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Pathogenesis related (PR) proteins are one of the major sources of plant derived allergens. These proteins are induced by the plants
as a defense response system in stress conditions like microbial and insect infections, wounding, exposure to harsh chemicals, and
atmospheric conditions. However, some plant tissues that are more exposed to environmental conditions like UV irradiation and
insect or fungal attacks express these proteins constitutively.These proteins are mostly resistant to proteases andmost of them show
considerable stability at low pH.Many of these plant pathogenesis related proteins are found to act as food allergens, latex allergens,
and pollen allergens. Proteins having similar amino acid sequences among themembers of PR proteinsmay be responsible for cross-
reactivity among allergens from diverse plants. This review analyzes the different pathogenesis related protein families that have
been reported as allergens. Proteins of these families have been characterized in regard to their biological functions, amino acid
sequence, and cross-reactivity. The three-dimensional structures of some of these allergens have also been evaluated to elucidate
the antigenic determinants of these molecules and to explain the cross-reactivity among the various allergens.

1. Introduction

Plants are one of the major sources of allergens which elicit
allergenic response by immunoglobulin E (IgE) mediated
allergies [1, 2].These allergensmay diffuse into the body from
the upper respiratory tract or enter the body through intake of
vast range of plant food or may cause external skin irritations
[3–5]. Allergens present primarily in pollens, spores, and
other plant associated products are responsible for symptoms
like rhinoconjunctivitis, asthma, edema, urticarial, and ana-
phylaxis [6–8]. Allergens ingested as food result in responses
like pruritus and swelling of lips, tongue, and soft palate, often
accompanied by mild laryngeal symptoms as a sensation of
tightness, itching, cough, gastrointestinal symptoms, rhinitis,
asthma, cutaneous reactions, and more severe systemic ana-
phylaxis [9–12]. Some plant derived allergens result in contact
dermatitis mostly in skin like itchy fingers, skin irritations,
and so forth [13, 14]. The most widespread groups of plant
allergens that are reported belong to the seed storage proteins,
structural proteins, and pathogenesis related (PR) proteins
[15–17].

Allergens are assigned names based on their accepted
taxonomic nomenclature with the first three letters desig-
nating their genus and followed by the first letter of the
species and an Arabic number denoting the order of the
identification. The allergenicity of the protein is mostly
dependent on the structural motifs present in the allergens
which act as the allergenic determinants or the epitopes that
are responsible for binding to B and T cells. B cell epitopes
are mostly discontinuous motifs forming conformational
epitopes whereas T cell epitopes are linear and continuous
[18, 19]. It has been found that allergens from diverse species
possess similar structural motifs that can be identified by the
antibodies resulting in IgE cross-reactivity.

2. Plant Pathogenesis Related Proteins

Plant pathogenesis related (PR) proteins are generally
induced by various types of pathogens such as viruses,
bacteria, and fungi [20–22]. Some of these proteins are also
expressed in response to some chemicals that act in a similar
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way as pathogen infection [23, 24]. However, some of the PR
proteins are constitutively expressed in someorgans or during
certain developmental stages [25, 26]. They are regarded
as PR-like proteins because of their sequence homology.
However, some PR-like proteins are found to be strongly
induced by infections and hence they are also designated
mostly as PR proteins [27].

PRs were first identified from tobacco leaves (Nicotiana
tabacum) infected with tobacco mosaic virus and later have
been detected in numerous plants of different species [28].
They exhibit distinct biochemical characteristics which are
necessary when the plant is under pathogenic infections
or any unwanted stress. They are generally low-molecular
weight proteins in the range 6 to 43 kDa, stable at low pH
(<3), and are protease resistant which helps them survive
in the harsh conditions like the vacuolar compartment,
cell wall, or intercellular spaces [20]. Depending on their
isoelectric points, PR proteins are either acidic or basic
and are also found to be either vacuolar or apoplastic [29].
The acidic forms of PR proteins are mostly secreted to the
extracellular space and the basic forms are transported to
the vacuole by a signal located at the C-terminus [30].
However, such localization cannot be generalized for all PR
proteins except in the case of certain tobacco PR family.
Currently, PRs are found to be localized in almost all plant
organs including leaves, stems, roots, and flowers, though
maximum abundance of these proteins is found in the leaves
[29].

Usually, upregulation of gene expression during pathogen
attack takes place by various signalingmolecules like salicylic
acid [23, 31, 32] and reactive oxygen species [33] which
mediate the expression of acidic PR genes. Induction of basic
PR genes is mediated by gaseous phytohormone ethylene and
methyl jasmonate [24]. Apart from various environmental
factors that trigger the synthesis of these PR proteins, their
expressions are also dependent on certain internal develop-
mental stimuli of the plant.

Originally 5 groups of PR proteins have been identified
[34] but gradually with the increasing identification of new
PR proteins, presently, 17 families of PR proteins are recog-
nized based on their amino acid sequence similarities, enzy-
matic activities, or other biological properties and numbered
in the order in which they were discovered (Table 1) [29, 35,
36]. In spite of their common name, these proteins display
a great diversity in species specificity and in the mechanism
of action and do not share any structural relationship among
themselves.

PR proteins exhibit multiple functions within the plant.
Most PRs exhibit antifungal activity [37, 38] though antibac-
terial, insecticidal, nematicidal, and antiviral activity of some
of the PR proteins have also been reported [39, 40]. Some
of the PR proteins have enzymatic functions like 𝛽-1,3-
glucanase [41] or chitinase activities [42]; some including
defensins [43] and lipid transfer proteins [44] have mem-
brane permeabilizing effect. PR proteins thus have crucial
function in disease resistance, seed germination, and plants
facilitation to adapt to the environmental stress.

Apart from PR proteins, plants under pathogen attack
produce other families of proteins having defensive action

like PR proteins. Two 𝛼-amylases are found to be induced
in tobacco upon TMV infection [45]. Polygalacturonase
inhibitor proteins (PGIPs) are produced by pathogen infec-
tion and stress-related signals in plants that can inhibit
fungal endopolygalacturonases [46]. Others include cell wall
hydroxyproline-rich glycoproteins [47] and lipoxygenases
[48]. Certain plant storage proteins, like 2S-albumins, lectins,
vicilins, glycine-rich proteins, and so forth, accumulate in
storage vacuoles inside plant cells and perform essential
roles as antimicrobial agents in response to pathogen attack
[49, 50]. Ribosome-inactivating proteins (RIPs), cysteine-
rich peptides, and so forth are also expressed by plants as
antimicrobial molecules but are not induced by any pathogen
attack [51, 52].

3. Plant PR Proteins and Allergenicity

In the recent years, a variety of PR proteins and their
homologues causing allergenicity in humans have been
isolated and characterized [53–56]. The size, stability, and
resistance to proteases along with hydrolytic and membrane-
permeabilizing ability in some make these proteins excellent
candidates to elicit allergenic response [53]. Moreover, PR
proteins are mostly associated with high degree of cross-
reactivity because of structural similarity among some of the
major proteins. Many patients allergic to one form of allergen
like pollen also display allergic symptoms after ingesting
some other allergens like certain fresh fruit, vegetable, or nut
[57–59].Thus, IgE antibodies originally produced in response
to a particular allergen sensitization recognize comparable
epitopes which are present on the surface of other plant
proteins. Hence, reexposure to homologous plant allergens
induces an allergic reaction in already sensitized individuals.
Some of the common allergic syndromes like pollen-related
food syndrome, latex-fruit syndrome, or the birch-mugwort-
celery-spice syndrome are associated among the different PR
proteins [60–62].

It has also been observed that plants growing under
different conditions have varied levels of expression of the
allergenic PR proteins and their homologues [63]. The
expression of some of these classes of allergens also shows
alterations due to environmental pollutants [55]. Based on
sequence characteristics, a number of allergens classified as
PR proteins are recognized from PR families 1, 2, 3, 4, 5, 8,
10, and 14 (Table 1) [29]. Thus, evaluating the structure and
role of members of these different PR families in allergenicity
will help to understand the allergenic cross-reactivity andwill
explain the differences in the frequency of sensitization and
severity of allergenicity in sensitized individuals.

3.1. PR-1 Family Allergens. PR-1 proteins were first found
to be expressed in tobacco in response to tobacco mosaic
virus (TMV) infection having 14 to 17 kDamolecular weights
[64]. Later, homologues of tobacco PR-1 proteins have been
identified in barley, tomato, maize, rice, and so forth [65–
68]. These widely distributed proteins of plant kingdom have
antifungal activity at the micromolar level against a number
of plant pathogenic fungi [66], but their mechanism of action
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Table 1: Different PR-protein families and allergens identified.

Family Proteins Functions Allergens identified with source and allergenic symptoms
PR-1 PR-1 a, PR-1 b, and PR-1 c Antifungal Cuc m 3 (muskmelon)—oral allergy syndrome

PR-2 𝛽-1,3-Glucanases Cleaves 𝛽-1,3-glucans
Hev b 2 (latex)—contact dermatitis
Ole e 9 (olive)—respiratory allergy
Mus a 5 (banana)—oral allergy syndrome

PR-3 Chitinase types I, II, IV, V,
VI, and VII Endochitinase

Pers a 1 (avocado)—itchy eyes or nose, asthma, swelling, and so forth.
Mus a 2 (banana)—food allergy like swelling of lips, anaphylaxis, and
so forth

PR-4 Chitinase types I and II Antifungal and chitinase Hev b 6.01, Hev b 6.02, and Hev b 6.03 (latex)—contact dermatitis

PR-5 Thaumatin-like proteins Antifungal

Jun a 3 (mountain cedar), Cry j 1 (Japanese cedar), and Cup a 3
(Arizona cypress)—rhinitis, conjunctivitis, and asthma
Pru av 2 (cherry), Mal d 2 (apple), Cap a 1 (bell pepper), Act d 2
(kiwi), and Mus a 4 (banana)—oral allergy syndrome

PR-6 Tomato proteinase
inhibitor I Proteinase inhibitor —

PR-7 Tomato endoproteinase P Endoproteinase —

PR-8 Cucumber chitinase Chitinase III
Hevamine (latex)—contact dermatitis.
Ziz m 1 (Indian jujube)—oral allergy syndrome
Cof a 1 (coffee)—eye and airway allergy

PR-9 Tobacco lignin-forming
peroxidase Peroxidase —

PR-10
Parsley “PR-1”
Bet v 1, Mal d 1, Api g 1,
and Dau c 1

Ribonuclease-like

Bet v 1 (birch pollen)— allergic rhinoconjunctivitis and asthma
Pru av 1 (cherry), Mal d 1 (apple), Api g 1 (celery), and Dau c 1
(carrot)—oral allergy syndrome
Gly m 4 (soy), Vig r 1 (mung bean), Cor a 1 (hazelnut), and Cas s 1
(chestnut)—oral allergy syndrome

PR-11 Tobacco chitinase type V Chitinase —
PR-12 Radish Rs-AFP3 Defensin —
PR-13 Arabidopsis THI2.1 Thionin —

PR-14 Lipid transfer proteins Shuttling of phospholipids
and fatty acids

Par j 1 (weed)—rhinitis and asthma
Pru p 3 (peach), Mal d 3 (apple), Pru av 3 (cherry), Pru ar 3 (apricot),
Cor a 8 (hazelnut), Cas s 8 (chestnut), and Zea m 14 (maize)—oral
allergy syndrome

PR-15 Barley OxOa Oxalate oxidase —
PR-16 Barley OxOLP Oxalate-like oxidase —
PR-17 Tobacco PRp27 Unknown —

is not known. No allergens were reported from PR-1 protein
family till 2004. The first evidence of an allergen Cuc m 3
was reported frommuskmelonwhich comprisesmany pollen
allergens, thus delivering the involvement of this plant aller-
gen family in food allergy [69]. Cuc m 3 shows more than
60% of sequence identity with PR-1 members from grape and
cucumber.

3.2. PR-2 Family Allergens. PR-2 family of proteins are
𝛽-1,3-glucanases (glucan endo-1,3-𝛽-glucosidases) which
are monomeric enzymes having molecular weight around
20–23 kDa. These highly regulated enzymes catalyze the
hydrolytic cleavage of 𝛽-1,3-glucans abundantly present in
plant cell walls [70]. These enzymes function in response to
pathogenic attack and are also involved in several physio-
logical and developmental processes, for example, cell divi-
sion [71], microsporogenesis [72],pollen germination [73],

fertilization [74] and seed germination [75], andmobilisation
of storage products in the endosperm of cereal grains [76].
These proteins were also induced in response to ozone and
ultraviolet B light, mechanical injury, and freezing tempera-
tures [77–79].

The PR-2 proteins are divided into three classes based
on amino acid sequence identity, primary structure, cellu-
lar localization, and mode of expression [80]. The class I
members with approximate size of 33 kDa are basic and
localized in the cell vacuole and are found in tobacco, tomato,
potato, and other plant species [81]. The class II and class III
proteins are acidic proteins with average molecular weights
around 34 to 36 kDa secreted into the extracellular space
[82]. Antifungal activity has been observed only in class I 𝛽-
glucanases. The proteins belonging to class I family have an
additional C-terminal extension which is posttranslationally
cleaved during intracellular transport and are likely to contain
the vacuolar targeting signal [83].
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Figure 1: Multiple sequence alignment of 𝛽-1,3-glucanases from tobacco, tomato, banana, and latex (Hev b 2). The identical residues are
highlighted in grey.

Some of the allergens having sequence similarity to 𝛽-1,3-
glucanases have been identified. Latex fromHevea brasiliensis
contains several allergenic proteins that are involved in
allergenicity resulting in symptoms likemild contact urticaria
to asthma and anaphylactic reactions that frequently occur
during surgical or endoscopic procedures [84, 85]. One of
them is Hev b 2, a 𝛽-1,3-glucanase enzyme that is recognized
by IgEs of latex-allergic patients. This protein shares 62.9%
and 64.7% sequence identities with tobacco and tomato 𝛽-
1,3-glucanases (Figure 1). This 36 kDa protein is present in
different isoforms and with variable glycosylation content
[86, 87]. Both its peptidic and carbohydrate moieties are
known to possess allergenic determinants [88, 89].

The structure of Hev b 2 adopts a TIM-barrel, (𝛼/𝛽)
8

fold (PDB code: 3EM5). Several IgE binding epitopes have
been recognized along the entire amino acid sequence of the
major latex allergen Hev b 2 [90] (Figure 2(a)). The amino
acid residues residing in the IgE binding epitopic regions are
found to be mostly exposed on the surface and the epitopes
usually correspond to charged regions on the molecular
surface of the protein.

Hevea latex allergy has been found to be associated
with hypersensitivity to foods, especially avocado, banana,
chestnut, fig, bell pepper, and kiwi, and is termed latex-fruit
syndrome [91–93]. The reason for such cross-reactivity is
that the proteins expressed in these fruits share very similar
overall conformation and charge distribution to those of Hev
b 2. Hev b 2 has about 60.8% sequence identity with banana

𝛽-1,3-glucanase, Mus a 5, the expression of which increases
to a considerable amount during fruit ripening [94]. Five IgE
binding epitopes similar to Hev b 2 have been identified in
this protein (Figure 2(b)).

Another PR-2 protein, Ole e 9, has been character-
ized from olive pollen [95]. The protein is composed of
two immunological independent domains: an N-terminal
domain with 𝛽-1,3-glucanase activity and a C-terminal
domain that binds 1,3-𝛽-glucans. The overall structure of C-
terminal domain of Ole e 9 has been found to comprise
two parallel 𝛼-helices, a small antiparallel 𝛽-sheet with two
short strands, and a 3–10 helix turn connected with each
other by long coil segments (Figure 3). Two regions have
been identified on the protein surface which are constituted
of aromatic residues and have a possible role in sugar
binding. Using epitope mapping four IgE epitopes have been
characterized on the C-terminal domain of Ole e 9 which
are mainly concentrated on the loops and few in secondary
structural elements [96].

3.3. PR-3 Family Allergens. Among the seven different classes
of chitinases, chitinases of classes I, II, and IV are grouped
under PR-3 family proteins. Chitinases hydrolyze the gly-
cosidic bonds in chitin, a component of the cell walls of
fungi and exoskeletal elements of some animals [97]. Plant
chitinases are monomeric proteins of 25–35 kDa molecular
weights and are mostly endochitinases which break the
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Figure 2: (a) Overall structure of Hev b 2 showing IgE binding epitopes (in green). (b) Overall structure of 𝛽-1,3-glucanase from banana
showing IgE binding epitopes (in green).
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Figure 3: Structure of C-terminal domain of Ole e 9 from olive
pollen. The four IgE binding epitopes (in green) marked from 1 to
4 are shown. The aromatic residues which form two distinct sugar
binding faces are shown in yellow.

chitin within the biopolymer. They produce 2–6 N-acetyl-
glucosamine units and hydrolyze 𝛽-1,4-linkages between
the N-acetylmuramic acid and the N-acetylglucosamine of
lysozyme.

Some of the class I chitinases found in seed producing
plants are basic proteins that are vacuolar and antifungal,
whereas the acidic ones are extracellular with little anti-
fungal activity. This class of chitinases contains a cysteine-
rich 40-amino-acid domain at the N-terminus, the chitin
binding hevein domain, a hypervariable domain (which is
a proline-rich hinge region), and a catalytic domain [98].

The exact role of the hevein domain is not clear though
it is required for chitin binding and for substrate affinity.
It is speculated that the chitin-binding domain helps in
increasing the efficiency of enzymatic cleavage of the polymer
by attaching the catalytic domain onto the substrate. The
intracellular localization depends on the presence of a C-
terminal vacuolar targeting propeptide. A signal peptide is
removed from the mature protein and a target sequence
directing the protein to the vacuole is located at the C-
terminus.

Class II chitinases having molecular weights of 27 to
28 kDa resemble class I proteins in terms of amino acid
sequence, but they lack the N-terminal cysteine-rich hevein
domain and the vacuolar target sequence.These enzymes are
mainly acidic and extracellular and display 60–65% sequence
similarities to class I chitinases. Some of these members
induce antifungal activity in living plant cells rather than
killing the invading fungus. Class IV proteins are similar to
class I chitinases but are significantly smaller in size due to
four major deletions [99].

Some of the major class I chitinase allergens of the PR-
3 family have been identified from chestnut (Cas s 5) and
avocado (Pers a 1) [100, 101]. Since these proteins are charac-
terized by the presence of a conserved hevein-related struc-
ture, patients with previous exposure to latex prohevein or
hevein are potential candidates for cross-reaction with these
fruits and vegetables [102]. Pers a 1, a 32 kDa endochitinase,
exhibits strong antifungal activity [101]. Class I chitinases are
also recognized in banana (Mus a 2) with hevein-like domain
having IgE binding properties. This protein shares about
74.0% amino acid sequence identity with Pers a 1 including
the hevein-like domain present in both proteins (Figure 4).
The stability of the proteins is maintained by the presence of
cysteine residues. However, the three-dimensional structures
of these proteins have not yet been reported [103].
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Figure 4: Sequence alignment of chitinase I from avocado (Pers a 1) and banana.The hevein-like domain (matching with sequence of hevein
(1–27)) has also been marked in green. The identical residues and the cysteine residues are highlighted in grey and yellow, respectively.

3.4. PR-4 Family Allergens. PR-4 proteins are chitin-binding
proteins, having molecular weights around 13 to 14.5 kDa.
Some of the PR-4 proteins identified are tobacco protein
CBP-20 and barley barwin [104, 105]. The common class I
chitinases representing this family are prohevein and wound-
inducible proteins. Prohevein, a cysteine-rich 20 kDa protein
from Hevea brasiliensis, is designated as Hev b 6.01 and is
one of the major IgE binding allergens in natural rubber
latex allergy, especially common in health care workers
[106]. It contains 14 cysteine residues that stabilize its ter-
tiary conformation by forming multiple disulphide bridges.
After posttranscriptional processing, prohevein generates the
4.7 kDa N-terminal Hev b 6.02 (hevein) and the 14 kDa
C-terminal Hev b 6.03 (Figure 5(a)) both of which are
allergenic. The former is involved in IgE binding and carries
discontinuous B cell epitopes (Figure 5(b)), whereas Hev b
6.03 is responsible for proliferation response and contains
human leucocyte antigen, HLA-DR4-binding motifs [107].
Hev b 6.03 shares more than 90% sequence similarity with
wound-inducible proteins like potato stress proteins, WIN1
and WIN2 (Figure 6).

Hevein has significant sequence similarities (about 71.7%)
with chitin-binding proteins of PR-3 and PR-4 families [106]
and is one of the reasons of latex allergic patients resulting
in food allergies. Hevein is the major cross-reacting allergen
with avocado in subjects with latex allergy [108, 109]. The
crystal structure of hevein is folded into a series of loops
all linked together by four disulfide bonds (Figure 7). An
aromatic patch is formed in the central part of the protein by
2 tryptophan and 1 tyrosine residues encircled by 4 glutamate
side chains forming a carbohydrate-combining site consti-
tuting a conformational epitope [110]. Current studies have
shown that hevein is an ideal target for application in latex

immunotherapy. Hypoallergenic variants of prohevein have
been obtained by site directed mutagenesis in hevein domain
which showed attenuated B cell reactivity but retained human
T lymphocyte reactivity [111].

The class II chitinases belonging to PR-4 proteins have
been identified from tobacco and tomato with sequence
similarity to win proteins, yet lacking the chitin-binding
domain [112]. Whole or wounded turnips treated with sali-
cylic acid, ethephon, or water resulted in the expression of
an 18.7 kDa protein exhibiting appreciable allergenicity that
was recognized by IgE of natural rubber latex allergic patients
[113].

3.5. PR-5 Family Allergens. PR-5 proteins have high amino
acid homology to sweet tasting protein, thaumatin, from the
South African berry bushThaumatococcus daniellii [114] and
are known as thaumatin-like proteins (TLPs) though none
of these proteins have been reported to have a sweet taste.
These proteins were first identified in tobacco leaf extracts
when the plant was infected with tobacco mosaic virus [115].
Though TLPs have been mostly observed in leaves of young
plants, they are detected in high levels upon biotic or abiotic
stress. Osmotin andNP24 proteins from tobacco and tomato,
respectively, are homologous to thaumatin and accumulate
after osmotic stress [116, 117]. TLPs are also developmentally
expressed to a significant amount in flower buds of turnip and
overripe fruits of cherries [118, 119].

Based on their molecular weight, proteins of this class
are grouped into two types: the first class having molecular
weights ranging from 22 to 26 kDa and the other class having
molecular weights around 16 kDa due to an internal deletion
of 58 amino acids. Generally, they are acidic, basic, or neutral
TLPs. Someof these proteins exert antifungal activity possibly
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Figure 5: (a) Amino acid sequence of prohevein showing two allergenic domains obtained after posttranslational cleavage: Hev b 6.02 domain
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in grey and the cysteine residues in yellow.

by directly inserting them into the fungal membrane forming
a transmembrane pore, eventually resulting in influx of water
followed by osmotic rupture. Zeamatin, an antifungal 22 kDa
protein that acts by causing membrane permeabilization has
been reported, corn seeds [120]. Similar proteins with con-
siderable sequence homology and similar antifungal action
are also reported from tobacco, oats, sorghum, and wheat
[121].

The allergens of this group are mainly pollen or food
derived allergens. Several pollen allergens like Jun a 3 (moun-
tain cedar) [63], Cry j 1 (Japanese cedar) [122], Cup a 3
(Arizona cypress) [123], and Jun v 3 (Eastern red cedar) [124]
have been reported. Some of these allergens like Jun a 3
showing variability of expression may contribute to variable
allergenicity in different lots of pollen. Four IgE binding
epitopes have been predicted in the sequence of Jun a 3:
Ala120 to Lys131, Val132 to Lys144, Asn152 to Lys165, and
Asn169 to Lys179. Jun a 3 has been found to exhibit cross-
reactivity with Cry j 1, from Japanese cedar (Cryptomeria
japonica) [63]. Cup a 3 from Arizona cypress (Cupressus
arizonica) is homologous to Jun a 3 and shows increased
allergenicity of pollen from industrialized areas [123].

Allergens of this group belonging to food allergens
include Pru av 2 from cherries [125], Cap a 1 from bell pepper
[62, 126], Mal d 2 from apple [127], Act d 2 from kiwi [128],

and Pru p 2 from peach [129]. Pru av 2, the major allergen in
cherries, is one of the main causes of oral allergy syndrome
and shares considerable sequence identity with Jun a 3.
Thaumatin-like protein, associated with baker’s respiratory
allergy, has been also identified in wheat (Triticum aestivum)
[130]. A 24 kDa protein from grapes, homologous to Pru av
2, was reported as a minor allergen [131]. Cap a 1 identified
from bell pepper shows an IgE-mediated contact allergy
in patients with the mugwort-birch-celery-spice syndrome
[62].

The crystal structure of allergenic TLP from banana
(Mus a 4) has been characterized [132]. The protein has
three distinct domains: the core domain constituted by a
𝛽-sandwich formed by two 𝛽-sheets, an extended 𝛼-helix
domain, and a third domain with a hair-pin segment of two
short 𝛽-strands connected to an extended loop.The structure
is stabilized by eight disulphide bridges (Figure 8) which
are conserved in other thaumatin-like molecules. A central
cleft comprising acidic residues Glu83, Asp96, Asp101, and
Asp181 imparts a strong electronegative character. Twelve
highly exposed flexible linear epitopes for IgE binding have
been speculated in banana TLP. Pru av 2 (PDB: 2AHN) and
Mal d 2 (PDB: 3ZS3) have similar overall three-dimensional
structure, conserved cysteine residues (Figure 9), and share
about 72.9% sequence identity with each other.
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Figure 7: Overall structure of Hev b 6.02 (hevein) showing IgE
binding epitopes (in green). Trp21, Trp23, and Tyr30 form an
aromatic patch in the conformational epitope. The four disulphide
linkages are shown in yellow.
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Figure 8: Three-dimensional structure of Banana TLP. Eight disul-
phide bridges and the acidic residues, Glu 83, Asp96, Asp101, and
Asp111 are shown. Twelve amino acid stretches are marked in green.

Osmotin has been used in production of transgenic crops
because of its ability in permeabilizing the plasmamembrane
and dissipating the membrane pH gradient of the fungal
species [133]. However, osmotin was identified as a potential
allergen and showed cross-reactivity with allergens from
tomato and apple [134]. Three possible antibody recognition
sites have been speculated in osmotin and validated by in vitro
experiments [135].

3.6. PR-8 FamilyAllergens. PR-8 proteins comprise chitinases
belonging to class III type having lysozyme activity [136].
One of the major latex proteins, representing this group, is

hevamine (Hev b 14) which displays both lysozyme and chiti-
nase activity. It is a 30 kDa basic chitinase from lutoid bodies
of the latex ofHevea brasiliensis belonging to the family 18 gly-
cosyl hydrolases and has been identified as an allergen present
in latex products [137]. Hevamine plays an important role in
the self-defense of the rubber tree against pathogenic fungi.
However, unlike lysozyme, hevamine cleaves peptidoglycan
between the C-1 of N-acetyl glucosamine and the C-4 of
N-acetylmuramate.

The amino acid sequence of hevamine shows significant
similarity to those of other chitinases/lysozymes from plants
and fungi, while there is a lower similarity to chitinases
from bacteria, insects, and viruses.The structure of hevamine
has a single TIM-barrel (𝛽𝛼)

8
fold with active site residues

Asp125, Glu127, and Tyr183 and represents a new class of
polysaccharide-hydrolyzing enzymes (Figure 10). The sub-
strate specificity of this protein resides in the loops following
the barrel strands that form the substrate binding site. The
protein has the two family 18 consensus regions roughly
corresponding to the third and fourth barrel strands [138].
Hevamine has been found to be one of the major latex
allergens having IgE binding characteristics prevalent mainly
in the health care workers of Taiwan [139, 140]. However, the
details of antigenic determinants and their role in allergenic-
ity are still unknown.

A similar class III chitinase, Ziz m 1, had been identi-
fied in Indian jujube (Ziziphus mauritiana) as one of the
major allergens having IgE cross-reactivity with the latex
allergen [141]. Two stretches of residues from Asn72 - Glu86
and from Val292 - Pro320 are the possible IgE binding
epitopes characterized in Ziz m 1 [142]. Recent reports
suggest that this chitinase can stimulate multiple cytokines,
mainly interleukin-13, from peripheral blood mononuclear
cells of latex fruit allergic patients [143]. Another chitinase
III protein, Cof a 1 having allergenic potential, has been
identified in coffee (Coffea arabica) [144].

3.7. PR-10 Family Allergens. PR-10 family proteins are intra-
cellular proteins with unknown enzymatic function. Some
proteins of PR-10 family are induced under various stress
conditions and act as common allergens [145, 146]. However,
few PR-10 proteins are also constitutively expressed, indicat-
ing a role of these proteins in plant development [147]. The
members of this family have low molecular weight (around
15-16 kDa) and are slightly acidic, resistant to proteases, and
mostly intracellular and cytosolic [148, 149]. PR-10 proteins
are structurally not related to any other class of PR proteins.
Apart from direct function in defense, these proteins are
implicated in a general function during overall stress as well
as during physiological changes in certain developmental
stages [150].

Though this family of proteins is widely studied, the
exact function of these proteins is still unclear. Some
of these proteins are suggested to have a protective role
because they are induced when plants undergo pathogenic
or environmental stresses. However, some members are
also constitutively expressed indicating a general biological
role in plant development associated with these proteins.



The Scientific World Journal 9

Cys140–Cys156

Cys132–Cys193

Cys160–Cys160
Cys170–Cys180

Cys127–Cys210

Cys9–Cys221 Cys57–Cys67

Cys72–Cys79

(a)

Cys140–Cys156

Cys132–Cys193
Cys160–Cys160

Cys170–Cys180

Cys127–Cys210

Cys9–Cys221 Cys57–Cys67

Cys72–Cys79

(b)

Figure 9: Three-dimensional structures of (a) Pru av 2 and (b) Mal d 2 showing the conserved cysteine residues.
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Figure 10: Overall structure of hevamine showing TIM barrel
domain and the catalytic residues (in orange).

PR-10 proteins are encoded by multigene families which
accounts for their multifunctional behavior [151]. Thus PR-
10 proteins are not responsible for a particular function in the
plant system but some of their conserved sequences and their
wide spread existence suggest a crucial role of these proteins
[152].

This class of proteinswas first identified fromparsley [153]
followed by other common allergens found in birch pollen
[154], celery [155], apple [156], and other fruits and vegetables.
Of the different PR-10 proteins, birch-related pollen allergens
are extensively studied. The 17.5 kDa protein Bet v 1 is mostly
responsible for birch pollen allergy and patients allergenic
to birch pollens have been found to develop specific IgE

towards Bet v 1 [157]. Thirteen different isoforms of Bet v
1 were identified with the isoform Bet v 1a exhibiting the
highest and Bet v 1l exhibiting the lowest allergenic activity
[158].

Cross-reactivity between Bet v 1 and other food allergens
leads to clinical oral allergy syndrome. Several of such
allergens homologous to Bet v 1 have been characterized
from apple (Mal d1) [156], sweet cherry (Pru av 1) [159],
celery (Api g 1) [155], carrot (Dau c 1) [160], peach (Pru p
1) [161], and pear (Pyr c 1) [162]. A sequence comparison of
some of these homologous allergens has been done showing
a significant sequence similarity of Bet v 1 with the food
allergens: about 52.5% with Mal d 1, 57.8% with Pru av 1,
39.8% with Api g 1, 35.9% with Dau c 1, and about 55.0%
and 56.6% with Pru p 1 and Pyr c 1, respectively (Figure 11).
Cross-reactivity is common when the IgE antibodies, pro-
duced originally in response to Bet v1 sensitization, rec-
ognize similar epitopes present on the surface of these
food allergenic proteins [163]. PR-10 proteins responsible
for allergenic reactions to legumes are also homologous to
Bet v 1 and have been reported from soy (Gly m 4) [164],
peanut (Ara h 8) [165], and mungbean seedlings (Vig r 1)
[166]. Birch pollen allergenicity has been also associated with
allergenicity from hazelnuts and chestnuts. Cor a 1 [167]
and Cas s 1 [168] are the major allergens responsible for
allergenicity from hazelnut and chestnut, respectively. Bet v
1 shares maximum sequence similarity (80.5%) with Cor a 1
(Figure 11).

Bet v1 consists of seven stranded 𝛽-sheet structure
wrapped around a 25-residue long C-terminal 𝛼-helix struc-
ture both of which are separated by two consecutive helices
(Figure 12). A hydrophobic cavity is created by the hydropho-
bic residues clustering in the interior region with some polar
residues pointing into the core [169]. The presence of such
an internal cavity suggests a possible role in binding with
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Figure 11: Multiple sequence alignment of birch pollen allergen Bet v 1 with food allergens: Mal d 1, Pru av 1, Api g 1, Dau c 1, Pru p 1, Pyr c
1, and Cor a 1. The identical sequences are highlighted in grey. The residues of Bet v 1 responsible for IgE binding are marked in green. The
nearly conserved glycine rich loop is highlighted in box.

hydrophobic ligands. A glycine rich loop connecting the
2 𝛽-strands, 𝛽2 and 𝛽3 is nearly conserved among all the
homologous PR-10 proteins. This might have a putative role
in lipid binding [170].

Some of the ligands binding to Bet v1 with low micro-
molar affinity such as fatty acids, flavonoids, and cytokinins
have been identified. The crystal structure of hypoallergenic
isoform Bet v 1l in complex with deoxycholate suggests that
Bet v 1 homologous proteins can act as a general plant steroid
carrier [171]. It has been evaluated from the crystal structure
of this birch pollen allergen in complex with the Fab fragment
of a murine monoclonal IgG antibody (BV16), that the
centrally located residue Glu45 is critical for antibody recog-
nition and forms two hydrogen bonds with the heavy-chain
variable region of the Fab fragment [172]. A conformational
epitope containing amino acid residues from Glu42 toThr52
(which also contains the glycine rich loop) and additional
dispersed amino acids Arg70, Asp72, His76, Ile86, and Lys97
has been identified to be responsible for binding to antibody
(Figure 12).

The secondary structure and the tertiary fold of Pru av
1, Api g 1, and Dau c 1 are identical to Bet v1 [173]. They
have a large internal hydrophobic cavity that can interact
with hydrophobic ligands and are important for physiolog-
ical functions. The hydrophobic cavity is large enough to
accommodate two suchmolecules. Binding studies of various
phytosteroids to Pru av 1 suggest similar interactions like Bet
v 1. Since both of these proteins have high level of sequence

His76

Glu45

Asp72

Arg70

Ile86

Lys97

Figure 12: Overall structure of Bet v 1 protein showing the
conformational epitope formed by amino acid residues from Glu42
to Thr52 (in green) and additional dispersed amino acids Arg70,
Asp72, His76, Ile86, and Lys97 (in green) for Fab binding. The
critical residue for antibody binding Glu45 is marked.

identity and similar overall backbone conformation, they
share identicalmolecular surface in terms of shape and charge
distribution.This explains the prevalence ofcross-reactive IgE
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Figure 13: The three common surface epitopes (in green) recognized for IgE binding marked from 1 to 3 in (a) Bet v 1, (b) Pru av 1, (c) Api
g 1, and (d) Dau c 1. The conformational epitope required for Fab binding (in red) in Bet v 1 (marked 4) is nearly conserved in Pru av 1 but
absent in Api g 1 and Dau c 1 because of the absence of Glu45.

binding epitopes in these proteins [174]. The epitope for anti-
body binding in Bet v 1 has been found to be nearly conserved
in Pru av 1 with Glu45 which may play a similar role in this
molecule.

Some structural differences exist between Bet v 1 with
Api g 1 and Dau c 1 although these allergens exhibit cross-
reactivity among themselves [160, 175]. The latter two share
about more than 80% sequence similarity with each other.
Api g 1 lacks the negatively charged Glu45, in contrast to
Bet v 1 and Pru av 1 [175]. The epitopes responsible for
binding are found to be different from those elucidated by
the structure of Bet v 1 in complex with Fab fragment of
monoclonal BV16 antibody. Three conserved surface patches
responsible for IgE binding are found to be common among
Bet v 1, Pru av1, Api g 1, and Dau c 1 (Figure 13). It has
also been observed that cross-reactivity between Bet v 1 and
Mal d 1 occurs not only at the serologic level but also at
the level of allergen specific T helper cells [176]. Eight cross-
reacting T cell epitopes have been observed between the two
allergens.

3.8. PR-14 Family Allergens. PR-14 proteins are identified as
lipid transfer proteins (LTPs) originally named after their
ability to transfer phospholipids and other fatty acid groups
across cell membranes. They are highly conserved group
of small proteins with molecular weights in the range of
9-10 kDa present in high amounts in higher plants and
can also bind to acyl groups. These proteins are present
in significant amounts in vascular tissue and in the outer
cell layers of plants. They are involved in plant defense
against bacterial and fungal pathogeneses as well as under
different environmental stresses such as drought, heat, cold,
or salt [177, 178]. There are evidences which suggest that
LTPs are also involved in cutin formation, where they act
as carriers of acyl monomers and in the process of cell
wall extension [179]. They are divided into two types: those
specific for certain classes of phospholipids and those that are
able to accommodate several lipid classes, called nonspecific
LTPs. Allergenic features of nonspecific LTPs (ns-LTPs) were
reported in fruits, vegetables, nuts, pollen, and latex [180].
Due to their extreme proteolytic resistance, these allergens
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Figure 14: (a) Multiple sequence alignment of allergens of ns-LTPs from four Rosaceaefruits: peach, apple, apricot, and cherry. The identical
sequences are highlighted in grey. Eight conserved cysteine residues are highlighted in yellow. The speculated three IgE binding epitopes of
Pru p 3 from peach are marked in green. (b) Overall structure of ns-LTP, Pru p 3 showing the three possible IgE epitope binding regions (in
green) marked from 1 to 3. The five charged residues in yellow having a possible role in epitope recognition and the eight cysteine residues
forming four disulphide bridges are also marked.

are able to traverse up to the gastrointestinal immune system,
allowing sensitization and inducing specific IgE thereby
eliciting severe clinical symptoms [181].

LTPs are the most important allergens of the Rosaceae-
fruits, such as peach (Pru p 3) [17], apple (Mal d 3) [182],
apricot (Pru ar 3) [183], cherry (Pru av 3) [184], and plum (Pru
d 3) [185], when no pollinosis is involved. Due to significant
sequence identity (more than 81%) (Figure 14(a)) shared by
ns-LTPs from Rosaceae fruits along with the considerable
degree of immunological cross-reactivity, it has been sug-
gested that they have comparable IgE binding epitopes [186].
Patients allergic to PR-14 proteins in fruits tend to have a
higher rate of anaphylaxis (36%) than patients having fruit
allergy by PR-10 proteins (18%).

The structure of the allergen belonging to this family,
Pru p 3 from peach, has been extensively studied [187].
The main structural motif is represented by an 𝛼-helical
compact domain, where four helices are connected by short
loops (Figure 14(b)). Eight conserved cysteine residues were
observed forming four disulfide bridges which makes it
highly resistant to harsh temperature and pH changes. It
had been speculated that five positively charged residues,
Arg39, Thr40, Arg44, Lys80, and Lys91, are the possible
candidates involved in epitope formation. Moreover, using
a library of 10-mer synthetic peptides, which screened
the whole protein sequence, three potential IgE-binding
epitope regions have been identified [188] (Figure 14(b)),
which are nearly conserved in other LTPs of Rosaceaefruits
(Figure 14(a)).

Recent reports have also indicated that ns-LTPs from
species other than Rosaceae, such as nuts, cereals, grapes,
oranges, and vegetables, might also be involved for plant food

allergies [189]. Severe reactions against hazelnut and chestnut
are linked to sensitization to the LTPs, Cor a 8 [190], and Cas
s 8 [191], respectively.Themajor allergens ofmaize (Zeam 14)
[192] and barley (Hor v 14) [193] are also reported to be LTPs
and are highly homologous with the peach LTP. LTPs of PR-
14 family are also reported from pollens including Par j 1 from
weeds of Parietaria judaica affecting 50% of allergic patients
in the Mediterranean area [194].

4. PR-Proteins and Disease Resistant
Genetically Modified Crops

PR proteins are of immense importance as preservative
agents in food industry and for producing disease resistant
plants by genetic engineering [195]. Various studies have
revealed that transgenic plants overexpressing genes of the
PR-1, PR-2, PR-3, and PR-5 families mediate host plant
resistance to phytopathogenic fungi [196–198]. Coexpression
of multiple antifungal protein genes in transgenic plants
seems to be more effective than expression of single genes
[199]. It is possible that such genetically modified (GM)
plants with enhanced expression of PR proteins will also
be associated with increased allergenicity and toxicity thus
raising a serious question for their commercial acceptability.
PR protein, osmotin used for developing transgenic crops,
showed cross-reactivity with tomato and apple allergens
[134].

Different strategies are adopted to monitor the trans-
formed crops for their allergenicity and various guidelines
are defined by the Food andAgricultureOrganization (FAO),
World Health Organization (WHO), and Codex Alimentar-
ius Commission (Codex) to determine whether a new GM
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crop can be commercialized [200].The present approach uses
a combination of methodologies to evaluate the allergenicity
assessment [201].The allergenicity potential of modified food
is primarily speculated on the basis of whether the source of
the transformed protein is a plant known to produce allergen
and also on the characteristic features of the introduced
protein. The homology of the latter to known allergens along
with IgE reactivity of the transformed protein with individ-
uals with known allergies to the original source of the novel
gene or related allergies is assessed. Moreover, the resistance
of the novel protein to pepsin and the immunoreactivity
of the novel protein in appropriate animal models are also
evaluated [202]. Such step by step approach will provide
valuable insights to estimate whether the transformed protein
will be allergenic or not.

5. Conclusions

PR proteins and their homologues are responsible for the
defense against various stresses including pathogen attacks,
wounding, use of chemicals, and pollutants. Recent studies
have suggested their immense importance in agricultural and
food industry with the introduction of transgenic plants.
However, many of these protective proteins of the plants
have demonstrated allergenicity specially the PR proteins
belonging to the families 1, 2, 3, 4, 5, 8, 10, and 14. Though
there are not much similarities among the different families
of PR proteins in terms of their sequence identities or
structures, similarity in the amino acid sequences among
allergens from diverse plants within the same family results
in cross-reactivity. The allergenicity of the PR proteins
is also guided by several environmental factors like the
use of chemical inducers in agriculture and environmental
pollutants. Exploring new PR proteins implicated in aller-
genicity and a complete understanding of their structures
and IgE binding epitopes are necessary for their safe use
in plant engineering. The knowledge of the localization
of IgE epitopes on the allergen helps in the identification
of cross-reactivity among homologous proteins and may
also contribute to the design of effective immunotherapy
strategies for certain allergy producing substances like latex,
pollen, and so forth along with their respective related
allergies.
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Dijkstra, “The 1.8 Å resolution structure of hevamine, a plant
chitinase/lysozyme, and analysis of the conserved sequence and
structure motifs of glycosyl hydrolase family 18,” Journal of
Molecular Biology, vol. 262, no. 2, pp. 243–257, 1996.

[138] A. Perrakis, I. Tews, Z. Dauter et al., “Crystal structure of a
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