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residues that undergo this disorder-to-order transition are 
called protean residues, generally found in short contiguous 
stretches and the first step in understanding the modus oper-
andi of an IDP/IDPR would be to predict these residues. 
There are a few available methods which predict these pro-
tean segments from their amino acid sequences; however, 
their performance reported in the literature leaves clear 
room for improvement. With this background, the current 
study presents ‘Proteus’, a random forest classifier that pre-
dicts the likelihood of a residue undergoing a disorder-to-
order transition upon binding to a potential partner protein. 
The prediction is based on features that can be calculated 
using the amino acid sequence alone. Proteus compares 
favorably with existing methods predicting twice as many 
true positives as the second best method (55 vs. 27%) with 
a much higher precision on an independent data set. The 
current study also sheds some light on a possible ‘disorder-
to-order’ transitioning consensus, untangled, yet embedded 
in the amino acid sequence of IDPs. Some guidelines have 
also been suggested for proceeding with a real-life struc-
tural modeling involving an IDPR using Proteus.

Keywords  Intrinsic disorder · Protean · Random forest · 
Disorder-to-order transition · Topography length

Introduction

After extensive research over one-and-a-half decades, it is 
evident that many functional proteins lack well-folded 3D 
structures. These intrinsically disordered proteins (IDPs), 
could be completely disordered or contain intrinsically 
disordered protein regions (IDPRs) [1–5]. In contrast to 
the classical view of protein folding [6], where a nascent 
cytoplasmic polypeptide chain folds into a stable globule, 

Abstract  The focus of the computational structural biol-
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one-and-a-half decades from the classical protein structure 
prediction problem to the possible understanding of intrin-
sically disordered proteins (IDP) or proteins containing 
regions of disorder (IDPR). The current interest lies in the 
unraveling of a disorder-to-order transitioning code embed-
ded in the amino acid sequences of IDPs/IDPRs. Disor-
dered proteins are characterized by an enormous amount 
of structural plasticity which makes them promiscuous in 
binding to different partners, multi-functional in cellular 
activity and atypical in folding energy landscapes resem-
bling partially folded molten globules. Also, their involve-
ment in several deadly human diseases (e.g. cancer, car-
diovascular and neurodegenerative diseases) makes them 
attractive drug targets, and important for a biochemical 
understanding of the disease(s). The study of the structural 
ensemble of IDPs is rather difficult, in particular for tran-
sient interactions. When bound to a structured partner, an 
IDPR adapts an ordered conformation in the complex. The 
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concomitantly while being synthesized [7, 8], these pro-
teins are born disordered [3] and remain either completely 
or partially unstructured throughout their entire life span. It 
is only when they interact with functionally relevant bind-
ing partners that they switch to ordered structures [4]. In 
fact, their existence in a biologically active form without 
adapting to a unique 3D-structure contradicts the tradi-
tional notion of the “one protein–one structure–one func-
tion” paradigm [1].

IDPs are highly abundant in nature and have been found 
to be involved in a number of functions within the living 
cell, most of which belong to the non-classic (non-enzyme) 
type [9, 10]. They possess remarkable binding promiscuity 
[4] in a wide range of intermolecular interactions, comple-
menting the functional repertoire of ordered globular pro-
teins, similar to the phenomena of enthalpy—entropy com-
pensation [11]. The promiscuity is primarily manifested in 
their ability to interact specifically with structurally diverse 
molecular partners and obtaining different structures upon 
binding. It is highly likely that these peculiar characteristics 
may be attributed to their non-native-like multi-funneled 
and relatively flat energy landscapes [12, 13], wherein the 
favored conformations closely resemble to the partially 
folded molten globules [13] which also enable them to pre-
serve the necessary amount of disorder even in their bound 
forms [4]. Considering this flexible nature, they have been 
referred to as part of the ‘edge of chaos’ systems [14], serv-
ing as a bridge between well-ordered and chaotic system 
that is critical in the context of cellular energy balance.

In addition to these peculiar biophysical and folding 
attributes, IDPs are also of considerable biomedical inter-
est due to their functional importance. In fact, the functions 
they are involved in (e.g., regulation, signaling, and con-
trol) are mostly the ones that require high specificity–low-
affinity interactions [15]. Recent studies have highlighted 
their multifarious activities as molecular rheostats and 
molecular clocks, in tissue specific and alternative splicing 
of mRNA, transport of rRNA and proteins and RNA-chap-
erons [16]. Also, by sustaining enough disorder even in the 
bound form, IDPs are equipped to participate in both one-
to-many and many-to-one signaling [2]. Their promiscuity 
in binding also suggests that not only misfolding [17], but 
also misidentification or mis-signaling [2] in biomolecular 
recognition could serve as the root cause of some extremely 
complex human diseases [3] including cancer, diabetes, 
amyloidoses, and cardiovascular and neurodegenerative 
diseases [18].

Taken together, there is a great need for a deeper 
understanding of IDPs and their interactors. However, 
since obtaining information about IDPs from experi-
ments is difficult owing to their inherent disorder, com-
putational modeling provides a realistic way forward. 
For most IDPs, only a subset of the disordered residues 

can actually undergo a disorder-to-order transition, upon 
binding to a folded protein, leading to the concept of 
‘folding coupled with binding’ [19]. These segments are 
called protean borrowed from Greek mythology, mean-
ing ‘ever-changeable’ or ‘mutable’ [19]. To model the 3D 
structure of an interacting IDP/IDPR, a first aim would 
be to predict the potential ‘mutable’ protean regions. It 
is important to note that, due to the intrinsic disorder, 
these regions in an isolated X-ray structure are presented 
as ‘missing electron density’ patches (listed in REMARK 
465 in the corresponding PDB file [5]), and should only 
appear structured in their bound forms. This is in fact 
also the definition of a ‘protean’ segment.

Extensive studies have analyzed the sequence space 
of IDPs in relation to their intrinsic disorder. These stud-
ies reveal their correspondence to low entropy sequences 
with less complexity [5, 20]. In particular, tandem repeats 
have often been found to be embedded in these sequences 
(e.g. polyglutamine stretches in amyloid beta [21]) giving 
rise to the notion of ‘the more perfect the less structured’ 
proteins [22]. Thus, in a sense, low sequence entropy can 
potentially lead to high conformational entropy, char-
acteristic of the IDPs. Some mechanistic insights into 
the origin of the disorder have also been suggested, for 
example, the low content of hydrophobic residues with 
an abundance of charged residues in IDPs [23] disfavor-
ing self-folding [24] by potentially decreasing the num-
ber of possible two-body contacts [25]. Furthermore, the 
charge—hydrophobicity boundary have been envisaged 
to represent a trade-off between repulsive and attractive 
interactions reminiscent of globular—disorder transitions 
[26].

Nevertheless, it remains highly challenging to decipher 
the root cause of intrinsic disorder from pure sequence-
based investigation given the limited structural data. Con-
certed efforts have been made to untangle a possible disor-
der code from amino acid sequence alone which includes 
deciphering the propensity for intrinsic disorder [26], and 
proposition of statistical mechanical potentials describing 
sequence-derived elasticity [27]. The nature of the problem 
is ideal for machine learning algorithms given the availabil-
ity of annotated sequence data. In fact, quite a few predic-
tors have recently been developed that predict not only the 
disordered regions [28–32], but also the ‘protean’ segments 
[32–35]. Still, ‘protean prediction’ is in an early stage, 
offering much room for improvement. In this background, 
the current study does not only attempt to shed some light 
on a possible yet unexplored sequence consensus of such 
‘disorder-to-order’ transitions, but also presents ‘Proteus’, 
a random forest classifier that predicts protean segments 
solely from the amino acid sequence of an IDP. Proteus 
compares favorably to the existing predictors. Some guide-
lines have also been suggested on how and where to use 
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Proteus during the course of a real-life structural modeling 
involving an IDPR.

Methods

Training dataset

Two databases containing proteins with annotated pro-
tean segments, IDEAL [19] and MoRF [34] were pulled 
together to build the final training dataset. IDEAL (Intrinsi-
cally Disordered proteins with Extensive Annotations and 
Literature) contains 557 proteins with experimentally veri-
fied protean segments called ‘ProS’ in the database. How-
ever, only 203 of 557 proteins in this database actually con-
tain protean segments. The rest are IDPs where no protean 
segments have yet been experimentally verified and thus 
serve as negative examples in training. The MoRF dataset 
comes from MoRFpred [34], one of the existing classifiers. 
It contains 840 proteins, and all of them have at least one 
protean segment. More importantly, all members of MoRF 
have direct structural evidence from the PDB. Members 
from IDEAL and MoRF will henceforth be referred to as 
‘ProS’ and ‘MoRF’ respectively, and the combined dataset 
as ‘PnM’. The details of all datasets have been enlisted in 
Table 1.

Independent benchmark

Nine proteins that were used as independent benchmark in 
the DISOPRED3 study [32] were used as an independent 
benchmark set here as well. In the DISOPRED3 study 29 
chains having protean segments were initially culled using 
database annotations and publications,  which later had to 
be reduced to nine proteins, as the other 20 chains were 
found to be used in the training datasets of the competing 
methods, ANCHOR [33], MoRFpred [34] or MFSPSSM-
Pred [35]. None of the nine proteins were similar to any 
protein in the current training dataset.

Target function

The binary status for each amino acid residue in the 
sequence to be protean or non-protean was used as the 

target function in training the classifier, denoted by 1 and 0 
respectively, for positive and negative examples. It is to be 
noted that non-protean residues refer to the ordered as well 
as disordered residues which do not undergo the ‘disorder-
to-order transition’ upon binding and hence, remain disor-
dered even in the bound state.

Data clustering and cross‑validation benchmark

To avoid training and testing on similar examples, BLAST-
clust was used to cluster the protein sequences in the com-
bined dataset ‘PnM’. Sequences with a pairwise similarity 
of at least 30% over at least 50% of the sequence length (-S 
30 -L 0.5) were clustered. This resulted in 774 clusters, the 
largest containing 38 proteins, and 253 clusters contain-
ing more than one protein. One-third of all ProS sequences 
were found to be similar to at least one MoRF sequence and 
vice-versa.

To prepare the data for fivefold cross-validation, 
five  folds were built by grouping clusters in such a way 
that the number of target proteins remain consistent among 
the folds. This resulted in four  folds with 280 targets and 
one fold with 279 targets, containing between 158,651 and 
218,870 amino acid residues, and around 1.4–2.2% positive 
examples. During cross-validated training, four of the folds 
are used for training and the remaining one is used for test-
ing. This is repeated five times to make predictions for all 
five folds.

Random forest classifier

The random forest classifier module in scikit-learn Python 
package [36] was used for training. Every decision tree in 
the forest classify examples as positive or negative, and a 
final decision is made according to a majority vote.

Evaluation measures

In binary classification, there are four possible outcomes 
when classifying an example: (i) True Positive (TP): a 
positive example correctly classified as positive; (ii) True 
Negative (TN): a negative example, correctly classified 
as negative; (iii) False Negative (FN): a positive example 
incorrectly classified as negative; and (iv) False Positive 

Table 1   Description of the 
datasets

Dataset Proteins Protean residues Non-protean 
residues

Total residues

ProS 557 6245 356,053 362,298
MoRF 840 10,549 494,264 504,813
ProS + MoRF (PnM) 1397 16,794 850,317 867,111
Validation 9 163 2046 2209
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(FP): a negative example incorrectly classified as positive. 
By counting these four possible outcomes, the following 
evaluation measures were calculated.

Precision (PPV)

Precision, also known as specificity or the Positive Pre-
dicted Value (PPV), measures how many examples clas-
sified as positive were actually positive, calculated by the 
ratio, TP/(TP + FP).

Recall (TPR)

Recall (or coverage) measures how many positive exam-
ples were correctly classified as positives. It is also called 
the ‘True Positive Rate’ (TPR) and calculated by the ratio, 
TP/∑P, where ∑P is the total number of positives, i.e., 
∑P = TP + FN.

F1‑score

F1-score is the harmonic mean between PPV and TPR and 
could be interpreted as a trade-off between PPV and TPR. 
It is defined by the following equation: F1 = 2PPV × TPR/
(PPV + TPR).

Matthews correlation coefficient

Another direct evaluation measure of classification perfor-
mance is the Matthews Correlation Coefficient (MCC) rang-
ing from −1 (perfect inverse prediction) to +1 (perfect pre-
diction) and calculated as: MCC = ((TP × TN) − (FP × FN))/
((TP + FP)(TP + FN)(TN + FP)(TN + FN))1/2. This was 
used in conjugation with the F1-score to estimate the over-
all performance of the predictor.

Tuning training parameters

Decision tree depth

In general the deeper the tree, the more complex patterns it 
can fit. However, this can easily lead to over-fitting. Thus, 
finding an optimal tree depth is important. The maximum 
depth was varied between 1 and 25 (Supplementary Fig. 
S1) and a depth of 13 yielded the highest MCC and F1 
scores.

Number of trees in the forest

Another important parameter is how many decision trees to 
use. In theory, the more trees the better, but there is a satu-
ration in performance, beyond which the increase in perfor-
mance is only marginal. Therefore, it is important to find 

the optimal number of trees to save computational time. As 
can be seen from the Supplementary Fig. S2, 50 decision 
trees yield a reasonable performance, which is only slightly 
increased (by ~5%) using more trees. Therefore, using 50 
trees was considered to be enough for the computation-
ally expensive feature selection part. However, for the final 
selected combination of features, 500 trees were used to 
achieve maximum performance.

Probability cutoff

The classifier needs a user-defined probability cutoff (Pcut) 
above which an example is classified as positive. Pcut was 
varied in the whole range of 0.0–1.0 and based on the per-
formance (Supplementary Fig. S3), was set to 0.5 (major-
ity vote). Therefore, if 50% or more decision trees voted for 
the particular example to be positive, it was classified as 
positive.

Frequency analyses of protean and disordered residues

Amino acid propensity

The propensity (Pr) for a particular amino acid, X to 
occupy a particular ‘class’ (e.g. protean vs. disordered resi-
dues) was calculated as the ratio of two probabilities (P) as: 
Pr(X) = P(X)class/P(X)full = (N(X)class/N(All)full)/(N(X)full/
N(All)full) where ‘full’ stands for the entire training dataset 
and N denotes the raw count of amino acid(s) in the said 
‘class’. A propensity value of 1 represents no preference 
whereas a higher or lower value represent higher or lower 
preference, respectively, of the amino acid to occupy the 
given class with respect to the baseline.

Predicted secondary structural content

PSIPRED [37] was used to predict the secondary structure 
in three classes (H: Helix, E: Strand, C: Coil). For each 
amino acid, the relative fraction of each of the three main 
secondary structural classes (H, E, C) were calculated for 
protean, non-protean, disordered and ordered sequences. 
The aim was to decipher if there was any preference in dis-
order versus order sequences that might have propagated to 
protean segments during the ‘disorder-to-order’ transitions.

Design of the sequence‑driven features

Consideration of local and global effects

The origin of disorder is a conjunction of multiple fac-
tors. Therefore, ideally the contribution of both, the local 
sequence (neighboring effect) and that of the global three-
dimensional fold of the protein should be considered in 
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the design of features. However, it is highly non-trivial to 
take into account the global effect of the overall protein 
fold without actually attempting to build homology models 
for the predicted ‘structured’ regions, in their bound form. 
Incorporating such a modeling pipeline will be computa-
tionally costly and will also have low confidence associated 
with the built models due to the lack of enough structural 
data. One alternative way to indirectly take into account 
the global constraints is to perform a homology search 
against all non-redundant sequences [38] and then con-
vert the sequence into a profile. To this end, PSI-BLAST 
[39] was used to construct sequence profiles. In addition, 
PSIPRED [37] was used to predict secondary structure and 
DISOPRED3 [32] was used to predict disorder probability 
for each amino acid residue. Thus, the plausible global con-
straints were also accounted for in the designed features, at 
least implicitly.

To describe the neighboring environment, a sliding win-
dow of 15-residues centered around the current residue was 
considered in the design of most features. This will produce 
an average property of the feature, taking into account the 

local sequence dependence associated with disorder-to-
order transitions. The size of the window was optimized by 
trying different lengths in the range of 9–21. The optimal 
size agrees with the average length of protean segments 
(Fig. 1).

In total 342 features, in seven different feature groups, 
were used and are described in detail below (Table 2).

Feature group 1: amino acid mutability (features: 1–300)

Considering the influence of the local sequence on disor-
der, it is likely that empirical trends (over and under-rep-
resentations) will be found in the distribution of amino 
acids in protean compared to non-protean regions. In other 
words, certain amino acids might preferentially occur in the 
protean segments but not others. This was represented by 
Position Specific Scoring Matrices (PSSM) constructed by 
running three iteration (−j 3) of PSI-BLAST [39] against 
UniRef90 [38] with an inclusion E-value threshold of 10−3 
(−h 0.001). The PSSM contains scores for each of the 20 
possible amino acid substitutions in each position, repre-
senting the amino acid mutability at any given position. 
The higher the score, the higher the probability of the cor-
responding amino acid to occur at that position. To improve 
convergence, the raw PSSM scores were linearly scaled 
to [0.0, 1.0] based on the maximum and minimum values 
observed for each amino acid in the whole training set. To 
account for the local sequence bias, a 15-residue window of 
the PSSM was used, centered around the current residue, 
giving 300 (15 × 20) features in total for each residue.

Feature group 2: amino acid conservation (feature: 301)

The conservation score is derived by PSI-BLAST [39] from 
the PSSM matrix, and, as the name suggests, conceptually, 
it is complementary to that of ‘mutability’. Numerically, it 
is a modified Shannon Entropy [40] term representative of 
the heterogeneity of amino acid substitutions for a given 
position in the input sequence. Again, to take care of the 
neighboring environment, the conservation score was aver-
aged over a 15-residue window. In contrast to all other fea-
ture groups, this group consists of only a single value.

Feature group 3: amino acid composition (features: 
302–321)

This feature group describes the individual concentration 
of all amino acids, in a 15-residue long window, i.e. 20 fea-
tures in all, representing a coarse-grain estimation of the 
amino acid properties in the local neighborhood around the 
central residue.

Fig. 1   Distribution of size of the ‘annotated’ protean segments. The 
distribution is obtained from the combined ‘PnM’ training dataset

Table 2   A summary of feature groups

Fea-
ture 
group

Name Feature number Count

1 Amino acid mutability 1–300 20 × 15 = 300
2 Amino acid conservation 301 1
3 Amino acid concentration 302–321 20 × 1 = 20
4 Amino acid properties 322–330 4 + 3 + 1 + 1 = 9
5 Predicted secondary 

structure
331–333 3 × 1 = 3

6 Predicted disorder 334–340 3 + 3 + 1 = 7
7 Disorder topography 341–342 1 + 1 = 2
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Feature group 4: amino acid properties (features: 322–
330)

It is natural to believe that the physiochemical properties 
of different amino acids hold the key for developing intrin-
sic disorder and also for the disorder-to-order transitions. In 
contrast to the ‘amino acid composition group’ described 
above, Polarity, Charge, Hydrophobicity and Molecular 
Weight were explicitly described in this feature-group, in a 
15-residue sliding window. Polarity was divided into polar, 
non-polar, acidic-polar or basic-polar, and charge into 
positive, negative, and neutral [41]. Hydrophobicity was 
described using the Kyte Doolittle scale [42]. For each of 
these seven features, the corresponding counts were aver-
aged over the 15-residue window.

Feature group 5: predicted secondary structure (features: 
331–333)

Secondary structural propensities of individual amino acids 
in the close neighborhood of a residue might have major 
influence on disorder and might serve as a discriminative 
feature between protean and non-protean fragments. For 
example, if this likelihood keeps altering between helices 
to sheets along the sequence, the resultant main-chain tra-
jectory would potentially keep wobbling giving rise to an 
unstructured region. The other possibility is of course hav-
ing most residues predicted as ‘random coils’. The prob-
abilities of each amino acid residue in a sequence to form 
one of the three main secondary structures (Helix, Strand, 
Coil) were predicted by PSIPRED [37] and averaged over 
a 15-residue sliding window, serving as three distinct 
features.

Feature group 6: predicted disorder probability (features: 
334–340)

The probability for disorder was predicted using DISO-
PRED3 [32]. The disorder prediction score from DISO-
PRED3 is a confidence estimate (or probability) for a resi-
due in a protein sequence to be disordered. It is defined in 
the range [0, 1] and DISOPRED3 assigns the disordered 
status to a residue if the score is >0.5. The disorder pre-
diction score, averaged over the 15-residue window cen-
tered on the current residue was directly used as the first 
feature in this group. In addition, to describe the local prop-
erties of the disorder prediction, the length of disordered 
and ordered segments and the start and end positions rela-
tive to the total sequence length were also used. In detail, 
if the score was ≥0.5, the positions on either side of the 
current residue where the score drops below 0.5 were iden-
tified. From this, the length, start and stop positions of 
the segment could be calculated. This was performed for 

residues predicted to be disordered (score ≥0.5) and for 
residues predicted to be ordered (score <0.5), resulting in 7 
(1 + 3 + 3) features. Depending on the predicted disorder of 
the segment, three of the seven features will always remain 
zero.

Feature group 7: disorder topography (features: 341–342)

Disorder topography measures the topography of peaks and 
valleys in the predicted disorder score graph (Supplemen-
tary Fig. S4). Each residue is classified as being part of a 
peak (1), valley (−1) or neither (0). A residue is part of a 
peak if on both sides, there exists another residue with a 
score at least 10% lower than the current residue. Likewise, 
a residue is part of a valley if there are residues with disor-
der scores at least 10% higher than the current residue. If 
a residue is neither at a peak nor in a valley it is classified 
as neither. In addition, the length of the current peak- or 
valley- residue is also calculated and used as a separate fea-
ture. Thus, the disorder topography feature consists of the 
peak/valley/neither classification (feature no. 341) and the 
topographic length of the current peak/valley (feature no. 
342).

Results and discussion

Propagation of sequence consensus 
during disorder‑to‑order transitions

Sequence-driven properties such as amino acid propensi-
ties and predicted secondary structural content might serve 
as crucial consensus in the information transfer during the 
‘disorder-to-order’ transition. A comparative study of these 
properties in predicted disordered and annotated protean 
segments will also serve to explore and identify empirical 
trends in the designed features and thereby act as a guide 
in determining the features that are more discriminative 
compared to the features that can act as filters. Taking this 
into account, the referred properties were investigated in 
(i) protean versus non-protean residues and (ii) disordered 
versus ordered residues (as predicted by DISOPRED3 [32]) 
and compared with each other. The aim was to identify any 
pattern that might be responsible for the disorder-to-order 
transitions, implicitly embedded in the protean sequences. 
To that end, we wanted to collect the most discriminating 
trends in the disordered versus ordered regions which were 
either maintained or inverted in the protean versus non-
protean segments. These combined trends should be instru-
mental in both sustaining the intrinsic disorder and also in 
the information transfer during the ‘disorder-to-order’ tran-
sitions. However, since the ‘disorder versus order’ classifi-
cation is clearer and more distinct, it was expected that the 
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trends for ‘disorder versus order’ should be more prominent 
than the ‘protean versus non-protean’ trends.

Amino acids preference in protean and disorder 
residues

The first and most fundamental characteristic investigated 
was the of amino acid propensity in disordered, ordered 
and protean/non-protean residues. The predicted disordered 
regions show drastic under-representations of hydropho-
bic amino acids compared to predicted ordered regions 
(Fig.  2a). Even among the distribution of hydrophobic 
amino acids, there is an unmistakable trend with respect 
to the size of the hydrophobic side-chain. The gradual 
increase in the propensity of the hydrophobic side-chains 
in the predicted ordered regions is found to be directly pro-
portional to their side-chain volume (Ala → Val → Leu → I
le → Phe → Tyr → Trp) (Fig. 2b); whereas in the predicted 
disordered regions, the relationship appears inversely 
proportional. This trend is perfectly consistent with the 
notion of hydrophobic core formation within ordered pro-
tein tertiary structures [43], and on the other hand, bulky 
aromatics (Phe, Tyr, Trp) should be unfavorable in disor-
dered regions, due to their potential incompatibility with 
regard to side-chain volume and entropy. The other notice-
able features include the significant over-representation of 
cysteines in ordered regions with a concomitant under-rep-
resentation in disordered regions, consistent with the idea 
of fold stabilization by disulfide bridges [44], which must 
be avoided during the natural design of intrinsic disorder. 
On the other hand, prolines are significantly over-repre-
sented in disordered compared to ordered regions, which 
is consistent with their ability to break regular secondary 
structures [45], especially helices [46]. Even if found in 

regular secondary structures (β-sheets for example), proline 
needs additional structural constraints from pre-prolines 
(e.g. glycine rescue) to become stabilized [47]. In line with 
these observations, proline has been identified as the most 
disorder promoting amino acid residue [48].

The other well-known residue, responsible for backbone 
flexibility, glycine [45] was also found to be over-repre-
sented in disordered compared to ordered regions. This is 
in accord with the well- established idea that prolines and 
glycines are general indicators of entropic elasticity [27, 
48] and hence control self-organization of elastomeric pro-
teins (e.g., amyloid fibrils) [49]. In fact, recent studies have 
formulated correlation functions of elasticity in terms of 
coiling propensity based on sequences rich in proline and 
glycine in disordered proteins [27, 48].

The other noticeable difference was seen for serine, 
again a small and polar amino acid, significantly over-
represented in disordered and under-represented in ordered 
regions. Indeed, serine-rich proteins in bacterial enzymes 
like kinases [50] and eukaryotic splicing factors [51] have 
been reported to be part of intrinsically disordered pro-
teins. The other polar (Thr, Asn, Gln) and charged (Asp, 
Glu, Lys, Arg) amino acids were found to have similar 
or slightly higher propensities in disordered compared 
to ordered sequences, which agrees well with the earlier 
observations [47, 48].

But as mentioned earlier, the focus of the current work 
was to identify patterns that were not only discrimina-
tive in disorder versus order sequences but were also 
maintained in protean versus non-protean sequences 
and therefore might help in establishing a crucial con-
sensus in the understanding of disorder-to-order transi-
tions. However, as expected, the patterns in protean ver-
sus non-protean sequences were not as prominent as in 

Fig. 2   Amino acid propensities in the predicted A disordered versus 
B ordered regions. The black horizontal line (propensity = 1.0) serves 
as the baseline; meaning no preferential occurrence of the said amino 

acid in the said class. A propensity greater or lesser than 1.0 repre-
sents over and under representations respectively
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disordered versus ordered sequences (Fig. 3). The collec-
tion of all non-ProS plus non-MoRF sequences served as 
the ‘non-protean’ baseline which raised a value of ~1.00 
(±0.01) for the baseline propensities of all amino acids 
(Fig.  3b). This was not surprising since the bulk major-
ity of the training dataset contained negative examples 
(non-protean sequences). Similar to amino acid propensi-
ties obtained for the ordered regions, all large hydropho-
bic residues (Leu, Ile, Phe, Tyr, Trp) were found to be 
over-represented in the protean segments (Fig.  3a) and 
drastically under-represented in the disordered regions 
(Fig.  2a). This inversion in trends from disordered to 
protean segments is rather interesting since the protean 
segments are merely subsets of the originally disordered 
regions. It strongly indicates that the potential to get 
ordered by mediating enough hydrophobic interactions is 
in fact implicitly embedded in the protean sequences, just 
like that of globular proteins, but masked by neighboring 
or flanking disordered residues in their unbound forms.

At the same time, the charged residues (Glu, Asp, Lys, 
Arg) also acquired much larger propensities compared to 
what they had in disordered sequences, and also notice-
ably higher propensities compared to ordered sequences in 
general (Figs. 2b, 3a). The results clearly indicate that both 
large, hydrophobic and charged residues are preferentially 
selected during the ‘disorder-to-order’ transitions (via bind-
ing). In other words, not all disordered regions undergo the 
same transition; rather, there is a preferential selection of 
sequences containing large hydrophobic and charged resi-
dues leading to stabilization through hydrophobic and salt-
bridge interactions at the protein–protein interface. This is 
in accord with the general notion of stability upon binding 
in protein–protein interfaces where both shape and electro-
static complementaries are crucial for binding [52, 53].

Finally, as for disorder residues, cysteines are clearly 
under-represented in protean residues as well, reflecting the 
fact that the stability of protean residues should not involve 
disulfide bridges (at the cost of massive loss of plasticity). 
However, in contrast to disordered residues, both proline 
and glycine are under-represented in protean residues, indi-
cating that these residues do not undergo disorder-to-order 
transition; instead, they remain disordered.

Secondary structure preference in protean 
and disordered residues

It is also important to conceptualize the secondary struc-
tural trends during the course of disorder-to-order transi-
tions. The relative content of coil (C), including loops and 
turns is higher than helix (H) and strands (E) in all classes 
of sequences ranging from disorder to order and from pro-
tean to non-protean. But when comparing between two 
opposite class (e.g. disordered vs. ordered), it is the rela-
tive increment in (H + E)/C that is of interest. On that note, 
ordered sequences naturally have far greater regular sec-
ondary structures (H + E) amounting to ~50% of the whole 
population than disordered sequences (H + E: ~15%; C: 
~85%) (Fig.  4). As expected, the relatively low propor-
tion (~15%) of helices and strands in disordered residues 
definitely increases the disorder-to-order transitions in pro-
tean segments (H + E:~40%), which is roughly the same 
as in non-protean sequences (Fig. 5). Recall that the large 
majority of the non-protean sequences are in fact the usual 
ordered sequences and the subset of disordered sequences 
that gets ordered only constitute a small (leftover) fraction. 
Among the regular secondary structures, helices appear 
to be more prevalent in protean (~32%) than non-protean 
segments (~27%) whereas beta-strands seem to be slightly 

Fig. 3   Amino acid propensities in the annotated A protean versus B 
non-protean segments. The black horizontal line (propensity = 1.0) 
serves as the baseline; meaning no preferential occurrence of the said 

amino acid in the said class. A propensity greater and lesser or 1.0 
represents over and under representations respectively
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more preferred in non-protean (~10%) compared to protean 
segments (~5%).

Indecisiveness in adapting a particular secondary 
structure class from sequence

Another property investigated based on secondary structure 
is the indecisiveness of an amino acid sequence in adapt-
ing a particular secondary structure. The assumption was 
that protean segments, when disordered in isolation, might 
be indecisive in their choice to adapt a particular secondary 
structure (H, E or C) along the main-chain trajectory and 
thereby end up being unstructured. Given the current lack 
of structural data for these sequences, PSIPRED [37] was 
used to predict secondary structure and to test the above 
hypothesis. A measure for the indecisiveness or random-
ness in secondary structure prediction called Altscore was 

defined as the average number of transitions (H → C, C → E 
etc.) for each protean and non-protean segment. Regions 
with an Altscore value of ‘zero’ were omitted for both pro-
tean and non-protean regions, since they would only add 
noise to any potential signal. Focusing on the regions with 
Altscore >0, the frequency distribution (Fig. 6) clearly dis-
criminated between protean and non-protean classes with a 
wider spread being obtained for the protean class in addi-
tion to a peak-shift towards higher values (0.1 compared to 
0.05 for non-protean). The results indicate that the intrin-
sic disorder associated with the unbound protean segments 
potentially suffers from the indecisiveness of the main-
chain trajectory to adapt a particular secondary structure.

Both the above observations, (i) the reappearance of 
large hydrophobic and charged amino acids into the pro-
tean segments, as well as (ii) the indecisiveness associ-
ated with their predicted secondary structures should serve 

Fig. 4   Secondary structural probabilities in the predicted A disordered versus B ordered regions. H, E and C stands for α-Helix, β-strand and 
random coil (non-helix, non-strand) respectively

Fig. 5   Secondary structural probabilities in the originally classified A protean versus B non-protean segments. H, E and C stands for α-Helix, 
β-strand and random coil (non-helix, non-strand) respectively
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constructively in unraveling a hidden consensus in promot-
ing disorder-to-order transitions.

Training a classifier to predict protean residues

To be able to predict protean residues from sequence, a ran-
dom forest classifier was trained on the features described 
in the “Methods” section. Most features were calculated 
using a 15-residue sliding  window, optimized by trying 
different window sizes in the range of 9–21 (Supplemen-
tary Fig. S5). The chosen window size was optimal in the 
sense that it fell right at the center of the distribution of 
the protean segment-lengths (Fig.  1). An identical sliding 
window size was also used to determine protein-binding 
residues embedded within disordered regions previously 
[32]. Note that for all feature groups except Feature Group 
1 (Amino Acid Mutability), the number of features will 
remain the same even with a different window size. Among 
all features, some features might be non-informative, oth-
ers might be redundant. Indeed, some features are similar 
in their physiochemical descriptions and therefore might 
be excluded without loss in performance. But sometimes 
it is advantageous for the classifier to learn from explicit 
rather than implicit features. To find the best combination 
of the seven feature groups, all 127 possible combinations 
were exhaustively examined by measuring the final cross-
validated performance using MCC and F1-scores for each 
feature group combination.

The 20 best feature group combinations according 
to the MCC and F1-scores have been shown in Supple-
mentary Figs. S6 and S7 respectively. The difference is 
small between the top feature group combinations. Also, 
the top-combinations as evaluated by MCC and F1 are 

not identical, whereas, using all features resulted in good 
scores being attained in both evaluations. Therefore, the 
combination of all feature groups was chosen judiciously. 
The absolute MCC and F1 score values are relatively 
small (~0.13), owing to a large number of false positives 
and negatives. However, the magnitude of the scores are 
comparable to other studies [32–35], and reflect the dif-
ficulty of predicting residues that will be ordered upon 
binding, from information in one of the binding partners 
only. This is further illustrated in the recall versus preci-
sion (PPV) curves for the best combination (Fig. 7). The 
recall versus precision curves were constructed by vary-
ing the cutoff (Pcut) and calculating precision and recall 

Fig. 6   Indecisiveness in adapt-
ing a particular secondary struc-
ture for the originally classified 
protean versus non-protean seg-
ments. Probability Distributions 
of the Altscore (see text) have 
been drawn for both sets. Seg-
ments assigned as purely ‘Coil’ 
were excluded from both sets

Fig. 7   Recall versus precision curves to analyze the cross-validated 
performance of Proteus. AUC denotes Area Under the Curve. The 
dashed line (- -) with a slope of 1.0 represents the random baseline
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for each cutoff. The random base line precision is 1.9% 
and the curve for the best combination is clearly above 
that. It can also be seen that 500 trees perform slightly 
better than 50. But the question remains whether the 
rather modest 10% precision at 23% recall (Pcut > 0.5) is 
useful at all. Considering that it is still five times bet-
ter than a random prediction, it is arguably useful given 
the state-of-the-art. But there is of course plenty of 
room for improvement which might be brought about in 
future studies by incorporating additional information 
not directly obtainable from the sequence alone. In prin-
ciple, one might perform structure prediction with these 
sequences, and, during the course, filter out residues that 
are actually ordered by themselves; and also predict the 
surrounding residues. The predicted and demarcated 
structural units can also be used as starting templates 
in molecular dynamic simulations or docking studies 
exploring a reduced conformational space. In addition, 
advanced structural validation tools [54–56] could also 
be incorporated as filters in an iterative prediction pipe-
line to improve the sequence-based prediction.

Relative importance of features

In an effort to learn what features contributed to the over-
all prediction, the relative importance of each feature 
group as calculated by the random forest prediction mod-
ule was used. To take account of the inherent randomness 
associated with the classifications, this relative impor-
tance was averaged over predictions of 500 decision 
trees. As we can see, there are three features that stand 
out above the rest (Fig.  8): Topographic length (group 
6) is by far the most important feature and describes 
the length of the topographic region where the current 
residue is located. Interestingly, the second most impor-
tant feature is also a length descriptor, namely the more 
coarse-grained length of the ordered region correspond-
ing to the current residue (group 5). Note that this feature 
will be ‘zero’ for all residues predicted to be disordered. 

The third most important feature is the predicted disorder 
score averaged over the current window size (group 5).

The other seven features in the top ten were the fol-
lowing. Rank 4: the relative distance to the ordered resi-
due before the current one (group 6), rank 5: length of the 
disordered region the current residue resides in (group 6), 
rank 6: the topography score (group 7), rank 7: probabil-
ity of the current residue to form a coil (group 5), rank 8: 
probability of the current residue to form a helix (group 
5), rank 9: the relative distance to the ordered residue 
after the current one (group 6), and rank 10: charge-neu-
trality of the current amino acid (group 4).

True positive enrichment by analyzing the Proteus score

A common test of machine learning predictors is to ana-
lyze the true positive enrichment by constructing score 
plots, which is more detailed compared to recall versus 
precision curves. Score plots are conventionally defined 
as the overlay of two independent evaluation measures, 
Positive Predicted Value (PPV) and recall (true posi-
tive rate) as two distinct functions of the predicted Pro-
teus score. Ideally, both the PPV and recall should be 
high but there is a conflict in finding as many true posi-
tives as possible (high recall) and at the same time hav-
ing a high PPV (few false positives). In reality there will 
always be at a trade-off between the two, which is also 
the main reason to use the combined measure F1. In the 
current case (Fig.  9a), F1 peaks at around the score of 
0.5, which is also the cutoff chosen for positive prediction 
in the final predictor (Pcut = 0.5); corresponding to 10% 
PPV and 23% recall as discussed above. It can be noted 
that after that point the PPV increases quite rapidly; and 
scores >0.7 have PPV >40%. Unfortunately there are 
rather few examples that obtain this high score resulting 
in a rather modest recall overall. Still, if the score is high 
we can certainly trust it to be a relatively accurate predic-
tion. This is also reflected by analyzing the distribution 
of scores for protean and non-protean residues (Fig. 9b), 
where the score was found to be much higher for pre-
dicted protean than non-protean  residues with median 
values of 0.4 and 0.24 respectively, and with roughly 
equivalent median absolute deviations. It can also be seen 
that there are quite a large number of high scoring out-
liers in the non-protean residues. These might of course 
be completely wrong, but there is also a possibility that 
these predictions are actually sites for yet unknown inter-
actions. Since the study of transient interaction is diffi-
cult, and the focus of the structural biology community 
so far has been on stable interactions that can even form 
crystals. There is still a lot more to be discovered if the 
dynamics is also taken into account.

Fig. 8   Relative feature importance. The top ten features contributing 
most to the prediction in the random forest features
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Benchmark on independent data set

In any machine learning scheme it is an advantage if the 
final classifier can benchmarked on independent data, and 
against other classifiers. In the recent DISOPRED3 paper 
[32] the upgraded DISOPRED version was benchmarked 
with ANCHOR [33] MoRFpred [34], MFSPSSMpred 
[35], and DISOPRED3 [32] using a set of 2209 resi-
dues out of which 163 were protean (i.e., positive exam-
ples) from nine proteins (see “Methods” section). None 
of the examples in the independent set were similar to 
any example used in training Proteus, thus before clas-
sifying, Proteus was retrained on the full non-cross vali-
dated training set. The predictions for the other methods 
were generously made available by the authors of DISO-
PRED3 through the following link: http://bioinfadmin.
cs.ucl.ac.uk/downloads/DISOPRED/suppl_data/. The 
evaluation measures precision, recall, F1, and MCC were 

calculated for all methods using the binary classification 
of each method (Fig. 10) and compared among them, as 
recall versus precision curves using the raw scores from 
each method (Supplementary Fig. S8). Overall, Proteus 
is better in all measures. Proteus has the highest preci-
sion (0.26 compared to 0.22 for DISOPRED3, the second 
best), for a much larger recall (0.56 compared to 0.28 by 
ANCHOR, the next best). This combined improvement 
in both precision and recall is also naturally reflected 
in a concomitant increase in the F1-score (0.35 com-
pared to 0.18 by DISOPRED3, the next best). It also 
attained a higher MCC value than the other methods 
(0.30 compared to 0.13 by DISOPRED3). Even though 
the independent set is small, the high recall is particu-
larly encouraging if Proteus is to be used as an initial step 
before implementing more elaborate approaches (as dis-
cussed earlier). It is crucial not to miss any true positives 
at an early stage.

Fig. 9   Analysis of Proteus score for the cross-validated predictions. 
a Proteus score versus PPV (solid, blue), recall (dashed, red), and F1 
(dotted, orange) for the cross-validated predictions. b Box plots show-

ing the distribution of predicted Proteus scores for protean and non-
protean residues. The median of the two distributions is shown by the 
horizontal red line in the middle of the two boxes

Fig. 10   Comparison of Proteus 
with other classifiers using the 
standard evaluation measures. 
All methods were tested on the 
same validation set of nine pro-
teins containing 2209 residues 
(total number of examples) 
with 163 protean (positive 
examples). Precision, Recall, 
F1-score and MCC tabulated for 
each method. Proteus predicts 
twice as many true positives 
as the second best method (55 
vs. 27%) with a much higher 
precision

http://bioinfadmin.cs.ucl.ac.uk/downloads/DISOPRED/suppl_data/
http://bioinfadmin.cs.ucl.ac.uk/downloads/DISOPRED/suppl_data/


465J Comput Aided Mol Des (2017) 31:453–466	

1 3

Conclusions

With the realization that protein disorder is involved in a 
range of human diseases, including cancer, cardiovascular 
and neurodegenerative diseases, it is important to com-
pile more and more structural information for these pro-
teins to understand their modus operandi. A first step in 
this direction is the classification and prediction of protean 
segments. The literature shows that there is indeed much 
room for improvement for the existing predictors [32]. Pro-
teus seems to perform better than the existing predictors on 
the available independent dataset. Of course this has to be 
re-evaluated when more data becomes available. It is also 
possible to combine different individual methods to build 
hybrid methods to increase the performance even further. 
Given the current state-of-the-art, the predicted ‘protean’ 
segments should be considered ‘potential’ binding sites 
for proteins in general, whereas, for a specific interaction 
with known partners, the predicted segments should serve 
as ‘different’ starting points for model building. The built 
models then need to undergo stringent validation filters 
in an iterative cycle for screening and selection. It is also 
important to conceptualize the multiple sequence driven 
factors and realize that it is their complex coordination 
which holds the key consensus in promoting the ‘disorder-
to-order’ transitions. The consensus is yet untangled and 
needs other exclusive studies to eventually be resolved, 
however, the current work explores certain empirically 
observed trends which appears to be instrumental in the 
transition from disorder to order. These factors include the 
reappearance of large hydrophobic and charged amino acids 
in the protean segments, which are significantly under-rep-
resented in the originally ‘disordered’ regions. The study 
also reflects that there is an inherent indecisiveness to adapt 
to a specific secondary structure (helices, strands or loops) 
associated with the protean segments. In other words, the 
protean segments remain indecisive in their choice to adapt 
a particular secondary structure. This is consistent with the 
notion of sustaining enough ‘disorder’ even in the bound 
form [4] which potentially helps the proteins to sustain 
their binding promiscuity. To conclude, the study has both 
a basic and an applied content, both of which should serve 
the IDP as well as the broad biological community.

Acknowledgements  This work was supported by grants from the 
Swedish Research Council (VR-NT 2012-5270), the Swedish e-Sci-
ence Research Center (SeRC) and the Department of Science and 
Technology – Science and Engineering Research Board, India (DST-
SERB research grant PDF/2015/001079). Computational resources 
were provided by the Swedish National Infrastructure for Computing 
(SNIC) at the National Supercomputing Center (NSC) in Linköping, 
Sweden and DST-SERB, India.

Open Access  This article is distributed under the terms of the 
Creative Commons Attribution 4.0 International License (http://

creativecommons.org/licenses/by/4.0/), which permits unrestricted 
use, distribution, and reproduction in any medium, provided you give 
appropriate credit to the original author(s) and the source, provide a 
link to the Creative Commons license, and indicate if changes were 
made.

References

	 1.	 Wright PE, Dyson HJ (1999) Intrinsically unstructured proteins: 
re-assessing the protein structure-function paradigm. J Mol Biol 
293:321–331. doi:10.1006/jmbi.1999.3110

	 2.	 Dunker AK, Garner E, Guilliot S, Romero P, Albrecht K, Hart 
J et  al (1998) Protein disorder and the evolution of molecular 
recognition: theory, predictions and observations. Pac Symp Bio-
comput. Pac Symp Biocomput 3:473–484

	 3.	 Kulkarni P, Rajagopalan K, Yeater D, Getzenberg RH (2011) 
Protein folding and the order/disorder paradox. J Cell Biochem 
112:1949–1952. doi:10.1002/jcb.23115

	 4.	 Uversky VN (2013) Unusual biophysics of intrinsically dis-
ordered proteins. Biochim Biophys Acta 1834:932–951. 
doi:10.1016/j.bbapap.2012.12.008

	 5.	 Baruah A, Rani P, Biswas P (2015) Conformational entropy of 
intrinsically disordered proteins from amino acid triads. Sci Rep. 
doi:10.1038/srep11740

	 6.	 Anfinsen CB (1973) Principles that govern the folding of protein 
chains. Science 181:223–230

	 7.	 Harding HP, Zhang Y, Ron D (1999) Protein translation and fold-
ing are coupled by an endoplasmic-reticulum-resident kinase. 
Nature 397:271–274. doi:10.1038/16729

	 8.	 Pestova TV, Hellen CUT (2003) Coupled folding dur-
ing translation initiation. Cell 115:650–652. doi:10.1016/
S0092-8674(03)00981-4

	 9.	 Lau AY, Chasman DI (2004) Functional classification of proteins 
and protein variants. Proc Natl Acad Sci USA 101:6576–6581. 
doi:10.1073/pnas.0305043101

	10.	 Brun C, Chevenet F, Martin D, Wojcik J, Guénoche A, Jacq B 
(2004) Functional classification of proteins for the prediction 
of cellular function from a protein-protein interaction network. 
Genome Biol 5:R6

	11.	 Starikov EB, Norden B (2012) Entropy-enthalpy compensa-
tion as a fundamental concept and analysis tool for systematical 
experimental data. Chem Phys Lett 538:118–120. doi:10.1016/j.
cplett.2012.04.028

	12.	 Fisher CK, Stultz CM (2011) Constructing ensembles for intrin-
sically disordered proteins. Curr Opin Struct Biol 21:426–431. 
doi:10.1016/j.sbi.2011.04.001

	13.	 Chebaro Y, Ballard AJ, Chakraborty D, Wales DJ (2015) 
Intrinsically disordered energy landscapes. Sci Rep 5:10386. 
doi:10.1038/srep10386

	14.	 Baranger M (2000) Chaos, complexity, and entropy. New Eng-
land Complex Systems Institute, Cambridge

	15.	 Multitude of binding modes attainable by intrinsically disor-
dered proteins: a portrait gallery of disorder-based complexes - 
Chemical Society Reviews (RSC Publishing). Accessed 7 May 
2016. http://pubs.rsc.org/en/content/articlelanding/2011/cs/
c0cs00057d#!divAbstract

	16.	 Wright PE, Dyson HJ (2015) Intrinsically disordered proteins in 
cellular signalling and regulation. Nat Rev Mol Cell Biol 16:18–
29. doi:10.1038/nrm3920

	17.	 Uversky VN (2011) Intrinsically disordered proteins may escape 
unwanted interactions via functional misfolding. Biochim Bio-
phys Acta 1814:693–712. doi:10.1016/j.bbapap.2011.03.010

	18.	 Uversky VN, Oldfield CJ, Dunker AK (2008) Intrinsically 
disordered proteins in human diseases: introducing the D2 

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1006/jmbi.1999.3110
http://dx.doi.org/10.1002/jcb.23115
http://dx.doi.org/10.1016/j.bbapap.2012.12.008
http://dx.doi.org/10.1038/srep11740
http://dx.doi.org/10.1038/16729
http://dx.doi.org/10.1016/S0092-8674(03)00981-4
http://dx.doi.org/10.1016/S0092-8674(03)00981-4
http://dx.doi.org/10.1073/pnas.0305043101
http://dx.doi.org/10.1016/j.cplett.2012.04.028
http://dx.doi.org/10.1016/j.cplett.2012.04.028
http://dx.doi.org/10.1016/j.sbi.2011.04.001
http://dx.doi.org/10.1038/srep10386
http://pubs.rsc.org/en/content/articlelanding/2011/cs/c0cs00057d#!divAbstract
http://pubs.rsc.org/en/content/articlelanding/2011/cs/c0cs00057d#!divAbstract
http://dx.doi.org/10.1038/nrm3920
http://dx.doi.org/10.1016/j.bbapap.2011.03.010


466	 J Comput Aided Mol Des (2017) 31:453–466

1 3

concept. Annu Rev Biophys 37:215–246. doi:10.1146/annurev.
biophys.37.032807.125924

	19.	 Fukuchi S, Sakamoto S, Nobe Y, Murakami SD, Amemiya T, 
Hosoda K et al (2012) IDEAL: intrinsically disordered proteins 
with extensive annotations and literature. Nucleic Acids Res 
40:D507–D511. doi:10.1093/nar/gkr884

	20.	 Romero P, Obradovic Z, Li X, Garner EC, Brown CJ, Dunker 
AK (2001) Sequence complexity of disordered protein. Proteins 
42:38–48

	21.	 Chen S, Berthelier V, Hamilton JB, O’Nuallain B, Wetzel R 
(2002) Amyloid-like features of polyglutamine aggregates and 
their assembly kinetics. BioChemistry 41:7391–7399

	22.	 Jorda J, Xue B, Uversky VN, Kajava AV (2010) Protein tandem 
repeats: the more perfect the less structured. Febs J 277:2673–
2682. doi:10.1111/j.1742-464X.2010.07684.x

	23.	 Mao AH, Crick SL, Vitalis A, Chicoine CL, Pappu RV (2010) 
Net charge per residue modulates conformational ensembles 
of intrinsically disordered proteins. Proc Natl Acad Sci USA 
107:8183–8188. doi:10.1073/pnas.0911107107

	24.	 Uversky VN, Gillespie JR, Fink AL (2000) Why are “natively 
unfolded” proteins unstructured under physiologic conditions? 
Proteins 41:415–427

	25.	 Schlessinger A, Punta M, Rost B (2007) Natively unstructured 
regions in proteins identified from contact predictions. Bioin-
forma Oxf Engl 23:2376–2384. doi:10.1093/bioinformatics/
btm349

	26.	 Baruah A, Biswas P (2016) Globular–disorder transition in pro-
teins: a compromise between hydrophobic and electrostatic inter-
actions?. Phys Chem Chem Phys 18:23207–23214. doi:10.1039/
C6CP03185D

	27.	 Cheng S, Cetinkaya M, Gräter F (2010) How sequence deter-
mines elasticity of disordered proteins. Biophys J 99:3863–3869. 
doi:10.1016/j.bpj.2010.10.011

	28.	 Linding R, Jensen LJ, Diella F, Bork P, Gibson TJ, Russell 
RB (2003) Protein disorder prediction: implications for struc-
tural proteomics. Structure 11:1453–1459. doi:10.1016/j.
str.2003.10.002

	29.	 Dosztányi Z, Csizmok V, Tompa P, Simon I (2005) IUPred: web 
server for the prediction of intrinsically unstructured regions 
of proteins based on estimated energy content. Bioinformatics 
21:3433–3434. doi:10.1093/bioinformatics/bti541

	30.	 Peng K, Radivojac P, Vucetic S, Dunker AK, Obradovic Z 
(2006) Length-dependent prediction of protein intrinsic disorder. 
BMC Bioinform 7:208. doi:10.1186/1471-2105-7-208

	31.	 Shimizu K, Hirose S, Noguchi T (2007) POODLE-S: web appli-
cation for predicting protein disorder by using physicochemi-
cal features and reduced amino acid set of a position-specific 
scoring matrix. Bioinformatics 23:2337–2338. doi:10.1093/
bioinformatics/btm330

	32.	 Jones DT, Cozzetto D (2015) DISOPRED3: precise disordered 
region predictions with annotated protein-binding activity. Bio-
inform Oxf Engl 31:857–863. doi:10.1093/bioinformatics/
btu744

	33.	 Mészáros B, Simon I, Dosztányi Z (2009) Prediction of pro-
tein binding regions in disordered proteins. PLOS Comput Biol 
5:e1000376. doi:10.1371/journal.pcbi.1000376

	34.	 Disfani FM, Hsu W-L, Mizianty MJ, Oldfield CJ, Xue B, Dunker 
AK et al (2012) MoRFpred, a computational tool for sequence-
based prediction and characterization of short disorder-to-order 
transitioning binding regions in proteins. Bioinformatics 28:i75–
i83. doi:10.1093/bioinformatics/bts209

	35.	 Fang C, Noguchi T, Tominaga D, Yamana H (2013) MFSPSSM-
pred: identifying short disorder-to-order binding regions in dis-
ordered proteins based on contextual local evolutionary conser-
vation. BMC Bioinform 14:300. doi:10.1186/1471-2105-14-300

	36.	 Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, 
Grisel O et al (2011) Scikit-learn: machine learning in Python. J 
Mach Learn Res 12:2825–2830

	37.	 Jones DT (1999) Protein secondary structure prediction based 
on position-specific scoring matrices. J Mol Biol 292:195–202. 
doi:10.1006/jmbi.1999.3091

	38.	 Suzek BE, Huang H, McGarvey P, Mazumder R, Wu CH 
(2007) UniRef: comprehensive and non-redundant UniProt ref-
erence clusters. Bioinformatics 23:1282–1288. doi:10.1093/
bioinformatics/btm098

	39.	 Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, 
Miller W et  al (1997) Gapped Blast and PsiBlast: a new gen-
eration of protein database search programs. Nucleic Acids Res 
25:3389–3402

	40.	 Shannon CE (1948) A mathematical theory of communication. 
Bell Syst Tech J 27:379–423. doi:10.1002/j.1538-7305.1948.
tb01338.x

	41.	 Cooper GM (2000) The cell, 2nd  edn. Sinauer Associates, 
Sunderland

	42.	 Kyte J, Doolittle RF (1982) A simple method for displaying the 
hydropathic character of a protein. J Mol Biol 157:105–132. 
doi:10.1016/0022-2836(82)90515-0

	43.	 Munson M, Balasubramanian S, Fleming KG, Nagi AD, O’Brien 
R, Sturtevant JM et al (1996) What makes a protein a protein? 
Hydrophobic core designs that specify stability and structural 
properties. Protein Sci Publ Protein Soc 5:1584–1593

	44.	 Betz SF (1993) Disulfide bonds and the stability of globular pro-
teins. Protein Sci Publ Protein Soc 2:1551–1558

	45.	 Chou PY, Fasman GD (1978) Empirical predictions of protein 
conformation. Annu Rev Biochem 47:251–276. doi:10.1146/
annurev.bi.47.070178.001343

	46.	 Visiers I, Braunheim BB, Weinstein H (2000) Prokink: a proto-
col for numerical evaluation of helix distortions by proline. Pro-
tein Eng 13:603–606. doi:10.1093/protein/13.9.603

	47.	 Das M, Basu G (2012) Glycine rescue of β-sheets from cis-Pro-
line. J Am Chem Soc 134:16536–16539. doi:10.1021/ja308110t

	48.	 Theillet F-X, Kalmar L, Tompa P, Han K-H, Selenko P, Dunker 
AK et al (2013) The alphabet of intrinsic disorder. Intrinsically 
Disord Proteins 1:e24360. doi:10.4161/idp.24360

	49.	 Rauscher S, Baud S, Miao M, Keeley FW, Pomès R (1993) Pro-
line and glycine control protein self-organization into elasto-
meric or amyloid fibrils. Struct Lond Engl 2006;14:1667–1676. 
doi:10.1016/j.str.2006.09.008

	50.	 Singh G (2015) Association between intrinsic disorder and ser-
ine/threonine phosphorylation in Mycobacterium tuberculosis. 
FASEB J 29:563.4

	51.	 Haynes C, Iakoucheva LM (2006) Serine/arginine-rich splic-
ing factors belong to a class of intrinsically disordered proteins. 
Nucleic Acids Res 34:305–312. doi:10.1093/nar/gkj424

	52.	 Basu S, Bhattacharyya D, Wallner B (2014) SARAMAint: the 
complementarity plot for protein–protein interface. J Bioinform 
Intell Control 3:309–314. doi:10.1166/jbic.2014.1103

	53.	 Basu S, Wallner B (2016) Finding correct protein–protein dock-
ing models using ProQDock. Bioinformatics 32:i262–i270. 
doi:10.1093/bioinformatics/btw257

	54.	 Basu S, Bhattacharyya D, Banerjee R (2014) Applications of 
complementarity plot in error detection and structure validation 
of proteins. Indian J Biochem Biophys 51:188–200

	55.	 Uziela K, Shu N, Wallner B, Elofsson A (2016) ProQ3: improved 
model quality assessments using Rosetta energy terms. Sci Rep 
6:33509. doi:10.1038/srep33509

	56.	 Uziela K, Menéndez Hurtado D, Shu N, Wallner B, Elofsson 
A (2017) ProQ3D: improved model quality assessments using 
deep learning. Bioinform Oxf Engl. doi:10.1093/bioinformatics/
btw819

http://dx.doi.org/10.1146/annurev.biophys.37.032807.125924
http://dx.doi.org/10.1146/annurev.biophys.37.032807.125924
http://dx.doi.org/10.1093/nar/gkr884
http://dx.doi.org/10.1111/j.1742-464X.2010.07684.x
http://dx.doi.org/10.1073/pnas.0911107107
http://dx.doi.org/10.1093/bioinformatics/btm349
http://dx.doi.org/10.1093/bioinformatics/btm349
http://dx.doi.org/10.1039/C6CP03185D
http://dx.doi.org/10.1039/C6CP03185D
http://dx.doi.org/10.1016/j.bpj.2010.10.011
http://dx.doi.org/10.1016/j.str.2003.10.002
http://dx.doi.org/10.1016/j.str.2003.10.002
http://dx.doi.org/10.1093/bioinformatics/bti541
http://dx.doi.org/10.1186/1471-2105-7-208
http://dx.doi.org/10.1093/bioinformatics/btm330
http://dx.doi.org/10.1093/bioinformatics/btm330
http://dx.doi.org/10.1093/bioinformatics/btu744
http://dx.doi.org/10.1093/bioinformatics/btu744
http://dx.doi.org/10.1371/journal.pcbi.1000376
http://dx.doi.org/10.1093/bioinformatics/bts209
http://dx.doi.org/10.1186/1471-2105-14-300
http://dx.doi.org/10.1006/jmbi.1999.3091
http://dx.doi.org/10.1093/bioinformatics/btm098
http://dx.doi.org/10.1093/bioinformatics/btm098
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://dx.doi.org/10.1016/0022-2836(82)90515-0
http://dx.doi.org/10.1146/annurev.bi.47.070178.001343
http://dx.doi.org/10.1146/annurev.bi.47.070178.001343
http://dx.doi.org/10.1093/protein/13.9.603
http://dx.doi.org/10.1021/ja308110t
http://dx.doi.org/10.4161/idp.24360
http://dx.doi.org/10.1016/j.str.2006.09.008
http://dx.doi.org/10.1093/nar/gkj424
http://dx.doi.org/10.1166/jbic.2014.1103
http://dx.doi.org/10.1093/bioinformatics/btw257
http://dx.doi.org/10.1038/srep33509
http://dx.doi.org/10.1093/bioinformatics/btw819
http://dx.doi.org/10.1093/bioinformatics/btw819

	Proteus: a random forest classifier to predict disorder-to-order transitioning binding regions in intrinsically disordered proteins
	Abstract 
	Introduction
	Methods
	Training dataset
	Independent benchmark
	Target function
	Data clustering and cross-validation benchmark
	Random forest classifier
	Evaluation measures
	Precision (PPV)
	Recall (TPR)
	F1-score
	Matthews correlation coefficient

	Tuning training parameters
	Decision tree depth
	Number of trees in the forest
	Probability cutoff

	Frequency analyses of protean and disordered residues
	Amino acid propensity
	Predicted secondary structural content

	Design of the sequence-driven features
	Consideration of local and global effects
	Feature group 1: amino acid mutability (features: 1–300)
	Feature group 2: amino acid conservation (feature: 301)
	Feature group 3: amino acid composition (features: 302–321)
	Feature group 4: amino acid properties (features: 322–330)
	Feature group 5: predicted secondary structure (features: 331–333)
	Feature group 6: predicted disorder probability (features: 334–340)
	Feature group 7: disorder topography (features: 341–342)


	Results and discussion
	Propagation of sequence consensus during disorder-to-order transitions
	Amino acids preference in protean and disorder residues
	Secondary structure preference in protean and disordered residues
	Indecisiveness in adapting a particular secondary structure class from sequence
	Training a classifier to predict protean residues
	Relative importance of features
	True positive enrichment by analyzing the Proteus score
	Benchmark on independent data set


	Conclusions
	Acknowledgements 
	References


