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Abstract
Background: Phylogenies often contain both well-supported and poorly supported nodes. Determining how much
additional data might be required to eventually recover most or all nodes with high support is an important pragmatic
goal, and simulations have been used to examine this question. Most simulations have been based on few empirical loci,
and suggest that well supported phylogenies can be determined with a very modest amount of data. Here we report the
results of an empirical phylogenetic analysis of all 10 genera and 25 of 48 species of the new world pond turtles (family
Emydidae) based on one mitochondrial (1070 base pairs) and seven nuclear loci (5961 base pairs), and a more biologically
realistic simulation analysis incorporating variation among gene trees, aimed at determining how much more data might
be necessary to recover weakly-supported nodes with strong support.

Results: Our mitochondrial-based phylogeny was well resolved, and congruent with some previous mitochondrial
results. For example, all genera, and all species except Pseudemys concinna, P. peninsularis, and Terrapene carolina were
monophyletic with strong support from at least one analytical method. The Emydinae was recovered as monophyletic,
but the Deirochelyinae was not. Based on nuclear data, all genera were monophyletic with strong support except
Trachemys, and all species except Graptemys pseudogeographica, P. concinna, T. carolina, and T. coahuila were monophyletic,
generally with strong support. However, the branches subtending most genera were relatively short, and intergeneric
relationships within subfamilies were mostly unsupported.

Our simulations showed that relatively high bootstrap support values (i.e. ≥ 70) for all nodes were reached in all datasets,
but an increase in data did not necessarily equate to an increase in support values. However, simulations based on a single
empirical locus reached higher overall levels of support with less data than did the simulations that were based on all
seven empirical nuclear loci, and symmetric tree distances were much lower for single versus multiple gene simulation
analyses.

Conclusion: Our empirical results provide new insights into the phylogenetics of the Emydidae, but the short branches
recovered deep in the tree also indicate the need for additional work on this clade to recover all intergeneric
relationships with confidence and to delimit species for some problematic groups. Our simulation results suggest that
moderate (in the few-to-tens of kb range) amounts of data are necessary to recover most emydid relationships with high
support values. They also suggest that previous simulations that do not incorporate among-gene tree topological variance
probably underestimate the amount of data needed to recover well supported phylogenies.
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Background
In molecular phylogenetic analysis, it is often the case that
some relationships are robust, and relatively "easy" to
recover while others are difficult to resolve, leading to
phylogenetic hypotheses that consist of a patchwork of
well and poorly supported nodes. When difficult nodes
are encountered, the next logical step is to add taxa and/
or data under the reasonable assumption that additional
taxa or characters might enable resolution and/or provide
support for poorly supported nodes. Whether it is better
to add taxa or data is often dependent on the particular sit-
uation. When unresolved nodes are related to a long
branch and additional unsampled taxa are available, add-
ing taxa might be preferable to adding characters since
including additional taxa can help break up long branches
[1-3]. On the other hand, if difficult nodes are encoun-
tered among closely related taxa, or if taxon sampling is
complete or nearly so, then adding additional characters
is probably the better strategy [4]. The amount of data
required for resolution of difficult phylogenetic problems
associated with short internodes, especially those deep in
a tree can represent a particularly difficult challenge [5-7]
that often requires massive amounts of sequence data to
resolve. However, this is not always the case, and robust
species trees can sometimes be recovered from moderate
amounts of data. For example, Rokas et al. [8] analyzed
106 genes from eight Saccharomyces species and found
that data from ≥ 20 genes were sufficient to recover a fully
resolved and well-supported species tree, with little addi-
tional gain in accuracy as more data were added to the
analysis. In general, the amount of data required for a
given level of resolution, and the gain in phylogenetic
accuracy for an increase in data sampling, depends on the
true species tree, the rate of evolution for a particular
marker, and the fit of the selected model of evolution to
the actual substitution pattern of the data.

Interacting with this general question of data quantity is
the more elusive problem of data quality. Individual gene
trees may or may not accurately reflect overall phyloge-
netic trees, rate heterogeneity can lead to long branch
attraction [9], and anomalous gene trees can lead to posi-
tively misleading phylogenetic results [6]. When com-
bined with the low phylogenetic signal in many nuclear
gene sequences, even a few such renegade gene trees can
lead to great phylogenetic uncertainty and the need to
sample many independent nuclear markers to recover
well supported phylogenies. These problems have been
further exacerbated in metazoan phylogenetics because of
a very heavy reliance on mitochondrial DNA (mtDNA) as
a single workhorse molecule; mtDNA is appealing
because it is a single-locus genome that often yields very
high phylogenetic support, but it is also subject to gene
tree-species tree conflicts [5,10] that may require massive
amounts of nuclear data to overcome.

How much data?
Determining how much, and what kind of molecular data
will, on average, yield a satisfactory increase in support
values for a given phylogeny has been approached in at
least two ways. The first is the brute force approach–keep
collecting data and track how some measure of precision
or accuracy (bootstrap support and among-gene topolog-
ical concordance are two such measures) does or does not
increase. The appeal of this approach is that it conveys a
sense of how real data collected on real organisms
advances phylogenetic knowledge. However, it has draw-
backs: large volumes of sequence data are expensive to
collect, and marker development remains a significant
technical challenge for many taxa (but see [11-14]). A
related approach is to subsample (jackknife) large empir-
ical data sets to determine the minimum amount of data
that would have been necessary to recover well-supported
trees. In these analyses, "target" phylogenies are generated
from large amounts of sequence data, and then subsam-
ples of the full data set are analyzed to determine the frac-
tion of the full data set required to recover the target
phylogeny [8,15,16]. Both of these approaches are obvi-
ously limited to clades for which large amounts of
sequence data are available or can be easily acquired. As a
result, the taxa that have been examined in this manner
have often been separated by large evolutionary distances
and long phylogenetic branches because large sequence
resources tend to be distributed widely across clades in a
few model organisms.

The alternative strategy, and the one used in this study, is
to use a modest multi-gene dataset combined with phylo-
genetic simulations to explore the predicted gain in sup-
port values as more (simulated) data are added to a study.
Several previous analyses have used simulations to esti-
mate the amount of data necessary to resolve difficult phy-
logenetic problems. In some cases, sequence data were
"grown" such that one or a few empirical data partitions
were bootstrapped to generate progressively larger data
sets. These pseudoreplicate data sets were then subjected
to phylogenetic analyses to estimate the amount of data
potentially required to resolve a phylogeny or recover par-
ticular node(s) at a predetermined level of support [4,17-
23]. These kinds of approaches also have their strengths
and weaknesses. On the positive side, simulated data are
essentially free, allowing one to determine ahead of time
whether a major sequencing effort might be worth the
cost of data acquisition. However, simulated data are
never a substitute for the real thing, and the reliability of
simulations depends on the models of evolution that are
used and idiosyncratic features of the dataset on which the
simulations are based. Critically, simulation studies per-
formed to date have not accounted for the effects of topo-
logical variation in gene trees on phylogenetic inference,
and these effects can be profound. For example, when
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data from a single locus are pseudoreplicated to create
additional simulated characters, even weak signal, when
multiplied, can eventually become strong signal, leading
to well-supported phylogenies (e.g. [21,23]). Conversely,
multigene data sets frequently contain conflicting phylo-
genetic signal, and analyses performed on these types of
data sets will often result in polytomies or recover nodes
with poor support. Thus, to realistically simulate data
from multiple markers, variation in gene tree topology
should be incorporated.

Here, our primary goal is to examine the effect of increas-
ing data on multilocus phylogenetic inference when vari-
ation in gene tree topologies is incorporated. We examine
this issue using a multi-gene empirical dataset for the
new-world pond turtles (family Emydidae) coupled with
a simulation approach. Emydids are typical of many real-
world clades; some relationships have been well sup-
ported since molecular and morphological approaches
were first applied to the group, some remain contentious,
and our molecular knowledge is based almost entirely on
mtDNA (Thomson and Shaffer, in review). Particularly
vexing is the frequent conflict among data partitions/ana-
lytical methods such that analyses based on morphology
or mitochondrial DNA (mtDNA), or employing different
methodologies (i.e. maximum parsimony (MP) vs maxi-
mum likelihood (ML)) are incongruent. These conflicts
are best seen in a recent attempt to summarize previous
hypotheses of emydid relationships with a supertree
approach. A matrix representation with parsimony (MRP)
supertree analysis utilizing all available phylogenies
resulted in a tree that was nearly completely unresolved
[24].

Simulation approach
Our goals in this paper are two-fold. First, we present a
multi-gene phylogeny of emydid turtles to bring greater
resolution to this important vertebrate clade. Given the
impending full-genome sequence of the emydid Chryse-
mys picta http://www.genome.gov/10002154, the impor-
tance of emydids as model systems in ecological,
evolutionary and developmental studies [25-29], and the
endangered status of many contained species [30], we
view this as an important goal in its own right. Second, we
use extensive simulation analyses to examine the expected
gain in phylogenetic accuracy and precision that will
result from an order of magnitude increase in sequence
data. We explicitly model the effects of variation in gene
tree topology in our work, and explore both the overall
gains in phylogenetic resolution, and the ability to recover
particular problematic nodes with high support values
with a substantial increase in the quantity of sequence
data. We did not assess the impact of adding additional
taxa because our taxon sampling for deeper nodes in the
Emydidae is complete; most of the taxa missing from our

analysis represent members of closely-related species
groups (Graptemys, Pseudemys, and Trachemys) that offer
little opportunity to dissect long branches on the emydid
tree. However, species boundaries and intraspecific rela-
tionships within these deirocheline genera have long been
problematic [31-35], thus these groups will undoubtedly
require extensive taxon and data sampling from each
putative species as well as the use of newer species-delim-
itation methods [36-38] for complete resolution.

Emydid biology
The Emydidae is a clade of 48 currently recognized species
[39] of freshwater aquatic, semi-terrestrial, and terrestrial
turtles distributed across much of the northern hemi-
sphere from central South America and the West Indies to
southern Canada. In addition, one species (Emys orbicula-
ris) is distributed across Europe, parts of North Africa, and
the Middle East [40], and Emys trinacris, which was
recently removed from E. orbicularis, is narrowly distrib-
uted on Sicily, and adjacent mainland Italy [41]. Emydid
species diversity is highest in the southeastern United
States, where about half of this species diversity is found.
Emydids occupy a wide diversity of aquatic and terrestrial
habitats including relatively cool lakes, ponds, and
streams in southern Canada and the northeastern US
(Chrysemys picta, and Emys [= Emydoidea] blandingii),
brackish coastal habitats along the eastern US seaboard
(Malaclemys terrapin), freshwater streams and rivers in
Mediterranean climates of California (Emys [= Actine-
mys]marmorata), and terrestrial desert grasslands of the
southwestern US/northern Mexico (Terrapene ornata)
[40].

Results
Empirical mtDNA Phylogeny
Visual inspection of the cytb sequencing chromatograms
of four samples revealed the presence of multiple peaks at
some nucleotide positions, potentially indicating the
presence of nuclear mitochondrial pseudogenes (numts)
[42]. Since we were unable to confidently determine the
actual cytb sequences for these individuals (despite
numerous attempts to sequence them), we excluded these
sequences from our analysis (Additional file 1). All of the
remaining sequences showed the typical mitochondrial
composition bias for guanine nucleotides (A = 30%, C =
31%, G = 12%, T = 27%), and the coding region was con-
served. Thus, we consider these sequences to represent
authentic mtDNA. Our cytb data was composed of up to
1070 base pairs (bp) for 66 taxa. This matrix was mostly
complete with ~7% percent missing data. Of the 1070
characters, 567 were constant while 429 were parsimony
informative. ML analysis recovered a single tree with a -
lnL score of 8318.58321. Fig 1 is the ML reconstruction
with ML and MP bootstrap values and Bayesian posterior
probabilities (BPP) as indicated.
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Maximum-likelihood phylogeny of the 66-taxon mitochondrial cytochrome b data set (1070 bp)Figure 1
Maximum-likelihood phylogeny of the 66-taxon mitochondrial cytochrome b data set (1070 bp). Estimated ML 
model parameters conform to the GTR+G+I model of sequence evolution. -ln L = 8318.58321, rate matrix: A-C = 1.9225, A-
G = 16.9646, A-T = 0.9616, C-G = 0.391, C-T = 16.9646, G-T = 1. Base frequencies: A = .30, C = .31, G = .12, T = .27. Pro-
portion of invariant sites (I) = 0.407, and γ-shape parameter = 1.0758. # indicate nodes with Bayesian posterior probabilities 
(BPP) of 1, and ML and MP bootstrap values of 100. * indicate nodes with ≥ .95 BPP and ML and MP bootstrap values ≥ 90. 
Numerical values indicate BPP/ML/MP support values.
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Overall, the mtDNA phylogeny was fairly well supported
with most nodes receiving strong support from at least
one analytical method (Fig. 1). In addition, all genera and
species (for which we had >1 sample) were well supported
as monophyletic except Pseudemys concinna, P. peninsula-
ris, and Terrapene carolina. Comparisons of our mitochon-
drial results to previous analyses were complicated by the
fact that phylogenies from previous analyses often vary as
a function of analytical method, data partition, and com-
bination of data partitions (see [27]). Thus, depending on
the data partition/method(s) used, parts of our mtDNA-
based tree were congruent with those from previous anal-
yses while others were novel. For example, the Emydinae
was monophyletic, but with support from BPP and MP
bootstrap values only (100 and 83, respectively). Rela-
tionships among emydine genera recovered here were the
same as the ML results, but differed from the MP results,
of Feldman and Parham (2002) [43] in their analysis of
mitochondrial ND4 and cytochrome b gene sequences.
Finally, relationships among the Deirochelyinae recov-
ered here were novel, and not congruent with those from
previous analyses (e.g. [27,43,44]).

A particularly troubling result from our mtDNA analysis is
the placement of Deirochelys reticularia as sister to the
remaining Emydidae [27], rendering the subfamily Deiro-
chelyinae non-monophyletic. However, D. reticularia is
on a relatively long branch, thus the phylogenetic posi-
tion of this taxon might be an artifact due to composition
bias of mtDNA sequences. Phylogenetic analyses of R-Y
coded data are less susceptible to systematic biases such as
composition bias in mtDNA sequences [45] that can lead
to spurious phylogenetic results. We used R-Y coding to
pool third codon position purines (adenine/guanine: R)
and pyrimidines (cytosine/thymine: Y) into two-state cat-
egories (R and Y), and performed MP and ML phyloge-
netic analyses on this data set [45]. Under MP, Deirochelys
remained sister to the remaining Emydidae. However,
under ML Deirochelys shifted to a new position within the
Emydidae, but the Emydinae was rendered paraphyletic
(not shown). Thus, while problematic and in need of final
resolution, the relative position of Deirochelys based on
mtDNA does not appear to be an artifact of composition
bias.

Empirical single-locus nuclear phylogenies
PCR or sequencing reactions failed for seven sequences
(despite multiple attempts) so these sequences were
coded as missing data (Additional file 1). Patterns from
the sequencing chromatograms from all nuclear loci
except RAG-1 indicated that some individuals were heter-
ozygous for length polymorphisms [46]. However, by
sequencing each gene fragment in both directions, we
were able to generate sequence data from most of each
locus for the length-polymorphic individuals. In addition,

the TB73 locus contained a poly A/T region that was diffi-
cult to align confidently so we excluded a 13-bp region of
this locus from these phylogenetic analyses [TreeBase
S2303].

Individual loci ranged in size (590 bp – 1104 bp), and in
number of parsimony-informative characters (22 – 72),
with the average locus ~850 bp in length, and containing
~50 parsimony-informative characters (see legends Figs 2,
3, 4, 5, 6, 7, 8).

To assess the relative phylogenetic performance of indi-
vidual loci, we generated phylogenies for each locus inde-
pendently, and under the assumption that current
taxonomy is accurate, counted clades recovered from each
locus including Emydidae, Deirochelyinae, and Emydinae
as well as all genera and species from which we had > 1
sample (Table 1). Phylogenies generated from all loci
except RAG-1 recovered the Emydidae as monophyletic
with high MP or ML bootstrap support values (Figs 4, 5, 6,
7, 8, 9, Table 1), and the Deirochelyinae was recovered
with strong support from HNF-1α, R35, and TGFB2. Sim-
ilarly, the Emydinae was recovered from HNF-1α, R35,
and RELN, but with strong support from HNF-1α only.
(Figs 2, 3, 5, 8). Support levels for other clades varied
across genes. For example, Deirochelys and E. blandingii
were recovered as monophyletic at all loci, whereas P.
concinna, and G. pseudogeographica as well as two spe-
cies of Terrapene (carolina, coahuila) were never recov-
ered as monophyletic (Figs 2, 3, 4, 5, 6, 7, 8, Table 1).

Empirical concatenated nuclear phylogeny
Our concatenated nuDNA data set was composed of seven
loci and up to 5961 bp of which 4912 were invariant (or
excluded). Among ingroup taxa, 350 of these were parsi-
mony informative. Again, this matrix was mostly com-
plete with ~7% missing data. Fig 9 shows the ML tree with
BPP and ML/MP bootstrap support values as indicated.
The concatenated nuclear data recovered the Deirochelyi-
nae (inclusive of D. reticularia), and the Emydinae as
reciprocally monophyletic with strong support from all
analytical methods. All genera were monophyletic with
strong support except Trachemys, and all species except
Graptemys pseudogeographica, P. concinna, T. carolina, and T.
coahuila were monophyletic, mostly with strong support
(Fig. 9). However, the branches subtending most genera
were relatively short, and intergeneric relationships
within subfamilies were mostly unsupported.

Simulations
Results from the ML simulations (Fig. 10) were qualita-
tively very similar to our MP simulation results (Fig. 11)
in that an increase in data generally resulted in an overall
increase in support values. Bootstrap support values of ≥
95 for all nodes were eventually reached in some datasets
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Maximum-likelihood phylogeny of the 69-taxon HNF-1α data setFigure 2
Maximum-likelihood phylogeny of the 69-taxon HNF-
1α data set. This data set was composed of up to 768 bp. 
Among the ingroup, 72 characters were parsimony-informa-
tive. Estimated ML model parameters conform to the 
GTR+G model of sequence evolution. -ln L = 2533.85397, 
rate matrix: A-C = 0.70584, A-G = 2.497433, A-T = 
0.273807, C-G = 0.59001, C-T = 2.972687, G-T = 1. Base 
frequencies: A = 0.28, C = 0.23, G = 0.22, and T = 0.27, and 
γ-shape parameter = 0.670155. Thick branches indicate 
nodes with ≥ .95 BPP and ML and MP bootstrap values ≥ 70.
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Maximum-likelihood phylogeny of the 69-taxon R35 data set (978 bp)Figure 3
Maximum-likelihood phylogeny of the 69-taxon R35 
data set (978 bp). This data set was composed of up to 
978 bp. Among the ingroup, 60 characters were parsimony-
informative. Estimated ML model parameters conform to the 
GTR+G model of sequence evolution. -ln L = 2571.763999, 
rate matrix: A-C = 0.939205, A-G = 2.365954, A-T = 
0.608604, C-G = 0.875824, C-T = 3.090148, G-T = 1. Base 
frequencies: A = 0.28, C = 0.18, G = 0.22, and T = 0.32, and 
γ-shape parameter = 0.582180. Thick branches indicate 
nodes with ≥ .95 BPP and ML and MP bootstrap values ≥ 70.
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Maximum-likelihood phylogeny of the 69-taxon RAG-1 data setFigure 4
Maximum-likelihood phylogeny of the 69-taxon RAG-
1 data set. This data set was composed of up to 788 bp. 
Among the ingroup, 33 characters were parsimony-informa-
tive. Estimated ML model parameters conform to the 
GTR+G+I model of sequence evolution. -ln L = 1742.011947, 
rate matrix: A-C = 0.781722, A-G = 2.299258, A-T = 
0.337743, C-G = 0.880761, C-T = 4.054761, G-T = 1. Base 
frequencies: A = 0.32, C = 0.23, G = 0.22, and T = 0.23, and 
γ-shape parameter = 0.2.501963. Proportion of invariable 
sites (I) = 0.462491. Thick branches indicate nodes with ≥ .95 
BPP and ML and MP bootstrap values ≥ 70.
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Maximum-likelihood phylogeny of the 69-taxon RELN data setFigure 5
Maximum-likelihood phylogeny of the 69-taxon 
RELN data set. This data set was composed of up to 1104 
bp. Among the ingroup, 48 characters were parsimony-
informative. Estimated ML model parameters conform to the 
GTR+G+I model of sequence evolution. -ln L = 2847.341935, 
rate matrix: A-C = 1.068197, A-G = 3.028768, A-T = 
0.454495, C-G = 0.612036, C-T = 2.836311, G-T = 1. Base 
frequencies: A = 0.32, C = 0.17, G = 0.18, and T = 0.33, and 
γ-shape parameter = 1416.809681. Proportion of invariable 
sites (I) = 0.482101. Thick branches indicate nodes with ≥ .95 
BPP and ML and MP bootstrap values ≥ 70.
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except for the ML simulations, where the maximum pro-
portion of nodes recovered was 96% and 90% at boot-
strap support levels of ≥ 70 and ≥ 95, respectively (Fig.
10). However, the single-model simulation based on
RAG-1 only (Fig. 12) reached higher overall levels of sup-
port with less data than did the "full" simulations (i.e.
those based on all seven nuclear loci). For example, of the
70 data sets from the single-locus simulation, 57 had >
90% of nodes supported at the ≥ 70 bootstrap support
level. In contrast, 28 of the 70 data sets from the full sim-
ulation had > 90% of nodes supported at the ≥ 70 boot-
strap support level. Results were more one-sided for the ≥
95 bootstrap support level where 32 of 70 data sets from
the single-locus simulation, but only 2 of 70 data sets
from the full simulation had > 90% of nodes supported at
the ≥ 95 bootstrap support level (Figs 11, 12).

To examine these effects more quantitatively, we 1) show
symmetric tree distances plotted as a function of total data
for 1 kb incremental increases from 1–70 kb of simulated
data, and 2) compare MP phylogenies generated from
empirical data with those generated from simulated data.
The key result from the symmetric tree distances plots is
that the symmetric tree distances are much lower for sin-
gle versus multiple gene simulations. For example, the
average symmetric tree distance for the single-locus simu-
lation (1.5) was almost an order of magnitude lower than
the average from the full simulation (10.7) (Fig. 13). In
addition, trees generated from simulated data were also
similar to those from our empirical data. To compare trees
from simulated vs empirical data, we performed an MP
bootstrap analysis on the empirical data (31-taxon, 5974
bp), and compared these trees to results from 6000 bp of
simulated data (trees not shown). Support values from
the empirical data were slightly lower than those from
simulated data where 61% of nodes were recovered at the
≥ 70 bootstrap support level, compared to 75% and 71%
of nodes for the single-locus and full simulations, respec-
tively. However, at the ≥ 95 support level about 50% of
nodes were recovered from analyses of empirical and sim-
ulated data (Fig. 11).

Discussion
Our results speak both to general issues in phylogenetic
data requirements and specific progress in the phylogeny
of emydid turtles. Overall, our results argue strongly for
the insights that can be gained from a combination of
multi-gene empirical results which summarize our current
state of phylogenetic knowledge, and biologically realistic
simulations to gain a sense of the data required to further
clarify these phylogenetic results.

Phylogenetic resolution: empirical and simulation results
At least for problems of the size and complexity of Emydi-
dae, ~6 kb of nuclear sequence data were clearly insuffi-

cient to recover well-supported relationships among
many genera or species. Roughly half of the nodes were
recovered with ≥ 95 MP bootstrap support (Fig. 9), and
those nodes were spread across both shallow and deep
nodes of the tree. About 1 kb of mitochondrial DNA
yielded similar support levels (Fig. 1). However, except for

Maximum-likelihood phylogeny of the 69-taxon TB29 data setFigure 6
Maximum-likelihood phylogeny of the 69-taxon TB29 
data set. This data set was composed of up to 590 bp. 
Among the ingroup, 22 characters were parsimony-informa-
tive. Estimated ML model parameters conform to the 
GTR+G model of sequence evolution. -ln L = 1485.985421, 
rate matrix: A-C = 0.724474, A-G = 2.026332, A-T = 
0.393397, C-G = 0.419566, C-T = 1.269648, G-T = 1. Base 
frequencies: A = 0.31, C = 0.21, G = 0.19, and T = 0.29, and 
γ-shape parameter = 0.8245. Thick branches indicate nodes 
with ≥ .95 BPP and ML and MP bootstrap values ≥ 70.
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species and genus monophyly, there was only a single
relationship (Glyptemys as sister to the remaining emy-
dines) shared by both analyses. Although it remains
unclear whether this incongruence has a biological basis
(i.e. introgression/hybridization), is due to incomplete
lineage sorting, or results from some combination of fac-

Maximum-likelihood phylogeny of the 70-taxon TB73 data setFigure 7
Maximum-likelihood phylogeny of the 70-taxon TB73 
data set. This data set was composed of up to 668 bp. 
Among the ingroup, 60 characters were parsimony-informa-
tive. Estimated ML model parameters conform to the 
GTR+G model of sequence evolution. -ln L = 2197.656119, 
rate matrix: A-C = 0.96077, A-G = 2.179468, A-T = 1.20066, 
C-G = 0.881978, C-T = 2.497604, G-T = 1. Base frequencies: 
A = 0.29, C = 0.18, G = 0.20, and T = 0.33, and γ-shape 
parameter = 0.741199. Thick branches indicate nodes with ≥ 
.95 BPP and ML and MP bootstrap values ≥ 70.
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Maximum-likelihood phylogeny of the 67-taxon TGFB2 data setFigure 8
Maximum-likelihood phylogeny of the 67-taxon 
TGFB2 data set. This data set was composed of up to 
1078 bp. Among the ingroup, 58 characters were parsimony-
informative. Estimated ML model parameters conform to the 
GTR+G model of sequence evolution. -ln L = 3186.405935, 
rate matrix: A-C = 0.883433, A-G = 2.425602, A-T = 
0.769195, C-G = 0.592286, C-T = 1.898448, G-T = 1. Base 
frequencies: A = 0.29, C = 0.21, G = 0.20, and T = 0.30, and 
γ-shape parameter = 0.862394. Thick branches indicate 
nodes with ≥ .95 BPP and ML and MP bootstrap values ≥ 70.
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tors, it certainly confirms the growing suspicion that phy-
logenetic conclusions and taxonomic changes based
purely on mitochondrial gene trees may often be prema-
ture, and that multiple markers are required for this level
of analysis. However, determining how much data might
be required remains challenging.

Overall, our simulations suggest that, although the per-
centage of nodes supported is always a decreasing func-
tion of additional data analyzed, relatively high overall
support values can probably be obtained with moderate
amounts of data. However, previous simulations based on
single (or a few) loci–because they ignore variation
among gene trees–probably underestimate the amount of
data necessary for recovering robust phylogenies. For
example, with 20 kb sequence data, 82% and 67% of
nodes were recovered with bootstrap support values of ≥
70 and ≥ 95, respectively, but increasing the data sampling
by 50% had little effect on support values. With 30 kb,
87% and 72% of nodes were recovered with bootstrap
support values of ≥ 70 and ≥ 95, respectively; with 40 kb,
each increased by another percent or two. Thus, all else
being equal, there was relatively little gain in overall
number of supported nodes after the first ~24 loci (assum-
ing a standard locus is about 850 bp). Rokas et al. (2003)
found empirically that data from ≥ 20 genes was sufficient
to recover the phylogeny of Saccharomyces yeast species
with strong support, based on subsamples of their 106-
locus dataset. Although ~24 independent nuclear markers
currently stretches the limits of most non-model organ-
ism datasets, this need not be the case in the near future.
As additional genomic resources become available,
assembling 24 or more markers should become feasible
for many metazoan, plant, and fungal taxa, using either
traditional universal-primer [14,47,11,13] or more clade-
restrictive strategies [12] for primer development.

Among our empirical loci, HNF-1α, was one of the short-
est, but had the most parsimony-informative characters of
all loci (see Fig. legends). Therefore we wanted to deter-
mine if HNF-1α (or any other locus) might have had a dis-
proportionate impact on our multi-locus simulations. For
example, our a priori expectation is that if HNF-1α were
driving the simulations, then simulated trees should be
similar or identical to the empirical tree generated from
HNF-1α. We tested this prediction using the SH test. To
carry this out, we compared the 70 kb MP 50% majority
rule consensus tree from the simulations with empirical
50% majority rule consensus trees generated from each
locus. The 70 kb MP tree had the lowest -ln L score and
trees generated from all seven empirical loci were signifi-
cantly longer than the 70 kb MP tree (P ≤ 0.048). Thus, the
simulations did not appear to be overly influenced by any
one marker.

As in previous simulation studies, our single-locus simu-
lation results (based on RAG-1) recovered relatively high
support values and low symmetric distances compared to
the full simulations (Figs 12, 13). The RAG-1 data were
simulated using a single input tree and model of molecu-
lar evolution (see below). In contrast, each dataset from
the full simulation was compiled from markers drawn
independently from the pool of simulated data. Conse-
quently, our nuDNA data was simulated from a minimum
of one input tree/model of molecular evolution up to a
maximum of 70 input trees, and seven models of molec-
ular evolution. Thus, the high variance in support values
and symmetric tree distances among data sets from the
full simulation suggest that the phylogenetic performance
of data drawn from individual loci may be conveying a
somewhat false sense of encouragement compared to
more thorough multi-gene simulations. In other words, a
well-supported tree generated from a single locus, either
in a simulation or empirical framework, does not neces-
sarily mean that the organismal phylogeny is known with
confidence. Essentially, the largely stochastic variance
among genes and their associated gene trees is never chal-
lenged by independent data in single gene analyses, which
can leave one with greater support for idiosyncratic gene
tree results than one might obtain based on a more com-
prehensive sampling of gene tree histories, and this was
born out by the SH tests. The message is clear–empirical
studies of long reads from single genes, and simulations
based on single genes, will often yield overly optimistic
views of the certainty of organismal phylogenies.

Emydid phylogeny
Generally, our empirical phylogenetic results were in line
with our a priori expectations in that the mtDNA tree was
well-resolved, well supported, and consistent with previ-
ous mtDNA results while our nuDNA tree was not as well
supported, and contained relatively short branches
among most emydine and deirochelyine genera. Direct
comparisons of our mtDNA and nuDNA-based trees was
complicated by differences in number of terminals, but at
the mitochondrial level (excluding outgroups) 86% of
nodes (19/22) were well supported from at least one ana-
lytical method, but only about half (11/23) of interspe-
cific nodes were supported based on nuDNA (Figs 1, 9).
Both datasets agree on the monophyly of most genera
(some of which contain only a single species), but not on
relationships among those genera. For example, the
nuclear dataset strongly supported the monophyly of the
traditionally-recognized subfamily Deirochelyinae;
within it, a Graptemys-Pseudemys-Malaclemys-Trachemys
clade was the only strongly supported node. Both of these
groups were rejected by the mtDNA dataset (SH test, P <
0.01). Similarly, the nuclear dataset supported the mono-
phyly of the traditional Emydinae, the sister-group rela-
tionship of Glyptemys to all remaining emydines, Clemmys
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as sister group to the Emys-Terrapene clade, and E. mar-
morata as sister to the remaining species of Emys; of these,
only the position of Glyptemys was also supported by the
mtDNA analysis. Further, a more detailed examination of
the Emys species relationships revealed at least in that case,
that the mtDNA phylogeny was most likely the result of
an ancient hybridization and mitochondrial gene capture
event [48].

Conclusion
Overall, short branches among emydine and deiroche-
lyine genera, particularly for nuclear genes, suggests that
recovering relationships among genera and species of this
clade of turtles will continue to be a difficult problem. We
are making important progress towards our understand-
ing of emydid phylogeny and taxonomy, both in terms of
species boundaries and interspecific phylogeny, but that
progress has been slow and clearly requires both new data
and new approaches. In particular, the exceedingly prob-

lematic genus Pseudemys, which has been a source of taxo-
nomic uncertainty for over 150 years, while the box turtles
(Terrapene) and map turtles (Graptemys) all remain prob-
lematic both in terms of species delimitation and within-
genus interspecific phylogenetics [31-35]. All of these
groups may well require a more population genetic
approach to fully resolve. On the other hand, each of the
three Trachemys species examined here were mono-
phyletic with strong support based on both mtDNA and
nuDNA sequences, although relationships among them
remain obscure.

Incongruence between mtDNA vs nuDNA phylogenies is
not uncommon, and generating additional data is a logi-
cal step towards understanding this incongruence.
Although simulations do not inform us as to the causes of
among-tree disagreements, they can be useful for deter-
mining the utility of generating additional empirical data
to solve remaining, difficult parts of phylogenies. In order

Table 1: Table of clades recovered from phylogenetic analyses of individual and concatenated nuclear loci. + indicates clades that were 
recovered while – indicates clades that were not recovered. 

Locus Concatenated nuDNA
Clade HNF-1α RAG R35 RELN TB29 TB73 TGFB

Emydidae + - + + + + + +
Deirochelyinae + - + - - - + +

Chrysemys + + + + + - - +
Deirochelys + + + + + + + +
Graptemys - - + - - - - +

caglei + - - + - - - +
geographica * - + - + - - +
pseudogeographica - - - - - - - -

Pseudemys - + - + + - + +
concinna - - - - - - - -
peninsularis - - - - - - - +

Trachemys - - - - - - - -
scripta - - - - - + - +
stejnegeri + - + + - + + +
taylori - + + + - - + +

Emydinae + - + + - - - +
Clemmys + + + + - + + +
Emys - - - + - - - +

blandingii + + + + + + + +
marmorata + + - + - + + +
orbicularis + - - - - - - +
trinacris + - - - - - - +

Glyptemys + - + + - - - +
insculpta + - + + + + + +
muhlenbergii + + + + + - + +

Terrapene - - - + + - + +
carolina - - - - - - - -
coahuila - - - - - - - -
ornata - - + - - - - +

Totals 15 8 15 16 9 8 12 25

* The monophyly of G. geographica could not be assessed for HNF-1α because we were not able to sequence both specimens for this locus.
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Maximum-likelihood phylogeny based on the 70-taxon seven-locus nuclear DNA data setFigure 9
Maximum-likelihood phylogeny based on the 70-taxon seven-locus nuclear DNA data set. This data set was com-
posed of up to 5961 bp. Among the ingroup, 350 characters were parsimony-informative. Nuclear loci included HNF-1α, RAG, 
RELN, R35, TB29, TB73, and TGFB2. Estimated model parameters conform to the GTR+G+I model of sequence evolution. -ln 
L = 17485.22059, rate matrix: A-C = 1, A-G = 2.7416, A-T = 0.6815, C-G = 0.6815, C-T = 2.7416, G-T = 1. Base frequencies: 
A = 0.30, C = 0.20, G = 0.20, and T = 0.30. Proportion of invariant sites (I) = 0.3263, and γ-shape parameter = 0.9023. Node 
symbols as in Fig. 1.
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for these simulations to provide accurate expectations for
future studies, they should embrace realistic levels of
among-gene-tree variation by simulating many genes
rather than being based on one or a few empirical mark-
ers.

Methods
Taxon Sampling
Our analysis incorporated a total of 70 individuals includ-
ing 64 ingroup, and six outgroup taxa representing all gen-
era and 25 of 48 emydid species (Additional file 1). Our

analyses included > two individuals of each species except
Malaclemys terrapin. Of the two recognized subfamilies of
emydids, we were missing one of the eleven species of
Emydinae (the Mexican box turtle Terrapene nelsoni) and
several species each from the diverse deirochelyine genera
Graptemys, Pseudemys and Trachemys.

Data Sampling
We downloaded 103 sequences from GenBank, most of
which were generated previously by us (Spinks and Shaf-
fer in press). New sequences generated for this study were
generally from the same individual specimen represented
in GenBank (Additional file 1). Genomic DNA was
extracted from blood or other soft tissue samples using a

Maximum likelihood simulations showing proportion of nodes with bootstrap support values of ≥ 70 (filled circles) and ≥ 95 (open circles)Figure 10
Maximum likelihood simulations showing proportion 
of nodes with bootstrap support values of ≥ 70 (filled 
circles) and ≥ 95 (open circles). Due to computational 
constraints, we analyzed every 5th data set only (i.e. in 5 kb, 
10 kb 15 kb etc.) under maximum likelihood.

Maximum parsimony simulations showing proportion of nodes with MP bootstrap support values of ≥ 70 (filled cir-cles) and ≥ 95 (open circles)Figure 11
Maximum parsimony simulations showing propor-
tion of nodes with MP bootstrap support values of ≥ 
70 (filled circles) and ≥ 95 (open circles). Also shown 
are support values recovered from analyses of a 31-taxon 
empirical nuDNA data set (filled triangle = ≥ 70, open = ≥ 
95).

Maximum parsimony simulations of the RAG-1 data set showing proportion of nodes with MP bootstrap support val-ues of ≥ 70 (filled circles) and ≥ 95 (open circles)Figure 12
Maximum parsimony simulations of the RAG-1 data 
set showing proportion of nodes with MP bootstrap 
support values of ≥ 70 (filled circles) and ≥ 95 (open 
circles).

Symmetric tree distances generated from the single-gene simulation (open diamonds), and the full MP simulation (filled diamonds)Figure 13
Symmetric tree distances generated from the single-
gene simulation (open diamonds), and the full MP 
simulation (filled diamonds).
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salt extraction protocol [49], and sequences from multiple
markers were almost always generated from the same
individual (Additional file 1). We sequenced fragments of
one mitochondrial gene and up to seven nuclear loci. PCR
products were amplified using 15–20 μL volume Taq-
mediated reactions with an initial heating of 95° for 60
seconds, followed by 35 cycles of denaturation at 94°C;
30 seconds, annealing at 58°C-65°C; 30 seconds, and
extension at 72°C; 45–90 seconds followed by a final
extension of 72° for 10 minutes. Annealing temperatures,
extension times, and primer sequences can be found in
references following each locus. For mtDNA, we used
cytochrome b (cytb, [50]) while our nuclear DNA
(nuDNA) included intron 2 of the hepatocyte nuclear fac-
tor 1α (HNF-1α, [51]) the nuclear recombination activase
gene 1 (RAG-1, [52]), intron 61 of the Reelin gene (RELN,
[53]), intron 1 of the fingerprint protein 35 (R35, [54]),
intron 5 of the transforming growth factor beta-2 (TGFB2,
[51]), and two anonymous nuclear loci: TB29 and TB73
[12]. All PCR products were sequenced in both directions
on ABI 3730 automated sequencers at the UC Davis Divi-
sion of Biological Sciences sequencing facility http://
dnaseq.ucdavis.edu/.

Phylogenetic Analyses
The cytb sequences were translated using MacClade 4.06
[55] to check for potential sequencing errors and orthol-
ogy problems, including nuclear mitochondrial pseudo-
genes (numts). Sequences were initially aligned using
MacClade 4.06 with final editing of the alignments by
hand in PAUP* 4.0b10 [56], and the alignment was
deposited in TreeBase [http://www.treebase.org, accession
# S2303]. We performed phylogenetic analyses on mito-
chondrial and nuclear loci separately. Phylogenetic analy-
ses of the mitochondrial and empirical concatenated
nuclear sequence data sets were performed under ML, MP
and Bayesian Inference. ML and MP analyses were per-
formed using PAUP* 4.0b10 [56] with ten random step-
wise heuristic searches and tree bisection-reconnection
(TBR) branch swapping (for MP), or subtree pruning-
regrafting (SPR) branch swapping (for ML). Model param-
eters for ML and Bayesian analyses were estimated in
PAUP* 4.0b10, and selected under the Akiake Informa-
tion Criterion (AIC). Modeltest 3.06 [57] was used to
report model parameters for use in ML analyses. We boot-
strapped each data set with 100 pseudoreplicates [58],
limiting each ML bootstrap replicate to one hour of com-
putation time. For individual nuclear loci, we used RaxML
[59] and MrBayes through the CIPRES web portal http://
www.phylo.org to carry out ML bootstrap and Bayesian
analyses.

For the mitochondrial and concatenated nuDNA analy-
ses, we used MrBayes V3.1.1 [60,61] to perform parti-
tioned model Bayesian analyses. The mitochondrial
sequences were partitioned by codon position while the
nuDNA sequences were partitioned by locus. All Bayesian
analyses were performed with two replicates and four
chains for 105 generations. Chains were sampled every 103

generations, and stationarity was determined when the -
log likelihood (-ln L) scores plotted against generation
time visually reached a stationary value, and when the
potential scale reduction factor (PSRF) equaled 1. Trees
sampled prior to stationarity were discarded as burn-in.

Simulations
Our simulation approach was of the data-growing type.
Importantly, we generalized our simulation procedure in
such a way as to provide a more biologically realistic esti-
mate. In particular, we increased the among-gene variance
of the simulated data by incorporating variation in mod-
els of molecular evolution, model parameter values, and
gene tree topologies derived from our empirical nuclear
sequence data set (see below).

Our simulation procedure is shown as a flow chart in Fig
14. For the simulations, we did not include the mitochon-
drial sequences since they are not representative of loci
sampled from the nuclear genome. We assembled a 31-
taxon data set that included all seven nuclear loci and one

Flow chart detailing methodology for generating simulated data setsFigure 14
Flow chart detailing methodology for generating 
simulated data sets. See text for full description.
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exemplar of each emydid species plus all outgroup taxa.
Graptemys geographica had a great deal of missing data, and
so was excluded from the simulation analysis. For each
data partition we produced 10 nonparametric bootstrap
replicated datasets using the Seqboot module of the
Phylip 3.66 package [62], yielding 70 unique datasets. For
each of these datasets, we selected the best fitting model
of molecular evolution using Modeltest 3.6 [57] and
selected appropriate models via the AIC. In addition, as
part of the model selection procedure the Modeltest 3.6
program uses a Modelblock batch file (executed in PAUP*
4.0b10). This batch file generated neighbor-joining (NJ)
trees that were used in the model determination proce-
dure. We modified the Modelblock batch file to save these
NJ starting trees from each of the 70 simulated data sets.
This yielded a pool of 70 models of nucleotide sequence
evolution plus their corresponding parameter estimates
and NJ trees. The nonparametric bootstrapping step was
employed in order to generate a large number of models
and trees that were similar to the seven models and trees
inferred from the empirical data, and yet incorporated a
degree of variation as might be observed if one were to
sample additional similar loci.

Next, we constructed simulated datasets by selecting a
model, and its corresponding NJ tree at random (with
replacement) from the pool of 70, and used Seq-Gen1.3.2
[63] to simulate 1000 nucleotide characters for each
model/tree combination. This process was repeated and
each simulated block of nucleotide characters was con-
catenated to produce simulated datasets ranging in size
from 1000 bp (one model/tree only) to 70000 bp (70
models/trees). In addition, each dataset was simulated
independently with a new model drawn from the pool for
each subsequent data set (i.e. the 17th dataset did not con-
sist of the 16th dataset with 1000 more base pairs added).

Phylogenies and bootstrap support values (100 pseudore-
plicates) were generated using PAUP* 4.0b10 for each
simulated dataset under MP. However, due to computa-
tional constraints, we analyzed every fifth data set only
under ML (i.e. 5000 bp, 10000 bp, 15000 bp, etc.). MP
bootstrap replicates were carried out using random
sequence addition and TBR branch swapping, with the
multiple trees option in effect. For ML bootstrap analyses,
we chose a new model of molecular evolution for each
simulated dataset using PAUP* 4.0b10, and Modeltest 3.6
with AIC-selected parameters, and employed the same
heuristic search settings as in the MP bootstrap analyses.
Support values for each simulated phylogeny were deter-
mined by counting the total number of nodes in each tree
that were supported at the ≥ 70 and ≥ 95 level. To quanti-
tatively compare trees among simulations, we used the
symmetric tree distance [64,65] (symmetric difference test
implemented in PAUP* 4.0b10). Trees were compared

sequentially such that the tree generated from the 1000 bp
data set (tree 1) was compared to the tree generated from
2000 bp (tree 2) then tree 2 was compared to tree 3 and
so forth.

Our empirical loci varied in length and number of parsi-
mony-informative characters, thus our multi-locus simu-
lation might have been overly influenced by one or a few
markers. For example, the average locus was ~850 bp, and
contained 50 parsimony informative characters, but at
768 bp, HNF-1α had the most parsimony informative
characters (72) of any locus. Therefore, HNF-1α might
have had a disproportionate influence on our simula-
tions. We used SH tests (conducted in PAUP* 4.0b10) to
assess the impact of this among-locus variation on our
simulations. Based on the empirical 31-taxon, seven-locus
data set, we compared the 50% majority rule consensus
MP tree generated from the 70 kb simulated data to the
50% majority rule consensus MP trees generated from
each empirical locus, but with the trees pruned of all but
a set of 29 taxa common to all loci. Our reasoning was
that if a single locus were driving our simulations then
that gene tree would not be significantly different from
the tree based on 70 kb of simulated data.

Finally, we compared our simulation procedure to previ-
ous methods where data were simulated from a single
locus. To carry this out, we repeated our simulation strat-
egy, but used the single empirical model/NJ tree from the
RAG-1 locus as input parameters in Seq-Gen to generate
70 datasets ranging from 1000 bp to 70000 bp. We chose
RAG-1 since it is one of the most commonly employed
phylogenetic markers for vertebrate taxa.

The simulations and tallies of support values were largely
automated using a system of PERL, BASH, and R scripts, as
well as several PAUP batch files (available from RCT's
website, http://www.eve.ucdavis.edu/rcthomson).
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