
Clinical/Basic Science Research Article

OPEN
The induced membrane t
echnique in animal
models: a systematic review
Hening Sun, MSca, Charles Godbout, PhDa, Kalter Hali, MSca, Jovana Momic, MDa,
Emil H. Schemitsch, MD, FRCSCb, Aaron Nauth, MD, MSc, FRCSCa,c,∗
Abstract
Objectives: The induced membrane technique (IMT) is a 2-stage surgical approach that has become increasingly popular to
manage bone defects. Preclinical investigations have been conducted to better understand and define several aspects of this
technique. This review summarizes the literature regarding the IMT performed in animal models and identifies potential future
directions.

DataSources:Biosis Citation Index, Ovid Embase, and Ovid MEDLINE databases were searched from inception up to June 23,
2021 for articles related to the IMT.

Study Selection: Animal studies involving the use of the IMT for segmental defects in long bones were selected. Only full-length
original research articles published in English or French were included.

Data Extraction: Two authors extracted the data from the selected studies and a third author verified the accuracy of the
information.

DataSynthesis: Information concerning the animal model, the surgical procedures, and the outcomemeasures were recorded for
each study and compiled.

Conclusions: Forty-seven studies were included in this review. Twenty-nine studies (62%) performed both stages of the
technique, but only 8 (17%) reported on radiographic union rates explicitly and 5 (11%) included biomechanical testing. A large
proportion of the preclinical literature on the IMT has failed to report on radiographic union as an outcome. While studies reporting
membrane properties are valuable, they may not provide information that translates into clinical practice or further clinical research if
the ultimate outcome of bony healing is not considered. Future animal studies of the IMT should consider this in their study design.
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1. Introduction

The treatment of segmental bone defects and fracture nonunion
represents a major clinical challenge for orthopedic surgeons.
Segmental bone defects can occur as a result of trauma, infection,
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or tumor resection. On average, nonunion occurs in 5% of
fractures, with rates reaching over 10% for femoral or tibial
fractures.[1] Nonunion leads to additional surgical procedures,
higher use of medication and healthcare resources, and a decrease
in the patient’s quality of life.[2,3]

The induced membrane technique (IMT), also known as the
Masquelet technique, is a 2-stage surgical procedure that has
gained popularity for the management of fracture nonunion and
large bone defects. It is less complicated to perform than other
techniques (such as vascularized grafting or bone transport), and
healing time is theoretically not affected by the defect size.[4]

Traditionally, the first stage consists of implanting a polyme-
thylmethacrylate (PMMA) spacer into the defect site. Over
subsequent weeks, the spacer induces the formation of a
membrane surrounding the defect due to the foreign body
immune response. The second stage involves removing the
PMMA spacer through an incision in the membrane, followed by
autologous bone grafting into the preserved space.
Despite the increased clinical application of the IMT, several

aspects of the technique are controversial and the subject of
ongoing debate, andmanyof these issues are difficult to investigate
clinically. As a result, several animal models have been developed
to characterize the IMT and test the effect of parameter variations
on membrane formation and subsequent bone healing.
The objective of this study was to systematically review the

literature related to the IMT performed in animal models in order
to summarize the current state of knowledge and identify future
directions for preclinical research.
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2. Methods

2.1. Literature search strategy

BIOSIS Citation Index (Web of Science), Embase (Ovid), and
MEDLINE (Ovid) databases were searched, from inception up to
June 23, 2021, for studies investigating the IMT in animal models.

2.2. Inclusion and exclusion criteria

Original research articles fulfilling the following criteria were
included: (1) written in English or French; (2) conducted in
animal models; (3) studied segmental defects in long bones; (4)
performed at least the first stage of the IMT (insertion of spacer).
Our exclusion criteria were, in order: (1) duplicate; (2)
unavailable full text; (3) not in selected languages (English or
French); (4) abstract only; (5) not an animal study; (6) not an
original research article (eg, review and editorial); (7) not IMT;
(8) not a segmental defect in a long bone.
2.3. Selection of studies

Screening was performed using Covidence systematic review
software (Veritas Health Innovation; Melbourne, Australia). All
publications were independently screened by 2 reviewers based
on their title and abstract, followed by a full-length assessment to
determine final inclusion. Disagreements between 2 reviewers
were resolved by a third reviewer.
2.4. Data extraction

Basic information (author, year, title) was recorded for all
included studies. Data pertaining to the following elements was
extracted, if available: animal model (species, strain, age, weight,
and sex), sample size and groups, surgical technique (bone, size of
defect, fixation technique, spacer material, duration of spacer
implantation, graft material at the second stage, time to
euthanasia after second stage), investigatory techniques, and
outcomes. We also categorized the studies as having analyzed the
induced membrane, bone formation/healing, or both.
We recorded if studies completed only the first stage surgery or

both stages. Of the studies that completed a second stage surgery,
we noted if they performed radiographic assessment (eg, plain
X-rays and micro-computed tomography) and, in such cases, if
bone union rates were explicitly reported for each group based on
this assessment. We also recorded if bones were subjected to
biomechanical testing.
3. Results

3.1. Search results

The search strategies from BIOSIS Citation Index, Embase, and
MEDLINE retrieved 1619 articles (Fig. 1). After automatic
removal of duplicates and following screening based on title and
abstract, 134 full-text articles were assessed for eligibility
according to the inclusion and exclusion criteria. Following
exclusions, 45 studies remained. Two additional articles were
identified from screening reference lists, leading to a total of 47
studies included in this systematic review.

3.2. Animal models

Six different animal species were used in the included studies
(Table 1). Rats were most common (n=28 studies; 60%),[5–32]
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followed by rabbits (n=11; 23%),[33–43] and sheep (n=5;
11%).[44–48] Chickens,[49] goats,[50] and mice[51] were each used
in only 1 study (2%). Thirty studies (64%) usedmale animals and
9 (19%) used female animals; the information was not provided
for 8 studies (17%). The vast majority of studies were performed
in healthy animals under normal conditions. Only 3 studies
examined the IMT in a context of compromised healing (infection
[n=2][23,25] or radiation exposure [n=1])[24]. In each case, the
study was conducted in a rat model and only the first stage of the
IMT was performed.
3.3. Bone defects and methods of fixation

Thirty studies (64%) performed surgery on the femur, 8 (17%)
on the radius, 4 (9%) on the tibia, 3 (6%) on the metatarsus, and
2 (4%) on the ulna (Table 1). Defect sizes varied by animal and
anatomic location. In rats, the median defect size was 7mm in the
femur (range: 0.75–10; n=26) and 6mm in the tibia (n=1). In
rabbits, themedian defect size was 15mm in the radius (9–15; n=
7), 25mm in the ulna (15–35; n=2), and 12.5mm in the femur
(10–15; n=2). In sheep, the median defect size was 25mm in the
metatarsus (25–25; n=3), 30mm in the femur (n=1), and 50mm
in the tibia (n=1). In chickens, goats, and mice, the defect size
was 15mm (radius), 50mm (tibia), and 3mm (femur), respec-
tively (n=1). Only 1 study investigated different defect sizes (4, 6,
and 8mm, created in the rat tibia).[26]

Regarding the methods of fixation, 29 studies (62%) used plate
and screws, 5 (11%) used an intramedullary nail, 4 (9%) used an
external fixator, 1 (2%) used a K-wire, 2 (4%) used a splint only,
and 7 (15%) used no fixation at all. Among these, 1 study
compared fixation with plate and screws to no fixation, after
creating a defect in the radius of rabbits.[42]
3.4. Spacers: duration of implantation and materials

The median number of weeks the spacer remained within the
bone defect following the first stage surgery was 4weeks in rats
(range: 3–16; n=24), 4weeks in rabbits (4–6; n=6), 6weeks in
sheep (4–6; n=5), and 4weeks in goats (n=1). Fifteen studies
investigated multiple time points: 7 in rats (range: 0.1–16weeks),
6 in rabbits (2–8weeks), 1 in chickens (2.1–4.3weeks), and 1 in
mice (2–8weeks). Four studies used multiple time points in 1
experimental arm (for animals undergoing the first stage only)
and a single time point for another arm (for animals undergoing
both stages). No study compared the effect of variable duration of
spacer implantation on eventual bone healing after the second
surgical stage.
A PMMA spacer (antibiotic-free) was used in 36/47 studies, as

the only type of spacer used or in comparison with other spacer
materials. In a few cases, PMMA-based spacers contained
additional components (other than antibiotics), such as calcium
carbonate,[21] zirconium oxide,[49] or poly(D,L-lactic-co-glycolic
acid) microparticles and carboxymethylcellulose.[25] Thirteen
studies (28%) used PMMA spacers impregnated with antibiotics.
Other spacer types included epoxy (n=1), polyvinyl alcohol (n=
1), silicone (n=1), stainless steel (n=1), and titanium (n=3).
Only 1 study did not use any form of PMMA spacer, using epoxy
instead.[6] Different spacer materials were compared in 8 studies,
each of which compared alternatives to PMMA. In addition, only
3 studies compared PMMA-based spacers that were either
impregnated with antibiotics or not.[21,23,25] However, none of
these studies performed the second stage of the IMT; their
analyses focused on infection clearance and/or membrane
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Figure 1. Flow diagram illustrating the process of study screening and selection. IMT= induced membrane technique.
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properties. Finally, some authors compared smooth spacers to
those with a roughened[9,30] or textured surface.[50]
3.5. Graft materials, cells or growth factors, and time
of euthanasia after the second surgical stage

Twenty-nine studies (62%) performed the second stage surgery in
an animal model (Table 1). Autologous bone graft was used in 18
studies. In rats, the caudal tail vertebrae were most commonly
used (n=6); 3 studies did not specify the source of autologous
bone graft. Graft material was most often taken from the iliac
crest of the same animal in rabbits (n=4) and sheep (n=3). Other
sites of autologous graft harvest included the humerus in sheep
(n=1) and sternum in goats (n=1). In 4 studies, graft was
obtained from donor animals (Sprague Dawley rats), and the use
of allograft was reported in only 2 studies (1 in rabbits and 1 in
sheep). Bone substitutes served as graft material in 12 studies.
Various ceramics (eg, b-tricalcium phosphate, calcium carbon-
ate, calcium sulfate, and/or hydroxyapatite) were used alone or in
combination (as a commercial or customized preparation), or
mixed with other types of materials (eg, polycaprolactone and
polylactic acid). Coral was also used in a study in sheep.[48]
3

Cells (eg, mesenchymal stem cells [MSC], bone marrow-
derived mononuclear cells, endothelial progenitor cells) have
been implanted in conjunction with graft material in 6 studies (3
in rats, 1 in rabbits, and 2 in sheep). A technique mimicking the
collection of bone graft and MSC with a reamer-irrigator-
aspirator has been used in rabbits.[38] In an additional study,
MSC overexpressing stromal cell-derived factor 1 were delivered
in the bone marrow of Wistar rats at the first surgery.[32]

Moreover, growth factors (eg, bone morphogenetic protein
[BMP]-2, BMP-7, epidermal growth factor) or platelet-rich
plasma have also been used, either at the second surgical stage in
conjunction with graft material (3 studies; 2 in rats, 1 in rabbits),
at the first surgery or between stages (3 studies; 1 in rats, 2 in
rabbits).
Following the second surgical stage, animals were

euthanized for further analysis at the following median
time points: 8weeks in rats (range: 6–12; n=15), 8weeks in
rabbits (6–12; n=3), 21weeks in sheep (12–26; n=4), 12weeks
in goats (n=1). Additionally, some studies in rats (n=2),
rabbits (n=3), and sheep (n=1) had multiple endpoints, ranging
from 0.1 to 10weeks, 2 to 12weeks, and 2 to 8weeks,
respectively.

http://www.otainternational.org


Table 1

Summary of study characteristics.

Species

Rat 28
(59.6%)

Rabbit 11
(23.4%)

Sheep 5
(10.6%)

Chicken 1
(2.1%)

Goat 1
(2.1%)

Mouse 1
(2.1%)

All species
47 (100%)

Bone
Femur 26 (92.9%) 2 (18.2%) 1 (20.0%) 1 (100%) 30 (63.8%)
Metatarsus 3 (60.0%) 3 (6.4%)
Radius 7 (63.6%) 1 (100%) 8 (17.0%)
Tibia 2 (7.1%) 1 (20.0%) 1 (100%) 4 (8.5%)
Ulna 2 (18.2%) 2 (4.3%)

Stages
Stage 1 only 11 (39.3%) 5 (45.5%) 1 (100%) 1 (100%) 18 (38.3%)
Stage 1 + 2 17 (60.7%) 6 (54.5%) 5 (100%) 1 (100%) 29 (61.7%)

Primary outcome∗

Membrane analysis 11 (39.3%) 5 (45.5%) 1 (100%) 1 (100%) 18 (38.3%)
Bone healing 7 (25.0%) 4 (36.4%) 3 (60.0%) 1 (100%) 15 (31.9%)
Both 9 (32.1%) 2 (18.2%) 2 (40.0%) 13 (27.7%)

Stage 2 analyses
Radiographic assessment after

second stage
16 (57.1%) 5 (45.5%) 5 (100%) 1 (100%) 27 (57.4%)

Reported radiographic union rate† 5 (17.9%) 1 (9.1%) 2 (40.0%) 8 (17.0%)
Biomechanical testing 4 (14.3%) 1 (9.1%)‡ 5 (10.6%)

∗ One study in rats did not perform membrane analysis or bone healing assessment.[23]
† To be considered as reported, radiographic union rates must be provided explicitly for every group included in the study.
‡ Biomechanical testing was performed before the second stage in one additional study.[42]
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3.6. Outcomes

The primary outcome was analysis of the induced membrane in
18 studies (38%), bone healing in 15 studies (32%), and both in
13 studies (28%) (Table 1). One study focused on eradication of
infection and did not report on membrane properties or bone
healing.[23] Studies investigating the induced membrane targeted
different aspects, including: thickness, cell content, gene expres-
sion, protein concentration (eg, growth factors), extracellular
matrix composition and/or vascularity. In addition, Gaio et al
tested the barrier, tensile, and shrinkage properties of the induced
membrane.[9]

While 27 studies (57%) used radiographic imaging methods
after the second stage, only 8 (17%) reported rates of bone union
explicitly for each of the study groups (Tables 1, S1, http://links.
lww.com/OTAI/A36). Finally, 5 studies (11%) performed
biomechanical testing after grafting (Table 1), but only 2 of
them also reported union rates.[31,35]

A summary of the studies that performed the second stage
surgery and used radiographic imaging is presented in Table S1,
http://links.lww.com/OTAI/A36.
4. Discussion

The IMT has become a popular technique used for treatment of
fracture nonunion. However, there remains ongoing debate
regarding how the technique is best applied in a clinical setting.
Animal models have been used to characterize the IMT and
determine the impact of multiple variations in surgical technique.
In this article, we systematically reviewed the literature and
analyzed 47 studies investigating the IMT in animal models, to
summarize the current knowledge and suggest future research
directions.
Out of the 47 studies, 29 (62%) completed both stages of the

IMT and 27 (57%) reported using radiographic imagingmethods
after the second stage. However, only 8 studies (17%) provided
4

radiographic healing rates in a clear and precise manner for every
study group. Some authors used radiographic scales to emphasize
specific aspects of bone healing (eg, defect filling and bone
remodeling). However, many of these scoring systems cannot be
directly translated into a union rate. Other articles do mention
that union was achieved in a group but do not further specify an
exact rate. Therefore, it would be more clinically meaningful for
future studies to include an objective assessment of the union
status and report it explicitly.
The second stage of the IMT was not performed at all in 38%

of studies (18/47). Accordingly, these investigations aimed
primarily at analyzing the induced membrane. Such work has
produced valuable knowledge about the membrane character-
istics, observed under various conditions related to the first
surgical stage.[52,53] However, this approach limits our under-
standing of how these conditions affect the ultimate outcome of
bony healing after the second stage surgery. The induced
membrane is believed to play an essential role in the success of
the technique by supporting healing in different ways, such as
providing mechanical stability to the graft, and acting as a barrier
to prevent soft tissue invasion.[54] The membrane is also
vascularized and contains stem cells and growth factors (eg,
BMP-2 and vascular endothelial growth factor),[52,53] which
could contribute to graft viability and further promote healing.
However, these presumed roles and contributions still need to be
investigated thoroughly, in relation to bone healing outcomes. In
a recent study, samples of induced membranes were collected
from patients at the second surgical stage for analysis.[55] Six
months later, based on clinical outcomes, the patients were
defined as responders (8 cases) and nonresponders (3 cases) to
the IMT. In comparison to the responder group, the induced
membranes of the nonresponders had an inner layer that was
either absent or thinner, a lower cell density, altered extracellular
matrix remodeling, and noMSC obtained from explants in vitro.
While the cohort was small and heterogeneous, this article is
presumed to be the first reporting a link between clinical healing
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outcomes and membrane characteristics, emphasizing the need
for further research.
Among the included studies, some attempts were made to

assess the membrane’s roles, notably by including groups where
the membrane was removed during the second stage. Luang-
phakdy et al examined the influence of using a textured spacer,
which doubled the surface area of the membrane, as well as
scraping the membrane’s inner layer before grafting on bone
healing.[50] However, it remains uncertain which aspects of the
induced membrane have the greatest impact on bone healing. For
example, is there a threshold below or above which membrane
thickness would affect the outcome? Is there an optimal range of
growth factor concentrations or vascularity? Without answers to
such questions, results based solely on the membrane analysis are
difficult to interpret and do little to guide clinical treatment or
even future clinical studies.
Several aspects of the IMT have only been investigated in a

limited manner in the preclinical literature and, therefore, remain
to be explored in further detail. For example, different durations
of spacer implantation have only been tested in studies that did
not perform the second surgical stage; as a result, the influence of
this factor on ultimate bone healing remains unclear. This aspect
is of particular interest for orthopedic surgeons as it could
influence the surgical timing for their patients. Another debated
question concerns the routine use of antibiotic-impregnated
spacers at the first surgical stage. This practice has become
relatively commonplace in the clinical literature,[56] despite
concerns expressed regarding the development of antibiotic
resistance or the impact on the induced membrane. Yet, among
the studies that compared spacers with and without antibiotics,
none of them performed the second stage surgery, once again
leaving uncertainty regarding the impact on bone healing.
While bone healing differs between sexes, only a small

proportion of the included studies reported using female animals,
and no study directly compared males and females. Similarly, the
effect of animal age has not been investigated, and methods of
fixation have also not been directly compared. As previously
mentioned, the success of the IMT is theoretically not affected by
defect size; however, this concept has not been thoroughly
investigated. Only 1 study has explored multiple defect sizes.[26]

Another clinically relevant aspect that has received limited
attention in research is the use of models of compromised healing.
Indeed, the vast majority of the studies in our review rely on
healthy animal models. Only 2 studies modeled infection at the
surgical site but their measured outcomes were related to
infection clearance and/or membrane analysis, as they did not
perform the second stage surgery. Nevertheless, patients with
open fractures, infected nonunions, and osteomyelitis represent a
substantial proportion of the patients treated with the IMT.[56] It
would also be relevant to test the IMT in the presence of
comorbidities known for their deleterious effect on bone healing,
such as diabetes, and for which animal models are available.
Finally, while graft material harvested from the iliac crest is 1 of

the most common clinical approaches, only 7 studies obtained
autologous graft from the iliac crest. Whether due to anatomical
differences or technical limitations, bone graft was often collected
from other sources that may not translate to clinical practice. In
general, descriptions of bone grafting protocols are limited,
which further complicates the evaluation of graft material
quality. Considering that the overall success of the IMT cannot be
isolated from the quality of bone graft, it is critical to optimize
the grafting protocol before making comparisons with other
techniques.
5

5. Conclusions

The growing clinical use and popularity of the IMT seems to have
resulted in an acceleration of animal research on the topic.
However, as this review demonstrates, various gaps and
limitations exist in the preclinical literature with respect to
assessment approaches, reporting, or targets of investigation. To
provide more meaningful conclusions from a clinical standpoint,
future studies should aim to report union rates explicitly, based
on radiographic evaluation, and functional assessment of bones
should be encouraged. Studies including both stages of the
techniques should also be favored. Nevertheless, a better
understanding of how the membrane characteristics influence
healing outcomes remains crucial. Many aspects of clinical
importance still need to be investigated, such as the impact on
bone healing of antibiotic-impregnated spacers, time between
stages, sex or comorbidities. Finally, models of the IMT should be
described in detail, particularly in relation to the grafting
protocol.
Acknowledgments

We would like to thank Christian Hegner for his help with the
development of the search strategies.
References

1. Zura R, Xiong Z, Einhorn T, et al. Epidemiology of fracture nonunion in
18 human bones. JAMA Surg. 2016;151:e162775.

2. Antonova E, Le TK, Burge R, et al. Tibia shaft fractures: costly burden of
nonunions. BMC Musculoskelet Disord. 2013;14:42.

3. Brinker MR, Trivedi A, O’Connor DP. Debilitating effects of femoral
nonunion on health-related quality of life. J Orthop Trauma. 2017;31:
e37–e42.

4. Mauffrey C, Barlow BT, Smith W. Management of segmental bone
defects. J Am Acad Orthop Surg. 2015;23:143–153.
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