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C o m m u n i c a t i o n

I N T R O D U C T I O N

Large-conductance, voltage- and Ca2+-activated K+ (BK) 
channels are widely distributed and involved in many 
physiological processes (Pallotta et al., 1981; Golowasch 
et al., 1986; Cox et al., 1997a; Gribkoff et al., 1997; Vergara 
et al., 1998; Xia et al., 2002; Magleby, 2003; Cox, 2005; 
Cui, 2010; Latorre et al., 2010). Depending on the tis-
sue, functional BK channels can be comprised of four 
pore-forming  subunits alone, or four  subunits plus 
accessory  subunits, with the 1 subunit increasing the 
apparent Ca2+ sensitivity of BK channels in smooth mus-
cle (Knaus et al., 1995; McManus et al., 1995; Nimigean 
and Magleby, 1999; Lu et al., 2006). The conductance 
properties of BK channels have been of considerable 
interest because BK channels have the highest single-
channel conductance of K+-selective channels, of 200–
300 pS in symmetrical 150-mM K+ solutions (Pallotta 
et al., 1981; Eisenman et al., 1986; Cox et al., 1997b; 
Hille, 2001; Brelidze et al., 2003; Nimigean et al., 2003; 
Geng et al., 2011). Our study was undertaken to address 
contradictory observations concerning the shape of I-V 
curves for BK channels.
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or Karl L. Magleby: kmagleby@med.miami.edu

Abbreviation used in this paper: BK, large-conductance, voltage- and 
Ca2+-activated K+.

Schroeder and Hansen (2006, 2007, 2008) report that 
the single-channel current amplitudes of BK channels 
comprised of  plus 1 subunits increase as the mem-
brane voltage is increased from 0 to +100 mV, and then 
progressively decrease with increasing voltage, leading 
to a negative slope in the I-V plots for large positive po-
tentials. The intracellular solutions for the experiments 
in their papers all contained 2.5 mM Ca2+ and 2.5 mM 
Mg2+. As a control experiment to test for the possible 
effects of intracellular Ca2+ and Mg2+, Schroeder and 
Hansen (2007) obtained I-V plots in the absence of Ca2+ 
and Mg2+ and reported I-V plots with current amplitudes 
and negative slope identical to those they obtained in 
the presence of Ca2+ and Mg2+ (their Fig. 7 B).

Schroeder and Hansen’s (2007) observations of re-
duced currents and negative slope at positive potentials 
in the presence of intracellular Ca2+ and Mg2+ are con-
sistent with previous studies on fast block by Ca2+ and 
Mg2+ in BK channels (Marty, 1983; Morales et al., 1996; 
Cox et al., 1997b; Zhang et al., 2006). However, Schroeder 
and Hansen’s (2007) observation of the same reduced 
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determined from all-points histograms as the distance between 
the peaks of histograms fitted to the open and closed current lev-
els. Similar I-V plots were found when the single-channel currents 
were measured by eye with cursor lines through the open and 
closed current levels. Detailed descriptions of the methods have 
been presented previously (Nimigean and Magleby, 1999; Brelidze 
and Magleby, 2004).

R E S U L T S

To reexamine whether a negative slope is observed at 
large positive potentials in the absence of intracellular 
Ca2+ and Mg2+, we studied BK channels comprised of 
mouse  plus 1 subunits expressed in Xenopus oocytes 
using single-channel recording from excised inside-out 
patches of membrane so that the intracellular solution 
could be changed. Data were collected up to sufficiently 
high potentials (+200 mV) so that a negative slope would 
be observed if present.

Near linear I-V plots in the absence of intracellular 
blockers with a small increasing sublinearity at higher 
positive potentials
In the absence of intracellular blockers, a near linear I-V 
curve was observed for positive potentials up to +100 mV, 
with a small but increasing sublinearity for higher po-
tentials up to +200 mV (Fig. 1 B, open circles). As is typi-
cal for BK channels, a large single-channel conductance 
(256 pS at +80 mV) was observed in the absence of block-
ers. These observations are consistent with those of Zeng 
et al., (2003, Fig. S1 C) who also studied BK channels 
comprised of  plus 1 subunits at high positive po-
tentials in the absence of blockers. The observations in  
Fig. 1 B (open circles) are also consistent with other previ-
ous studies exploring a smaller range of positive potentials 
in the absence of blockers for BK channels comprised 
of  plus 1 subunits and of  subunits alone (Marty, 
1981; Pallotta et al., 1981; Wong et al., 1982; Yellen, 1984a,b; 
Villarroel et al., 1988; Ferguson, 1991; McManus et al., 
1995; Morales et al., 1996; Zeng et al., 2003 [in supple-
mental material]; Brelidze and Magleby, 2004; Zhang  
et al., 2006; Carvacho et al., 2008; Geng et al., 2011).

The observations in Fig. 1 B (open circles) and pre-
vious studies of near linear I-V curves with a small sub-
linearity at more positive potentials in the absence of 
blockers differ from those of Schroeder and Hansen 
(2007) who report reduced conductance and negative 
slopes in the absence of blockers. It should be noted 
that in some cases with very low concentrations of in-
tracellular blockers, the sublinearity can be greater than 
in Fig. 1 B (open circles), but, in contrast to Schroeder 
and Hansen (2007), there was not a marked reduction 
in conductance for voltages less than +100 mV (Cox  
et al., 1997b).

Schroeder and Hansen (2007) used less filtering in 
their analysis than we used for Fig. 1, or has typically 

currents and negative slopes in the absence and pres-
ence of intracellular Ca2+ and Mg2+ contrasts with many 
previous studies that show near linear I-V plots between 
100 and +100 mV and a small sublinearity for more 
positive potentials, and this was the case for BK chan-
nels with and without 1 subunits (Marty, 1981; Wong 
et al., 1982; Yellen, 1984a,b; Villarroel et al., 1988; 
Ferguson, 1991; McManus et al., 1995; Morales et al., 
1996; Zeng et al., 2003 [in supplemental material]; 
Brelidze and Magleby, 2004; Zhang et al., 2006; Carvacho 
et al., 2008; Geng et al., 2011). Nevertheless, in many of 
the previous studies, a sufficiently positive voltage range 
was not always explored to reveal a negative slope if 
present, and most studies were done in the absence of 
the 1 subunit.

Whether reduced currents and negative slope can be 
observed for BK channels in the absence of intracel
lular blockers has profound implications for the gating 
of BK channels. Schroeder and Hansen (2007) propose 
that the negative slope comes from fast gating, whereas 
previous studies propose that it arises from fast cation 
block. Resolving this question is important, as further 
studies have built upon the work of Schroeder and Hansen 
by assuming that the negative slope arises from fast gat-
ing rather than from Ca2+ and Mg2+ block (Schroeder and 
Hansen, 2008, 2009; Abenavoli et al., 2009; Nelson, 2011). 
In this Communication, we further examine the shape 
of the I-V plot for BK channels expressed with  plus 1 
subunits. We find a near linear I-V plot at positive voltages 
in the absence of blockers and reduced currents and 
negative slope at more positive potentials with intracel-
lular Ca2+ and Mg2+. Hence, studies of normal conduc-
tance mechanisms for BK channels should be based on 
data obtained in the absence of intracellular Ca2+/Mg2+, 
as these blockers can reduce conductance and induce 
negative slopes at positive potentials.

M A T E R I A L S  A N D  M E T H O D S

The patch-clamp technique (Hamill et al., 1981) was used to re-
cord single-channel currents from inside-out patches of mem-
brane obtained from Xenopus laevis oocytes expressing BK 
channels after injection of cRNAs coding for both  and 1 sub-
units. The mouse Slo1  subunit (same as GenBank accession 
no. U09383) was provided by Merck Pharmaceuticals, and the 
1 subunit (identical to NCBI Protein database accession no. 
gi:31981659) was provided by R. Brenner (The University of 
Texas Health Science Center at San Antonio, San Antonio, TX). 
The extracellular solution contained 150 mM KCl and 10 mM 
HEPES, with pH adjusted to 7.2 with KOH. The intracellular solu-
tion in the absence of Ca2+ and Mg2+ contained 150 mM KCl, 10 mM 
HEPES, and 10 mM EDTA, with pH adjusted to 7.2 with KOH. 
The intracellular solution with Ca2+ and Mg2+ contained 150 mM 
KCl, 10 mM HEPES, 2.5 mM CaCl2, and 2.5 mM MgCl2, with pH 
adjusted to 7.2 with KOH. The single-channel records were 
collected and analyzed with a cutoff frequency of 10 kHz (Axopatch 
200B; Molecular Devices) and filtered at 5 kHz for display. Single-
channel currents were sampled at 200,000/s with pClamp9 soft-
ware (Molecular Devices). Single-channel current amplitudes were 
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plots with reduced conductance and negative slope 
both in the absence and presence of intracellular Ca2+ 
and Mg2+.

The intracellular blockers Ca2+ and Mg2+ reduce 
the single-channel conductance and induce a negative  
slope at positive potentials
Changing the intracellular solution in the previous  
experiment to one containing 2.5 mM Ca2+ and 2.5 mM 
Mg2+ reduced the single-channel currents in a voltage-
dependent manner, giving rise to a reduced conduc-
tance at positive potentials and a negative slope in the 
I-V plots beyond about +120 mV (Fig. 1 B, closed cir-
cles). The reduction in conductance by the blockers 
was apparent well before the appearance of the nega-
tive slope, with a conductance at +80 mV of 161 pS 
compared with 259 pS in the absence of blockers. The 
reduced conductance and negative slope in the I-V plots 
in Fig. 1 B (closed circles) is a characteristic feature 
of intracellular block, as reported previously (Marty, 1983; 
Golowasch et al., 1986; Morales et al., 1996; Cox et al., 
1997b; Zhang et al., 2006). The reduced conductance and 
negative slope in the presence of intracellular Ca2+ and 
Mg2+ in Fig. 1 B (closed circles) are essentially the same 
as reported by Schroeder and Hansen (2007) both in the 
presence and absence of intracellular blockers.

D I S C U S S I O N

In contrast to the marked differences in I-V plots in 
the absence and presence of intracellular Ca2+ and Mg2+ 
in Fig. 1 and in the literature, Schroeder and Hansen 
(2007) have reported essentially identical I-V plots in 
the absence and presence of intracellular blockers, with 
both I-V plots displaying the same reduced conductance 
and negative slope as would be expected if intracellular 
blockers were present under both conditions. We are 
not aware of reports other than Schroeder and Han-
sen’s in which essentially identical I-V plots have been 
observed in the absence and presence of millimolar 
concentrations of intracellular Ca2+ and Mg2+ with 150 mM 
KCl in the solutions. High concentrations of intracel-
lular K+ (added as KCl) can reduce, but not eliminate, 
the action of intracellular blockers through apparent 
competitive inhibition of K+ displacing the blockers 
(Ferguson, 1991; Zhang et al., 2006).

Schroeder and Hansen (2006, 2007, 2009) used a 
-distribution analysis to examine very fast flickering in 
the single-channel current to characterize the negative 
slope in the presence of Ca2+ and Mg2+. They suggested 
that the negative slope may arise from the depletion of 
K+ from the selectivity filter at higher voltages, leading 
to instability and fast gating of the selectivity filter. An 
alternative explanation for the negative slope is that it 
may arise from fast Ca2+ and Mg2+ block, as a negative slope 
is not observed in the absence of these ions (Fig. 1 B, open 

been used in previous studies. However, this difference 
in filtering would not explain why they observed a neg-
ative slope of the observed mean current amplitude in 
the absence of Ca2+ and Mg2+ whereas we did not, as dif-
ferences in filtering should not change the mean single-
channel current amplitude (Fig. 9 in Blatz and Magleby, 
1986). Schroeder and Hansen (2007) studied human 
BK channels stably expressed in HEK293 cells, whereas 
for most previous studies, BK channels were expressed 
from transfection with DNA or injected cRNA. It can-
not be ruled out, but seems highly unlikely, that a dif-
ferent expression system would induce identical I-V 

Figure 1.  Intracellular Ca2+ and Mg2+ induce a negative slope 
at high positive potentials for I-V plots from BK channels that is 
not observed in their absence. (A) Representative single-channel 
current records from BK channels at the indicated voltages with-
out and with 2.5 mM Ca2+ and Mg2+ in the intracellular solution. 
The solutions also contained 150 mM KCl and 10 mM HEPES, 
pH 7.2. The presented current recordings were filtered at 5 kHz 
for display, but the data were collected and analyzed with 10 kHz 
low-pass filtering for the I-V plots. The divalent cation blockers 
reduce the outward single-channel current amplitudes, with a 
greater fractional decrease at +160 mV than at +80 mV. (B) I-V 
plots of single-channel current amplitudes indicate that 2.5 mM 
of intracellular Ca2+ and Mg2+ induce a negative slope for poten-
tials greater than +120 mV. A negative slope is not observed in 
the absence of Ca2+ and Mg2+ (open circles). The dashed lines are 
cubic spline fits constrained to pass through the origin. Each plot-
ted point is the mean from five or more patches. The absence of 
visible error bars indicates that the SEM is less than the symbol size.
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As shown in Fig. 1 B (closed circles), Ca2+ and Mg2+ 
block does reduce single-channel current amplitudes. Is 
this observation then sufficient to exclude that rapid se-
lectivity filter gating reduces the observed single-channel 
currents, as proposed by Schroeder and Hansen (2007)? 
In the absence of intracellular Ca2+, Mg2+, and also the 
near absence of H+ (pH 9), a small sublinearity still re-
mains in the I-V plots at high voltages (Brelidze and 
Magleby, 2004). If the (perhaps unwarranted) assump-
tion is made that the I-V plot would be linear in the 
absence of blockers and rapid selectivity filter gating, 
then the deviation from linearity in the observed cur-
rents in the absence of blockers might reflect rapid 
selectivity filter gating, but other factors could also con-
tribute to the sublinearity (see discussions in Nimigean 
et al., 2003; Brelidze and Magleby, 2004, 2005; Geng  
et al., 2011).

In conclusion, previous studies and Fig. 1 show that 
I-V curves from BK channels display reduced conduc-
tance and a negative slope at high positive potentials 
in the presence of intracellular blockers such as Ca2+ 
and Mg2+, but do not display reduced conductance and 
negative slopes in the absence of such blockers. These 
findings differ from those of Schroeder and Hansen 
(2007) of a negative slope both in the absence and pres-
ence of blockers.
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