. Kinetic study to monitor the rate of thickness growth of
MEBA over 2 h from a tert-butyl bromide initiator-terminated surface
using ATRP.
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nonglycan containing analogue (RNase A) have similar
dimensions and isoelectric points (Table S1) but very distinct
binding affinities (Table 1), it is reasonable to suggest that not
as much shape-matching but RNase B-BA interactions
predominantly determine the overall binding strength of the
imprinted surfaces toward RNase B. Remarkably, despite the
high percentage of glycosylation on the two other glyco-
proteins (45% glycosylation for α1-acid glycoprotein and 21%
glycosylation for HRP) that could enable their glycans to
interact with the boronic acid moieties, weak affinities were
obtained. This behavior might be a result of a combination of
unmatched shape and unmatched spatial arrangement of the
boron monomers on the cavity. The low, similar nonspecific
binding observed on the nonimprinted surfaces for all of the
proteins investigated provide further evidence that the
imprinting is responsible for the observed selectivity. Overall,
these findings suggest that the remarkable recognition
specificity of the imprinted surfaces toward RNase B can be

attributed to the precise control exerted by ATRP over the
RNase B/APBA complex immobilization that results in
multiple BAs being anchored in appropriate positions in the
recognition cavity to interact specifically with the target RNase
B glycoprotein.
In order to gain insights on the effect of the layer thickness

on the binding properties of the imprinted cavities, the
imprinted surfaces described above that were produced with a
20 min polymerization time and the optimum 1:10 RNase B/
APBA ratio were compared with those produced with shorter
(10 min) and longer times (60 min). Figure 5a reports the

ellipsometry results for the three imprinted and nonimprinted
polymerization times. An increase in thickness of the imprinted
surfaces is clearly observed with an increase in polymerization
time, in which the values are significantly higher than those
obtained for the nonimprinted surfaces. These results highlight
that the inclusion of the template protein is affecting the
polymerization process.39 A plausible explanation might be
that the presence of the protein, which imparts the polymeric
growth around the template, lowers the termination rate
constant, resulting in the formation of a thicker layer.40

Apart from differences in thickness, the imprinted and
nonimprinted surfaces are morphologically different as
observed by atomic force microscopy (AFM) (Figure S2).
The presence of the template protein during imprinting
produced less smooth surfaces and more pronounced three-
dimensional structures due to the impressions of the protein
formed within the polymer matrices. The sequential increase in
the average surface roughness values (Ra) and the variation of
these values for the imprinted surfaces (Figure 5b) are in
agreement with the ellipsometry thickness trends obtained.
The binding properties for the 10 and 60 min polymerized

imprinted and nonimprinted surfaces are summarized in Figure
6 and Table 2, and it can be compared with those obtained for
20 min that are illustrated in Figure 4 and Table 1. For the 10
min polymerized surfaces, the responses of both surfaces to

Figure 4. Effect of the RNase B/APBA ratio (1:10, 1:15, and 1:20)
and protein concentration on the Req of imprinted poly(MEBA)-
APBA surfaces and nonimprinted poly(MEBA)-APBA surfaces to
RNase B (black), RNase A (blue), α1-acid glycoprotein (green), and
HRP (red).

Table 1. KD for Each of the Proteins for the Imprinted Poly(MEBA)-APBA Surfaces Formed Using RNase B/APBA Ratiosa

KD (μM)

RNase B/APBA (1:10) RNase B/APBA (1:15) RNase B/APBA (1:20)

RNase B 14.2 ± 2.1 19.7 ± 2.1 23.0 ± 2.6
RNase A 63.3 ± 7.2 40.8 ± 3.7 60.6 ± 6.0
α1-acid glycoprotein 105.4 ± 11.6 135 ± 11.2 217.3 ± 20.0
HRP 75.3 ± 8.5 69.9 ± 6.1 90.5 ± 8.6

selectivity (KDA/KDB) 4.5 2.1 2.6

aThe selectivity values of the imprinted poly(MEBA)-APBA surfaces for RNase B with respect to RNase A are shown at the bottom of the table.

Figure 5. (a) Ellipsometry film thickness and (b) AFM average
roughness changes of the imprinted and nonimprinted poly(MEBA)-
APBA surfaces as a function of the polymerization time.
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any of the proteins tested were relatively low and neither the
imprinted nor nonimprinted surfaces showed any discernible
selectivity for any one protein over another. As shown in
Tables 1 and 2, the 10 min polymerized imprinted surfaces
exhibit a much lower affinity toward RNase B than the 20 min
polymerized imprinted surfaces. Furthermore, the errors
associated with the binding affinities are significantly higher,
compared with the values obtained for 20 and 60 min,
indicating that the imprinting using shorter polymerization
times results in poorly controlled and unreproducible
imprinted recognition sites.
The RNase B glycoprotein has dimensions of 3.8 nm × 2.8

nm × 2.2 nm, and the thickness obtained for the imprinted
surfaces using 10 min polymerization was 4.7 ± 0.9 nm. While
the dimensions of RNase B are closer to the film thickness, the
results suggest that the polymer layer is too thin to generate
enough complementary BA spatial arrangement for RNase B
and/or enough depth for shape-matching.
In comparison with the 20 min imprinted surfaces, the 60

min surfaces likewise demonstrated that imprinting within this
polymer matrix is possible. As was observed for the 20 min
nonimprinted surfaces, no selectivity for any particular protein
including RNase B is apparent from the 60 min nonimprinted
surfaces. However, the imprinted surfaces exhibited selectivity

for RNase B over all of the control proteins. As with the 20
min imprinted surfaces, the sequential increase in the response
of the 60 min imprinted surfaces to increasing concentrations
of RNase B is observed, which indicates that cavities well-
matched to the structure and functionality of RNase B have
been formed within the polymer. Nevertheless, the 60 min
imprinted surfaces achieve less homogeneous recognition
across different samples and also show a lower selectivity for
RNase B. The selectivity of the imprint for RNase B over
RNase A remained at 2.9-fold. Furthermore, the 60 min
imprinted surfaces exhibit a slightly lower affinity for RNase B
in comparison with the 20 min imprinted surfaces (KD of 21.5
μM vs 14.2 μM). The loss of selectivity and affinity can be
attributed to the thicker polymer layer of the 60 min imprinted
surface that can potentially lead to imprinted sites being
“buried” deep within the polymer layer, hindering their
accessibility and recognition properties. These findings
establish that the thickness of the imprinting layer is critical
for the binding properties of the imprinted surface, with 20
min polymerization time providing optimum conditions to
endow the surface-confined cavities with specific glycoprotein
recognition properties.

■ CONCLUSIONS

The generation of affinity tools that specifically recognizes and
binds glycoproteins remains a critical bottleneck in biomedical
research and diagnostic test development. In this work, a whole
new strategy was developed to tailor synthetic materials that
possess highly selective molecular recognition properties with
affinity in the low micromolar range for glycoproteins. The
unprecedented performance relies on the recognition capa-
bilities of the surface-confined imprinted cavities that are
ultimately dictated by the well-defined pattern of multiple BAs
within the cavity that are sterically complementary to the
unique molecular structure of the glycan on the target
glycoprotein. This step is initially controlled by the
stoichiometric ratio of glycoprotein target to BA moieties
during complexation, in which, for RNase B, a 1:10 BA/RNase
B ratio yielded imprinted surfaces with superior binding
properties when compared with higher molar ratios of BA. An
excess of carbohydrate receptors in the cavity can be
detrimental to the overall affinity and selectivity to the target
glycoprotein. In addition, we showed that the thickness of the
recognition layer influences the affinity and selectivity of the
resulting imprinted surface for its template, providing an
additional parameter for tuning the properties of the imprinted
surfaces.
This study provides an unprecedented strategy, which

combines supramolecular assembly and well-controlled sur-
face-confined ATRP polymerization, to create robust and
highly reproducible template-induced glycoprotein recognition
sites on material surfaces. These advanced recognition
materials are of great interest in many biomedical applications,
in which they are deemed particularly well-suited for achieving
highly specific biosensing and bioanalytical platforms for
biomedical research, glycoprotein analysis, clinical diagnosis,
and cancer detection. For instance, many clinical biomarkers in
cancer are glycoproteins, such as CEA in colorectal cancer,
CA125 in ovarian cancer, HER2 in breast cancer, PSA in
prostate cancer, and α-fetoprotein in liver cancer.41,42 In this
regard, the developed glycoprotein recognition platform
provides a highly valuable tool for cancer detection.

Figure 6. Effect of polimerization time (10 or 60 min) and protein
concentration on the Req of imprinted poly(MEBA)-APBA surfaces
and nonimprinted poly(MEBA)-APBA surfaces to RNase B (black),
RNase A (blue), α1-acid glycoprotein (green), and HRP (red). A
1:10 RNase B/APBA ratio was used.

Table 2. KD for Each of the Proteins for the Imprinted
Poly(MEBA)-APBA Surfaces Formed Using 1:10 RNase B/
APBA Ratio and Either 10 or 60 min Polymerization Timea

KD (μM)

polymerization (10 min) polymerization (60 min)

RNase B 85.3 ± 31.9 21.5 ± 4.6
RNase A 145.5 ± 52.9 61.6 ± 11.3
α1-acid glycoprotein 186.3 ± 67.1 123.3 ± 21.6
HRP 237.7 ± 85.0 77.4 ± 14.0

selectivity (KDA/KDB) 1.7 2.9
aThe selectivity values of the imprinted poly(MEBA)-APBA surfaces
for RNase B with respect to RNase A are shown at the bottom of the
table.
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