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Abstract
Since 2005, thousands of genome-wide association studies (GWAS) have been published, identifying hundreds of thousands 
of genetic variants that increase risk of complex traits such as autoimmune diseases. This wealth of data has the potential to 
improve patient care, through personalized medicine and the identification of novel drug targets. However, the potential of 
GWAS for clinical translation has not been fully achieved yet, due to the fact that the functional interpretation of risk vari-
ants and the identification of causal variants and genes are challenging. The past decade has seen the development of great 
advances that are facilitating the overcoming of these limitations, by utilizing a plethora of genomics and epigenomics tools 
to map and characterize regulatory elements and chromatin interactions, which can be used to fine map GWAS loci, and 
advance our understanding of the biological mechanisms that cause disease.
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Introduction

Complex diseases arise from a combination of genetic and 
environmental factors. Genome-wide association studies 
(GWAS) have identified thousands of genetic regions, or 
loci, that contain single nucleotide polymorphisms (SNPs) 
associated with complex diseases [1]. For autoimmune dis-
eases, multiple, large-scale genetic association studies have 
been carried out, including GWAS, fine mapping studies, 
follow-up studies and meta-analyses, contributing to the 
identification of a large proportion of the heritability of these 
diseases.

The ultimate goal of genetic studies is to improve human 
health, by enabling a better understanding of the biologi-
cal mechanisms that lead to disease. This, in turn, can help 
identify novel therapeutic targets for autoimmune diseases 
for which there is a lack of specific treatments, or where a 
large proportion of patients do not respond appropriately 
to available treatments, such as psoriatic arthritis (PsA), 
Crohn’s disease, ankylosing spondylitis (AS) or rheumatoid 
arthritis (RA), among many others. Indeed, several studies 
have shown that drug development programs with incidental 
genomic support had a higher rate of developmental success 
[2–5]. In this regard, a coding variant in TYK2, which has a 
protective effect in multiple sclerosis (MS), AS, ulcerative 
colitis (UC) and Crohn’s disease, leads to a weaker response 
of CD4 + T helper 1 and 17 type cells to proinflammatory 
signals [6], which suggested that reducing the activity of 
TYK2 could be a potential therapeutic option for these dis-
eases. There are now multiple clinical trials testing TYK2 
inhibitors in several autoimmune diseases [7].

Furthermore, biological mechanisms revealed by GWAS 
can suggest compounds suitable for repurposing, which 
involves the use in a new disease of a drug approved for 
treatment of a different condition and allows cheaper and 
quicker translation implementation of treatments into the 
clinic compared to de novo drug discovery [8]. For example, 
the monoclonal antibodies ustekinumab and risankizumab, 
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first used to treat psoriasis, target components of the inter-
leukin-23 (IL-23) signalling pathway. One of the most robust 
GWAS signals in Crohn’s disease is a missense mutation on 
the IL-23 receptor (IL23R) gene, which inspired the explora-
tion of the above-mentioned treatments in Crohn’s disease 
[9]. These biologics have now been proven to be successful 
in the treatment of Crohn’s and in other diseases that also 
present genetic associations with genes in the IL-23 pathway 
such as PsA and AS [10–14].

Genetics also have the potential to aid precision medicine 
approaches to target the best treatments available to specific 
groups of patients who are more likely to respond appropri-
ately or avoid particular treatments in patients who are pre-
dicted to present adverse reactions [15]. For example, certain 
HLA alleles have been shown to be correlated with treatment 
response in psoriasis [16] and rheumatoid arthritis (RA) 
[17]. In addition, genetic risk scores (GRS) can help identi-
fying those at highest risk of developing disease. Although 
they are less powerful in predicting traits with low preva-
lence, disclosure of high genetic risk to individuals in the 
clinic can lead to behavioural changes to minimize exposure 
to environmental risk factors [15]. The ongoing investment 
in long-term prospective cohort studies that include genetic 
data combined with detailed electronic health records, such 
as the UK Biobank [18], will help advance the field of preci-
sion medicine [19].

However, despite these exciting and promising advances, 
the full potential of GWAS for clinical translation has not 
been achieved yet, due to several caveats that make the inter-
pretation of GWAS variants difficult [20]. First, each indi-
vidual GWAS-associated variant acts as a signpost or “tag” 
for a haplotype containing multiple neighbouring SNPs that 
are inherited together in a block, i.e. they are in high link-
age disequilibrium (LD). Therefore, GWAS alone cannot 
distinguish the causal variants underpinning the association 
from that of the other variants in LD with them. Second, 
over 90% of GWAS variants map to non-coding regions of 
the genome, and therefore, they do not directly affect the 
coding sequence of a gene, making it challenging to iden-
tify the biological mechanism by which they cause disease 
[21, 22]. Third, in many cases, it is unclear which are the 
causal genes, since GWAS loci often contain multiple genes 
in the vicinity or map at very large distances from coding 
genes. And finally, we lack a complete understanding of the 
context, i.e. the cell types and stimuli, under which disease 
associated variants have an effect.

Fine mapping using statistical methods, for example, 
Bayesian approaches, credible SNP sets and trans-ethnic 
meta-analyses, have been successful in prioritizing genetic 
variants for further study [23, 24], but to overcome the limi-
tations listed above and fully realize the potential of GWAS 
to understand disease biology, follow-up functional stud-
ies are needed. In this review, different functional genomics 

approaches to fine map GWAS loci and prioritize causal 
genes in autoimmune diseases will be discussed, with 
examples illustrating how these methods have been used to 
translate genetic findings into functional understanding of 
etiopathological mechanisms of autoimmune disease.

Functional genomics

The non-coding portion of the human genome is thought to 
play a pivotal role in the highly complex process that is the 
regulation of gene expression, which is mediated by regula-
tory elements. Regulatory elements are short, non-coding 
functional DNA sequences that can regulate transcription 
of their target genes and contain binding sites for regulatory 
proteins. There are several classes of regulatory elements, 
such as enhancers, promoters, insulators or silencers, that are 
characterized by slightly different features, such as specific 
histone modifications or binding or particular transcription 
factors [25, 26]. As above mentioned, the vast majority of 
GWAS-associated variants maps to non-coding regions of 
the genome, and they seem to be predominantly enriched in 
cell type-specific enhancers [27].

The mapping and characterization of regulatory elements 
such as enhancers using functional genomics has therefore 
been used extensively to functionally interpret GWAS sig-
nals across all complex traits [28, 29] (Fig. 1). Functional 
genomics involves the use of genomic data to investigate 
gene expression and function at genome-wide scale, usually 
by applying high-throughput methods (Table 1). Regulatory 
elements generally map to regions of open chromatin, are 
flanked by nucleosomes with histone modifications that are 
associated with active transcription, are bound by specific 
transcription factors and are likely to physically come into 
contact with their target genes through chromatin looping 
[28]. Major large-scale international projects, like Encode 
[30], Roadmap [31] or the IHEC consortium [32], have used 
techniques to detect such features at the genome-wide scale 
(like ATAC-Seq, ChIP-Seq and Hi-C, Table 1) in a wide 
range of cell and tissue types, which has become an invalu-
able resource in the post-GWAS era.

Fine mapping using epigenetic information 
and colocalization

Understanding the mechanism by which SNPs lead to 
changes in molecular phenotypes in disease relevant tis-
sues is required for the identification of causal variants in 
risk loci identified by GWAS. The majority of GWAS SNPs 
are thought to disrupt regulatory elements, and therefore, 
these mechanisms most commonly involve alteration of gene 
expression levels, disruption of transcription factor binding 
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Fig. 1  Schematic representation of how functional genomics data can 
be used to functionally interpret GWAS loci. A Fine mapping using 
epigenetic information and colocalization: amongst the most strongly 
associated SNP within a disease GWAS locus (red dots), only one 
(red diamond) overlaps an active enhancer, suggesting that this vari-
ant may be the causal SNP. B The disease enhancer containing the 

risk variant, although closer in the linear conformation to Gene 1, 
interacts with Gene 2 through chromatin looping. In addition, the 
disease SNP is an eQTL for Gene 2 but has no effect on the expres-
sion of Gene 1, suggesting that Gene 2 may be the causal gene at this 
locus
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and perturbations of enhancer activity, in the form of altera-
tions in chromatin accessibility and histone modifications 
[44]. Therefore, numerous functional fine-mapping meth-
ods are based on the colocalization of GWAS variants in 
high LD with functional annotations such as promoters and 
enhancers using data from large-scale projects like Encode 
or Roadmap, described above. If a variant, or variants, 
within a locus overlaps active functional elements in tissues 
of interest, they will be more likely to be causal than vari-
ants in LD that do not [45] (Fig. 1). It is important to note 
that although many fine-mapping methods assume that only 
one SNP per locus contributes to disease, it has been shown 
that multiple variants within a single locus can play a role 
through additive or epistatic effects, which can context cell 
type specific [46].

Applying this colocalization approach, Trynka et  al. 
examined 15 epigenetic chromatin marks using ChIP-seq 
data from 14 immune cell types from the ENCODE project 
[47]. After overlapping with all associated SNPs for 31 com-
plex traits, they found that H3K4me3 was the most cell type-
specific chromatin mark. Indeed, there was an enrichment of 
risk SNPs in peaks for this histone mark in cell types that are 
keys for disease biology. For example, in RA, GWAS SNPs 
were enriched in H3K4me3 peaks in CD4 + Treg cells. Inter-
estingly, when the analysis was repeated using newly defined 
index SNPs from the dense genotyping fine-mapping study 
Immunochip [48], instead of index SNPs from the largest 
RA GWAS at that time [49], the significance of the enrich-
ment for CD4 + Treg cells increased. In addition, an RA-
associated locus tagged by rs13119723, an SNP mapping to 
an intron of the gene of unknown function KIAA1109 and 
containing multiple variants in LD spanning over 500 Kb, 

was fine mapped to a single SNP mapping to a H3K4me3 
peak specific to CD4 + Treg cells thought to be involved in 
the regulation of IL2 expression. These results demonstrate 
how colocalization approaches of GWAS and functional 
annotations can inform both the most relevant cell types 
implicated in disease and the fine mapping of associated 
SNPs to identify causal variation.

In another seminal study, Farh et al. aimed at fine-map-
ping GWAS loci from 21 autoimmune diseases by devel-
oping an algorithm, Probabilistic Identification of Causal 
SNPs (PICS), that estimates the probability that an indi-
vidual SNP is a causal variant given the haplotype structure 
and observed pattern of association at the locus, followed 
by integration of transcription and cis-regulatory element 
annotations from the NIH Roadmap and similar data [22]. 
They estimated that 60% of causal variants map to immune 
enhancers, but only 10–20% directly alter recognizable 
transcription factor binding motifs. Multiple methods have 
been developed recently to enhance statistical fine mapping 
with functional annotations, significantly improving the 
identification of causal variants. For example, Weissbrod 
et al.developed a functionally informed method, PolyFun, 
that specifies prior causal probabilities for subsequent fine-
mapping methods, providing > 20% power increase over 
nonfunctionally informed fine-mapping methods [50].

A number of other studies have also showed that overlap 
of disease variants with functional annotations can identify 
tissue-specific enrichments [51, 52]. In addition to cell type 
specificity, disease variants can have an effect on phenotype 
in specific cell states or under specific stimulatory condi-
tions. Soskic et al. stimulated T cells, and macrophages 
with an array of 13 different cytokines found that immune 

Table 1  Summary of the genomics, epigenomics and transcriptomics techniques most commonly used to interpret GWAS signals

Type Technique Description

Transcription RNA-seq, GRO-cap, CAGE [33, 34] Whole-transcriptome RNA sequencing can identify transcription of 
active enhancers (enhancer RNA or eRNAs)

Transcription eQTLs [35] Correlation between genetic variation and levels of gene expression
Chromatin accessibility MNase-seq, DNase-seq, ATAC-seq [36–38] High-throughput detection of open chromatin by micrococcal 

nuclease digestion, cleavage by DNase I or library construction 
using the hyperactive transposase Tn5, respectively, followed by 
next-generation sequencing (NGS)

Histone marks ChIP-seq, Cut&Run [39, 40] Detection of post-translational histone modifications by immuno-
precipitation with specific antibodies, e.g. enhancer or promoter-
associated histone modifications such as H3K4me1 or H3K27ac, 
followed by NGS

Protein binding ChIP-seq, Cut&Run [39, 40] Detection of DNA bound regulatory proteins and transcription fac-
tors by immunoprecipitation with specific antibodies, e.g. RNA 
polymerase II or NFκB, followed by NGS

3D proximity Chromatin conformation capture (3C) methods, 
i.e. Hi-C, Capture Hi-C (CHi-C), HiChIP 
[41–43]

Family of methods to detect looping and spatial organization of 
DNA. The chromatin is digested with enzymes, and then interact-
ing regions are re-ligated together. The resulting products are 
sequenced and analysed to quantify the frequency of interactions
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disease-associated variants are enriched in chromatin regions 
that are open and active in early rather than late activation of 
memory  CD4+ T cells [53].

The most complete human epigenome reference to date, 
EpiMap (epigenome integration across multiple annotation 
projects), was recently assembled, by compiling 10,000 epi-
genomic maps from the main large-scale consortia studies 
such as ENCODE, Roadmap and IHEC, including ChIP-Seq 
data for numerous histone marks and transcription factors, 
open chromatin data from DNAse-seq and ATAC-seq exper-
iments, across 800 samples from multiple cell types and 
tissues [54]. These datasets were used to define chromatin 
states, enhancers and target genes, which were then used to 
annotate 30,000 genetic loci associated with 540 traits from 
the GWAS catalogue, predicting key disease tissues, causal 
SNPs enriched in enhancers and candidate target genes for 
each locus.

Transcription factor binding profiling has also been used 
to functionally interpret non-coding variation. IMPACT is 
a recently developed genome annotation method that iden-
tifies regulatory elements defined by cell-state-specific TF 
binding profiles, learned from 515 chromatin and sequence 
annotations [55]. When integrated with RA GWAS data, 
it was found that the top 5% of CD4 + Treg regulatory ele-
ments identified by IMPACT capture 85.7% of RA genetic 
heritability, outperforming methods that ignore differential 
functionality of effector cell states. This further strength-
ens the importance of selecting the right tissues and cell 
types in functional studies. This annotation method has also 
been proven to be useful in the identification of causal vari-
ants that are common for different populations, despite the 
presence of different LD patterns at associated loci, which 
improves the trans-ancestry portability of polygenic risk 
scores [56].

On the other hand, high-throughput protein-DNA binding 
assays, rather than predictions, have been used to elucidate 
the biological function of non-coding variation. Resources 
such as the systematic assessment of the binding of 270 
human transcription factors to 95,886 non-coding variants 
in the human genome using one of such methods, SNP-
SELEX, further facilitates the understanding of the pathways 
involved in disease [57]. When applied to T2D, this study 
found that SNPs that demonstrate differential binding of TFs 
were highly enriched in the set of SNPs that had been previ-
ously reported as likely causal. The T2D-associated SNP 
rs7578326, which overlaps a candidate enhancer and had 
been linked to the IRS1 gene by long-range chromatin inter-
actions in HepG2 cells, was found to affect binding of the 
liver-specific transcription factor CEBPB. Using CRISPR 
interference, the enhancer was silenced in HepG2 cells, 
which resulted in significantly reduced expression of IRS1.

In addition to enabling the identification of regulatory 
elements across the genome, the outputs of high-throughput 

functional genomics methods described above can be uti-
lised to assess whether genetic variants present allele-spe-
cific effects. The allele-specific abundance of sequencing 
reads can help us generate hypothesis about the biological 
function of disease variants (quantitative trait loci mapping, 
QTL). This type of study can profile traits such as chromatin 
accessibility (caQTL), histone marks (hQTL), exon splic-
ing (sQTL) gene expression (eQTL) or protein expression 
(pQTL).

Several studies have shown that many caQTLs overlap 
TF binding sites and motifs, and a subset of them colocal-
ize with eQTLs and GWAS variants, which suggests that 
SNPs that map to these loci influence GWAS traits by 
altering chromatin accessibility [58–62].  Likewise, the 
presence of hQTLs that affect enhancer-associated histone 
ChIP-Seq peaks like H3K27ac or H3K4me1 further sug-
gests that these variants have an effect on cell type-specific 
enhancer activity [52]. Pelikan et al. identified numerous 
hQTLs in lymphoblastoid cell lines derived from systemic 
lupus erythematosus (SLE) patients, which were enriched 
in autoimmune disease risk haplotypes and influenced gene 
expression variability compared with non-hQTL variants in 
strong LD, suggesting that this type of data can be used in 
fine-mapping efforts [63].

Gene prioritization using expression 
quantitative trait loci (eQTLs)

The examples described in the previous section illustrate 
how functional genomics annotations have identified thou-
sands of enhancers that are disrupted by GWAS variants. 
However, only a handful of these have been confidently 
linked to their target genes, limiting the biological knowl-
edge of the pathways that are altered in disease that we 
can extrapolate from these studies. Due to the robustness 
of RNA-sequencing technologies, eQTL studies represent 
a common approach to prioritize potential causal genes at 
risk loci.

Several methods have been used to integrate eQTL maps 
with GWAS data, from just assessing whether GWAS vari-
ants were also significant eQTLs, to more sophisticated 
colocalization statistical analyses [29]. Early studies that 
overlapped the most strongly associated GWAS variants at 
a given locus with the top eQTL within the same variants 
described how risk SNPs are more likely to be eQTLs than 
random non-associated SNPs [64, 65]. Examples of how 
this type of study has been used to pinpoint disease genes 
include the analysis conducted by Westra et al. where an 
SLE-associated SNP was also found to be an eQTL for the 
TF IKF1. This eQTL also affected expression of a number of 
other genes that are in turn regulated by IKF1 [66].
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More accurate statistical colocalization methods were 
later developed, to account for the fact that the large amount 
of eQTLs present in the genome can result in a high degree 
of false positives due to chance, multiple genes can be 
affected by the same variant (pleiotropy), and that the top 
eQTL SNP in a locus may not always be the same or in tight 
LD with the top GWAS SNP [67–70]. It is also important 
to know that eQTLs can be context specific and can change 
with stimulation with pathogens or IFN-γ, for example 
[71–73].

Large-scale projects that characterize the genetic factors 
underlying gene expression across tissues and cell types 
provide a highly valuable resource. The Genotype-Tissue 
Expression (GTEx) consortium represents one of the most 
comprehensive eQTL resources [74]. GTEx’s approach is 
to perform both DNA sequencing and multi-tissue RNA-
seq across many post-mortem donor samples, to identify 
genetic variants that are correlated with the expression lev-
els of genes across the whole genome. The third and final 
phase of the project was recently completed, with a dataset 
of 838 donors and 15,201 samples across 49 tissues, identi-
fying more than 4.2 million eQTLs which were enriched in 
disease-associated variants from the GWAS catalogue [75].

Another noteworthy large-scale eQTL mapping effort rel-
evant for autoimmune diseases is eQTLGen, which includes 
whole blood-derived expression from 31,684 individuals 
[76]. One strength of this study is the capability to identify 
trans-effects, which are harder to detect than cis-eQTLs. 
Forty-seven GWAS traits for which at least four independent 
variants affected the same gene in trans were identified; in 
SLE, 13 genes in the SLE interferon signature were affected 
by at least three SLE-associated genetic variants each.

GTEx and eQTLGen data are generated from bulk tissue 
samples, and given the cell type specificity of the regula-
tion of gene expression, their sample heterogeneity may con-
found mechanistic follow-up of GWAS loci. Kim-Hellmuth 
et al. have developed a computational deconvolution method 
to estimate the proportion of different cell types in GTEx 
tissues, so then cell type information can be accounted for 
in eQTL analyses [77]. But, ideally, disease relevant cell 
types, such as individual immune cell populations isolated 
from blood, can be more informative for the colocalization 
of eQTLs with GWAS variants in autoimmunity. The DICE 
study studied 13 different immune cell types from 91 donors 
and discovered that a large fraction (41%) of the 12,254 
genes for which eQTLs were identified showed a strong cis-
association with genotype only in a single cell type [78]. Of 
note, the ImmuNexU study identified immune cell type- and 
disease-specific eQTLs, by studying 28 distinct immune cell 
subsets from patients with 10 different immune-mediated 
diseases and healthy individuals in Japanese population. 
Most large-scale eQTL studies such as GTEx, eQTLGen 
or DICE have been generated in European donors; the 

ImmuNexU study revealed eQTL variants in East Asian 
populations that had not been detected in European popu-
lations, highlighting the need for ancestry-matched eQTL 
databases for GWAS fine mapping and improvement of 
functional annotation [79].

There are many other eQTL studies that have made their 
datasets publicly available, which represents an incredibly 
valuable resource. Recently, the eQTL catalogue provided 
uniformly processed gene expression and splicing QTLs 
from all available public studies, facilitating the widespread 
use of these resources [80].

Gene prioritization using chromatin 3D 
structure

Enhancers and their target genes, which might be distant 
from one another in the linear DNA primary structure, are 
brought close together by chromatin loops. Therefore, the 
genes affected by GWAS variants that disrupt regulatory 
elements can be identified by characterizing 3D chromatin 
structure in relevant cell types using methods like Hi-C [81, 
82]. Hi-C is based on chromosome conformation capture 
(3C), a method to detect looping and spatial organization of 
DNA. The chromatin is digested with enzymes, and interact-
ing regions are re-ligated together. The resulting products 
are sequenced and analysed to quantify the frequency of 
interactions (Table 1). In addition to chromatin loops, Hi-C 
data can be used to map higher order chromatin structures, 
such as active/inactive A/B compartments and topologically 
associating domains (TADs) representing large domains 
that display a marked regulatory potential, that can help us 
understand the chromatin context of disease associated loci.

It has been shown that abnormal 3D chromatin organiza-
tion can lead to disease by rewiring interactions between 
genes and regulatory elements [83] and that there is a direct 
relationship between the strength of chromatin interaction, 
DNA activity, and gene expression, where small changes in 
interaction intensity mediated by disease-associated regu-
latory genetic variation lead to large functional effects in 
gene expression [84, 85]. In addition, recent evidence has 
demonstrated that SNPs can influence chromatin interaction 
strength, along with accessibility and gene expression [86] 
and, interestingly, that T1D risk haplotypes demonstrate a 
greater level of interactions and gene activity in mice [87].

In a seminar paper, Javierre et al. applied a technique 
based on Hi-C that incorporates a sequence capture step to 
enrich for interactions that involve specific regions of inter-
est, capture Hi-C (CHi-C), to identify interacting regions 
of all known promoters in the human genome, in 17 human 
primary hematopoietic cell types [88]. They found that 
chromatin interactions between promoters and promoter-
interacting regions (PIRs) are highly cell type specific. 
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Interestingly, PIRs were found to be significantly enriched 
in active chromatin regions and eQTLs. Similarly, PIRs were 
also enriched in GWAS variants associated with autoim-
mune diseases in lymphoid cells, and the data was subse-
quently used to identify putative causal genes in these traits. 
Of note, multiple genes such as RP4-753F5.1, CD101, TTF2 
and TRIM45 were prioritized as RA candidate genes at the 
1p13.1 GWAS locus, which had been initially assigned to 
CD2 due to proximity.

Alternatively, Hi-C libraries can be enriched by immu-
noprecipitation using an antibody targeting a protein or his-
tone modification of interest, in a method called HiChIP. 
Recently, Chandra et al.used H3K27ac HiChIP to map inter-
actions between eQTLs overlapping active cis-regulatory 
elements and their target genes in five immune cell types, 
increasing our understanding the mechanism by which dis-
ease risk variants exert their effects on gene expression, in a 
cell-specific manner [89].

Other studies have successfully used a similar approach to 
link associated variants to their target genes in autoimmune 
diseases. A study targeting all GWAS loci for RA, T1D, PsA 
and JIA (as opposed to capturing gene promoters) in T and B 
cell lines also showed that chromatin interactions can be cell 
type specific [90]. Multiple putative causal genes were iden-
tified, and it was found that some disease-associated SNPs 
do not interact with the nearest gene but with other candidate 
genes that can be situated several megabases away and that 
regions associated with different autoimmune diseases can 
interact with each other and the same promoter. In addition, 
this data proved to be useful in the identification of drugs 
that could be repositioned to treat rheumatic diseases [91].

Other studies have highlighted the importance of non-
immune cell types in autoimmune diseases. For example, 
stromal cells, such as synovial fibroblasts (FLS), play an 
important role in RA, but functional genomics datasets in 
this cell type were lacking. A recent study aimed at charac-
terizing DNA architecture, 3D chromatin interactions, DNA 
accessibility and gene expression in FLS samples from RA 
patients; it was found that FLS account for up to 24% of RA 
heritability and 10% of the RA-associated regions contain 
SNPs located within enhancers that are exclusive to FLS, 
which suggests an additional, independent role of FLS in 
driving the genetic risk of developing RA [92]. The same 
study found that TNF stimulation of FLS alters the organiza-
tion of topologically associating domains, chromatin state 
and the expression of putative RA causal genes such as 
TNFAIP3 and IFNAR1. Therefore, future functional studies 
in non-immune cell types that contribute to the pathogenesis 
of autoimmune diseases will likely advance fine mapping of 
GWAS loci.

These studies and many others [93, 94] exemplify how 
3D chromatin structure can aid the functional interrogation 
of GWAS loci. However, Hi-C methods often lack resolution 

to characterize individual enhancer-promoter interactions at 
sufficient depth since interaction maps are constrained by the 
restriction enzyme used, typically HindIII. This can be only 
partially solved with the use of multiple restriction enzymes 
that digest the genome into smaller fragments, like the strat-
egy used in commercially available kits (Arima Genomics). 
A new analysis method, based on a Bayesian sparse vari-
able selection approach, was developed to fine map chro-
matin contacts [95]. On the other hand, exciting novel tech-
nological advances, such as the development of a new 3C 
technique called Micro-Capture-C, are starting to pave the 
way to increase resolution of chromatin interactions at the 
base-pair level [96]. Although this method cannot be applied 
at the genome wide level yet, it provides an unprecedented 
level of detail about how gene expression is regulated by 
enhancers containing disease-associated variants and will 
facilitate fine mapping of GWAS loci.

Conclusions

In the past decade, advances in large-scale methods for the 
functional characterization of autoimmunity risk loci have 
enabled a deeper understanding of the genetics underlying 
disease. However, the complexity of the regulatory networks 
that are affected by disease variants and the ever increasing 
number of genetic variants to dissect [97] means that further 
work is needed to accelerate clinical translation of genetics 
findings.

In this regard, the high degree of context specificity of 
some disease-associated regulatory elements means that 
bulk chromatin profiling methods may be limited for the 
detection of regulatory elements that are active in very spe-
cific cell types or developmental/stimulatory conditions. 
This challenge will likely be overcome by recently devel-
oped single cell (sc) methods like scATAC-seq [98], scChIP-
seq [99] and scHi-C [100], among others. These methods are 
likely to reveal even more complex layers to the dysregula-
tion of gene expression that characterize complex autoim-
mune diseases and will probably replace bulk assays in the 
future. For example, the single-cell eQTLGen Consortium 
has recently been established to investigate the consequences 
of disease-associated genetic variants in specific immune 
cell types at the gene expression level [101]. Furthermore, 
multi-sector initiatives such as The Accelerating Medicines 
Partnership (AMP) program will advance our knowledge of 
the key cell types that need to be targeted to understand the 
genetic basis of autoimmune disease. Indeed, using single 
cell transcriptomics, distinct cell states that are expanded 
in RA have been identified as part of phase I of the AMP 
program [102].

Functional investigation of GWAS variants using epig-
enomics and 3D chromatin structure is extremely valuable 
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in the generation of hypotheses as to which SNPs within a 
disease locus might be causal, the regulatory mechanism 
they might be disrupting and in which cell or tissue type, 
and their likely causal or target gene/s. These hypotheses 
then need to be experimentally validated. Although still 
somewhat limited by effect size, efficiency and implemen-
tation in disease relevant primary cells, clustered regularly 
interspaced short palindromic repeats (CRISPR)-based 
methods have become the gold standard for the functional 
dissection of GWAS loci in recent years [103]. The use 
of CRISPR-based technologies and massively parallel 
reporter assays (MPRAs) to functionally interpret GWAS 
signals is reviewed extensively elsewhere in this issue of 
Seminars in Immunopathology [104].

Finally, meaningful integration of the vast wealth of 
functional data and knowledge that has been generated 
in the past few years is essential for elucidating biologi-
cal networks that are altered in disease and for fulfilling 
the potential of GWAS for drug development and reposi-
tioning. Initiatives such as Open Targets [105, 106] and 
bioinformatics pipelines like EpiMap [54], IMPACT [55] 
and others [45, 107, 108] provide frameworks to prioritize 
potential targets by integrating GWAS data with genomic 
features, disease ontologies and network connectivity. 
However, data integration still currently remains a chal-
lenge, and further research is needed in this area.

These exciting developments, together with future 
advances and the use of patient-derived biological material 
and electronic health records, will further our understand-
ing of complex autoimmune diseases, assist drug devel-
opment and enable precision medicine, delivering on the 
promise of GWAS for patient benefit.
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