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Beta Oscillatory Dynamics in the 
Prefrontal and Superior Temporal 
Cortices Predict Spatial Working 
Memory Performance
Amy L. Proskovec  1,2,3, Alex I. Wiesman  2,3, Elizabeth Heinrichs-Graham  2,3 &  
Tony W. Wilson1,2,3

The oscillatory dynamics serving spatial working memory (SWM), and how such dynamics relate to 
performance, are poorly understood. To address these topics, the present study recruited 22 healthy 
adults to perform a SWM task during magnetoencephalography (MEG). The resulting MEG data were 
transformed into the time-frequency domain, and significant oscillatory responses were imaged using 
a beamformer. Voxel time series data were extracted from the cluster peaks to quantify the dynamics, 
while whole-brain partial correlation maps were computed to identify regions where oscillatory 
strength varied with accuracy on the SWM task. The results indicated transient theta oscillations in 
spatially distinct subregions of the prefrontal cortices at the onset of encoding and maintenance, which 
may underlie selection of goal-relevant information. Additionally, strong and persistent decreases in 
alpha and beta oscillations were observed throughout encoding and maintenance in parietal, temporal, 
and occipital regions, which could serve sustained attention and maintenance processes during SWM 
performance. The neuro-behavioral correlations revealed that beta activity within left dorsolateral 
prefrontal control regions and bilateral superior temporal integration regions was negatively correlated 
with SWM accuracy. Notably, this is the first study to employ a whole-brain approach to significantly 
link neural oscillations to behavioral performance in the context of SWM.

Spatial working memory (SWM) supports the temporary maintenance and manipulation of spatial information 
to be used towards concurrent processing, and is vital to healthy daily functioning. Like other forms of working 
memory, it can be broken down into three phases. Encoding encompasses the loading of information into mem-
ory, while maintenance refers to the active retention of that information. Finally, retrieval involves the recovery of 
the information to be used towards a specific cognitive operation.

Previous neuroimaging studies have shown that a variety of cortical regions within the frontal, temporal, 
parietal, and occipital cortices are recruited during SWM performance1–8. Some of these regions, including bilat-
eral inferior frontal gyri, dorsolateral prefrontal cortices, insula, superior parietal lobules, intraparietal sulci, and 
pre-supplementary motor area are believed to be part of a core working memory (WM) network, which is acti-
vated across all subtypes of WM tasks (e.g., verbal, spatial, object)1,3–5,9,10. However, specific regions within and 
outside the core network also appear to serve particular types of WM operations. For example, stronger activation 
in the superior parietal lobules and intraparietal sulci (both core regions) during SWM relative to other types of 
WM has been reported, and, unlike other types, SWM processing appears to uniquely recruit the bilateral supe-
rior frontal gyri and right inferior parietal lobule3–7,10–12.

These anatomical findings have been confirmed and expanded by several large-scale meta-analyses examin-
ing the brain regions serving SWM performance1,3–5,12. However, these meta-analyses included only functional 
magnetic resonance imaging (fMRI) and positron-emission tomography (PET) results, and less is known about 
the oscillatory dynamics underlying SWM performance. The studies that have investigated oscillatory activity 
serving SWM have found similar brain regions despite utilizing a variety of tasks. For example, several studies 
have reported alpha oscillatory responses in frontal, parietal, and occipital regions during SWM performance. 
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However, the results of these studies have been inconsistent, with some reporting increased13–16 and others find-
ing decreased alpha activity within the same regions16–21. Other studies have reported increased alpha activity 
as WM load increased within SWM-related regions15,17, while the opposite load-related effects have also been 
observed13,18,21–23. Beyond the alpha findings, multiple SWM studies have reported beta oscillations in posterior 
areas14,18,21, increased theta activity in frontal and parieto-occipital cortices20,22,23, and increased gamma oscilla-
tions in frontal, temporal, and parietal regions14,15,24. Several studies have also found both increased and decreased 
gamma activity in occipital regions during SWM14,18,21.

While the aforementioned studies have provided critical insight into the oscillatory dynamics serving SWM, 
a few points become apparent when considering this work. First, nine of the studies restricted their analyses to 
the maintenance phase of SWM performance, two utilized tasks in which encoding, maintenance, and retrieval 
processes occurred in parallel, and the final study did not attempt to identify the neural origin of oscillatory 
responses. Thus, the spatiotemporal dynamics underlying the distinct phases of SWM remain poorly understood. 
Second, the at times conflicting results and wide array of SWM tasks utilized render a direct comparison between, 
and conclusive interpretation across studies difficult. Third, only one study investigated the relationship between 
oscillatory responses and SWM performance. This is surprising given that a hand-full of fMRI experiments have 
revealed that neural activity within bilateral prefrontal cortices, frontal eye fields, and posterior parietal cortices is 
tied to better SWM performance, with the dorsolateral prefrontal cortex being most often cited25–30. Additionally, 
the study that did probe oscillation-performance relationships constricted the analyses to gamma activity within 
two regions of interest, demonstrating that gamma activity within the left medial prefrontal cortex could be used 
to decode the number of behaviorally relevant items held in SWM with a 59% probability of correct assignment15. 
While this finding was an important contribution to the field, much remains to be explored. In particular, a 
whole-brain analysis approach could offer crucial insight into the oscillatory correlates of SWM performance.

In the present study, we sought to fill the aforementioned gaps in the literature and characterize the oscillatory 
dynamics serving SWM encoding and maintenance processes, including being the first study to investigate the 
relationship between oscillatory activity and SWM performance via whole-brain analyses. To this end, we utilized 
the spatiotemporal precision of magnetoencephalography (MEG) and a visual SWM task. Our hypotheses were 
two-fold. First, given the established functional specializations of distinct prefrontal regions and the prior reports 
of increased frontal theta during WM performance20,22,23,31–33, we predicted increased theta activity in prefrontal 
regions that would be differentially recruited during SWM encoding and maintenance processes. In contrast, we 
hypothesized persistent decreases in alpha and beta activity in posterior parietal and occipital regions throughout 
SWM encoding and maintenance, as decreased alpha and/or beta activity has been linked to active engagement 
in ongoing cognitive processing18,34,35, and given the involvement of posterior parietal and occipital regions in 
spatial attention and mapping the spatial environment36–39. Our second set of hypotheses pertained to the rela-
tionships between neurophysiological and behavioral data. Provided the consistent link between dorsolateral 
prefrontal cortex activity and SWM performance in the fMRI literature25–27,30, we hypothesized that oscillatory 
activity within the dorsolateral prefrontal cortex would similarly be related to SWM performance.

Results
Behavioral Analysis. Twenty-two healthy adults (mean age: 26.05) were recruited to perform a visual SWM 
task during MEG. During task performance, all participants were seated in a nonmagnetic chair within a mag-
netically-shielded room and told to fixate on stimuli presented centrally. Briefly, a trial consisted of the presenta-
tion of an empty 7 × 9 grid for 1500 ms, four black squares displayed within the grid for 1500 ms (encoding), an 
empty grid for 2500 ms (maintenance), and a probe of four black squares presented within the grid for 1000 ms 
(retrieval) during which participants responded as to whether the squares were in the same location relative to the 
encoding stimulus (Fig. 1). Each trial lasted 6500 ms, and each participant completed approximately 128 trials. All 
22 participants were able to complete the task, with a mean accuracy of 81.6% (SD = 7.3%) and an average latency 
of 891.3 ms (SD = 146.5 ms).

Sensor-Level Analysis. The continuous magnetic time series was divided into epochs of 5500 ms duration, 
with the onset of the encoding stimulus being defined as 0 ms, the onset of maintenance occurring at 1500 ms, 
and retrieval onset occurring at 4000 ms. To determine time-frequency bins containing oscillatory responses of 
interest, artifact-free sensor-level data was transformed into the time-frequency domain using complex demod-
ulation, and normalized relative to a baseline period (i.e., −400 to 0 ms). Statistical analysis of the resulting 
time-frequency spectrograms revealed significant clusters of theta (4–8 Hz), alpha (8–11 Hz), and beta (15–20 Hz) 

Figure 1. Spatial working memory task.
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oscillatory activity in gradiometers near temporal, parietal, and occipital cortices across all participants (Fig. 2; 
p < 0.05, corrected). Shortly after the onset of the encoding stimulus (i.e., 0 ms), significant increases in theta 
activity were observed beginning at 100 ms, which tapered off at about 350 ms (p < 0.05, corrected). The alpha and 
beta responses were much more sustained, with significant decreases in both bands beginning about 400 ms after 
the onset of the encoding stimulus, and persisting throughout the remainder of the encoding and maintenance 
periods (p < 0.05, corrected). Thus, the time-frequency windows which were beamformed were: 4 to 8 Hz from 
100 to 350 ms, 8 to 11 Hz from 400 to 4000 ms, and 15 to 20 Hz from 400 to 4000 ms.

Beamformer and Virtual Sensor Analyses. Imaging of the oscillatory responses identified through 
the sensor-level analyses revealed strong increases in theta activity in the left dorsolateral prefrontal cortex and 
right inferior frontal gyrus (Fig. 3; p < 1−6, cluster-corrected). To characterize the time course of activity in these 
regions, we extracted virtual sensors from the peak voxel in each cluster, and plotted their relative power as a 
function of time. The time series of the left dorsolateral prefrontal cortex revealed transient increases in theta 
activity shortly after the onset of both the encoding and maintenance phases, with that following the onset of 
maintenance being markedly stronger. Theta activity in the right inferior frontal gyrus followed a similar pattern, 
but the more substantial increase was observed following the onset of the encoding stimulus.

In contrast, significant decreases in alpha and beta activity were observed in more posterior regions includ-
ing the left superior parietal lobule and bilateral cuneus for alpha activity (Fig. 4), and the left superior tempo-
ral gyrus, left inferior parietal lobule, right intraparietal sulcus, and right cerebellum for beta activity (Fig. 5). 
Inspection of the time series revealed sharp decreases in alpha and beta activity shortly after the onset of the 
encoding stimulus across their respective regions, which were largely sustained throughout the remainder of 
encoding and the entirety of maintenance. Of note, we also conducted the same virtual sensor time series anal-
yses with the evoked activity removed for the theta and alpha peaks, and found very similar results for these 
regions. Essentially, the resulting temporal profiles of oscillatory dynamics were nearly identical across the two 
approaches, albeit the amplitude of responses varied in some regions (see Supplementary Figs S1 and S2). Thus, 
the responses observed in the time series analyses were above and beyond the influence of evoked responses.

SWM Performance Correlation Maps. To identify oscillatory responses that were directly tied to SWM 
performance, whole-brain correlation maps were computed using images from each MEG time-frequency 
response and accuracy. This revealed that beta oscillatory activity within the left dorsolateral prefrontal cortex and 
bilateral superior temporal gyri was negatively correlated with accuracy on the SWM task, when partialling out 
reaction time (Fig. 6; p < 0.005, cluster-corrected). That is, as beta activity decreased within these regions, SWM 
performance tended to increase. No significant correlations were detected between theta activity and accuracy 
nor alpha activity and accuracy.

Discussion
In this investigation, we examined the spatiotemporal dynamics of SWM processing in healthy adults using MEG, 
and tested whether such oscillatory responses were directly related to SWM performance. Our results indicated 
strong increases in theta activity in the left dorsolateral prefrontal cortex and right inferior frontal gyrus shortly 
after the onset of the encoding phase, with the local time series revealing transient increases in theta shortly after 
the initiation of maintenance in both regions, as well. We also found large decreases in alpha activity in the left 
superior parietal lobule and bilateral cuneus, and strong decreases in beta activity in the left superior temporal 
gyrus, left inferior parietal lobule, right intraparietal sulcus, and right cerebellum. In contrast to the transient 
nature of the theta responses, the alpha and beta decreases were sustained across the majority of the encoding 
and maintenance phases of this SWM task. Finally, stronger decreases in beta activity within the left dorsolateral 

Figure 2. Time-frequency spectrogram with time (s) shown on the x-axis and frequency (Hz) denoted on 
the y-axis. Percent power change was computed for each time-frequency bin relative to the respective bin’s 
baseline power (−0.4 to 0.0 s). The color legend is displayed to the right. Data represent a grand-averaged peak 
sensor located near the parietal cortices (the same sensor was used in all participants). A strong and transient 
increase in theta activity was observed shortly following encoding onset. Slightly later during encoding strong 
decreases in alpha and beta activity were found, which were sustained throughout the remainder of encoding 
and maintenance.
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prefrontal cortex and bilateral superior temporal gyri were related to greater SWM accuracy. The implications of 
these results are discussed in turn below.

As previously mentioned, substantial evidence supports the existence of a core network of brain regions that 
serve WM performance across multiple types of stimuli3,5. Not surprisingly, nodes within this core network are 
believed to oversee and/or coordinate WM processing at large, and prefrontal regions are integral to this overar-
ching executive system33,40–46. Particularly, evidence suggests that areas of the ventrolateral prefrontal cortex (e.g., 
the inferior frontal gyrus) are involved in the selection of task-relevant information during WM performance31,32, 
and prior neurophysiological research has suggested that theta oscillations may play a prominent role in such 
selection and integration during WM processing46. Consistent with this framework, we observed the strongest 
inferior frontal theta response following the onset of the encoding grid, when the initial selection and integration 
of the spatial locations would logically occur.

Beyond the ventrolateral prefrontal cortices, a wealth of research has also implicated the dorsolateral pre-
frontal cortices in WM performance, tying them to higher-order maintenance and manipulation processes31–33, 
as well as SWM accuracy25–30. Our data also supports a central role for the dorsolateral prefrontal cortices in 
SWM processes. First, our results demonstrate that the strongest increase in dorsolateral prefrontal theta activity 
followed the onset of the maintenance phase, and previous neurophysiological research has suggested that such 
activity may help coordinate activity in more posterior, task-relevant regions during WM maintenance43,46,47. 
Second, greater decreases in beta activity within the dorsolateral prefrontal cortex were associated with better 
SWM performance. That is, similar to alpha activity, decreased beta within a neural region is generally believed 

Figure 3. Theta oscillations during spatial working memory performance. Significant increases in theta 
(4–8 Hz) activity were observed in the left dorsolateral prefrontal cortex (DLPFC; top left) and right inferior 
frontal gyrus (IFG; top right) shortly after the onset of the encoding stimulus (p < 1−6, cluster-corrected). 
Time courses of theta activity from the peak voxel of each region revealed a transient increase in theta activity 
following the onset of the encoding grid, with a more substantial increase seen in the right IFG (bottom right). 
A transient increase in theta activity was also found at the beginning of the maintenance phase, but in this case 
the response was much stronger in the left DLPFC (bottom left).
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to reflect the active engagement of that region in ongoing processing18,34,35,48. This position has been supported by 
studies utilizing simultaneous EEG-fMRI, which have demonstrated negative correlations between low frequency 
(i.e., alpha/beta) oscillatory activity and the fMRI BOLD signal during cognitive tasks49–53. In other words, these 
studies found that greater fMRI activation was associated with reduced EEG alpha/beta power in roughly the 
same region. Thus, our results align well with the previous fMRI research linking stronger dorsolateral prefron-
tal cortex activations to better SWM performance25–30, and also compliment the body of non-human primate 
research demonstrating that persistent firing in prefrontal cortical neurons during SWM encoding and mainte-
nance predicts accurate performance42,54. Amalgamating our findings, the increased theta activity in the inferior 
frontal gyrus may reflect the selection of task-relevant information early during encoding, while the oscillatory 
mechanisms observed in the dorsolateral prefrontal cortex may reflect top-down executive control processes 
important for accurate SWM performance.

While the prefrontal cortices have been implicated in higher-order executive roles across various WM tasks, 
previous research has shown that regions within the posterior parietal cortex are more intimately tied to SWM. 
Critically, the existence of spatial maps within the human intraparietal sulci and the non-human primate homo-
logue (i.e., lateral intraparietal areas) has been widely documented, and such maps are believed to have a major 
role in holding sensory representations of specific locations during SWM performance2,38,39,55–58. In a similar 
vein, these intraparietal regions, along with the superior parietal lobules and occipital regions, are included 
in the well-known dorsal-visual stream11. This set of regions is commonly referred to as the “where” pathway, 
as it is closely tied to the extraction and processing of location information from the visual space at large11,59. 
Moreover, these superior parietal regions are implicated in the top-down control of spatial attention, and are 
believed to enhance the processing of sensory information pertinent to the current behavioral goal60–63. Previous 
studies have shown that alpha and beta oscillatory activity has a central role in such processes. For example, 
sustained decreases in occipital alpha have been tied to visual attention, and further have been shown to be 

Figure 4. Alpha oscillations during spatial working memory performance. Significant decreases in alpha 
(8–11 Hz) activity were observed in the left superior parietal lobule (top left) and bilateral cuneus (top right) 
throughout the majority of the encoding and maintenance periods (p < 1−6, cluster-corrected). The alpha 
time series from the peak voxel of each region revealed strong decreases following the onset of the encoding 
stimulus across all three regions (see bottom panels), and these decreases persisted throughout the remainder of 
encoding and maintenance processes.
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under top-down modulation during visuospatial tasks36,37,64. Consistent with such occipital responses, decreases 
in alpha and beta activity within posterior parietal regions have been found in multiple studies of visuospatial 
attention36,37,65–71, and such decreases could be the result of top-down control. Additionally, decreased beta 
activity within occipital and parietal regions has been implicated in feature-specific processing during WM, 
with decreases in the dorsal visual stream tied to the retention of spatial features21. Taken together, the sus-
tained beta decreases that we observed within the intraparietal sulcus may reflect the active maintenance of the 
to-be-remembered visuospatial locations, with the sustained alpha decreases found in superior parietal and 
occipital regions being a consequence of the sustained attention to hold multiple visual locations during the 
maintenance phase.

In addition to the commonly cited prefrontal, parietal, and occipital involvement in SWM, our data indi-
cates a somewhat surprising and notable role of the superior temporal gyri in the accurate performance of our 

Figure 5. Beta oscillations during spatial working memory performance. Significant decreases in beta (15–
20 Hz) activity were observed in the left superior temporal gyrus (top left), right cerebellum (middle central), 
left inferior parietal lobule, and right intraparietal sulcus (bottom central) throughout the majority of encoding 
and maintenance (p < 1−8, cluster-corrected). Time courses of beta activity from the peak voxel of each region 
indicated large decreases immediately following the onset of the encoding grid, which were clearly sustained 
throughout the remainder of encoding and maintenance.
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SWM task. While arguably not given as much attention in the SWM literature, activity in these regions has been 
widely reported in visuospatial attention and WM tasks14,29,63,72–74. In fact, decreased beta and gamma activ-
ity within superior temporal regions has been observed during visual WM maintenance when using a simi-
lar change-detection task of colored squares75. Park et al.14 also used a task similar to ours and found that the 
right superior temporal gyrus had increased gamma oscillatory activity during SWM maintenance, and that 
gamma within this region correlated with increased alpha activity in frontal, temporal, and cerebellar regions, and 
increased beta activity in occipital regions14. Of additional interest, a study in non-human primates demonstrated 
greater beta phase synchrony within left superior temporal regions during the performance of correct relative to 
incorrect trials in a visual WM task76, and a similar accuracy effect was found in an overlapping temporal region 
in a human fMRI study on SWM29. Previous studies have linked the superior temporal gyri with the processing of 
relations between simultaneously presented stimuli14,63,73,74, and considering our task involved the encoding and 
maintenance of multiple locations, the sustained beta decreases observed here could reflect a similar relational 
mechanism. If this interpretation is correct, it may be the higher-order integration and maintenance operations, 
rather than the sensory representations of the independent locations themselves, that are intimately tied to accu-
rate performance on the SWM task utilized here.

Finally, we also observed decreased beta activity within the cerebellum during SWM encoding and main-
tenance processes. These data are in line with previous MEG investigations of WM, which similarly reported 
decreases in alpha/beta cerebellar activity72,77–79, and compliment fMRI and PET research that has demonstrated 
the recruitment of similar cerebellar regions during WM encoding and maintenance processes80–84. Evidence 
suggests that the cerebellum is involved in the extraction of relevant information from the environment during 
visuospatial processes85, and may support the maintenance of such information during WM performance80,84.

While our results offer novel insight into the temporal dynamics associated with accurate SWM performance, 
our study was not without limitations. For example, by design, our study was restricted to healthy younger adults, 
and consequently we cannot comment on the WM deficits that are often associated with aging86. Age-related 
differences in the neural mechanisms serving WM have been widely reported78,87–91, and future investigations 
focusing on SWM should examine the effects of age on the oscillatory dynamics serving SWM. Another key 

Figure 6. Beta oscillations related to spatial working memory (SWM) accuracy. Beta (15–20 Hz) activity 
within the left superior temporal gyrus (STG; top left), right STG (top central), and left dorsolateral prefrontal 
cortex (top right) was negatively correlated with accuracy on the SWM task, when partialling out reaction time 
(p < 0.005, cluster-corrected). Scatterplots representing these relationships are presented below utilizing the 
data from the peak voxels of the whole-brain partial correlation maps.
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parameter is biological sex, where differences in WM have been previously reported92, and future studies focus-
ing on oscillations in this area are certainly needed. Finally, our study focused on visual SWM, but SWM can be 
assessed in the auditory domain, as well. While fMRI studies have reported considerable overlap between the 
neural regions recruited during auditory SWM and those engaged by visual SWM, evidence suggests that inferior 
frontal and frontal pole regions are recruited more heavily during auditory SWM93–95. Additionally, a handful of 
oscillatory studies have reported increased parieto-occipital alpha activity, as well as increased gamma activity in 
parietal and frontal regions during auditory SWM, with positive correlations observed between parietal gamma 
and behavioral performance96–99. As such, investigating the similarities and differences in the oscillatory dynam-
ics serving visual and auditory SWM would be an interesting future direction.

In conclusion, this study utilized MEG to identify the oscillatory dynamics underlying SWM encoding and 
maintenance processes, and was the first to investigate the relationship between oscillatory responses and visual 
SWM performance by utilizing a whole-brain approach. Our results showed strong transient increases in frontal 
theta that were much stronger at the beginning of the encoding period in some regions (right inferior frontal) and 
at the beginning of the maintenance period in other regions (left prefrontal cortex). We propose that such theta 
activity may reflect the selection and integration of visual information relevant to the current behavioral goal. In 
contrast, prolonged decreases in alpha and beta activity in parietal, occipital, and temporal cortices may be more 
closely involved in sustained visuospatial attention, and the active maintenance of spatial location representations 
that are necessary for performance in this SWM task. Finally, prefrontal executive control systems and superior 
temporal spatial relation integration mechanisms, reflected through decreases in beta activity, may be of particu-
lar importance for SWM accuracy.

Methods and Materials
Subject Selection. We studied 22 healthy adults (11 females; mean age: 26.05, SD: 4.02, range: 21–35) who 
were recruited from the local community. Exclusionary criteria included any medical illness affecting central 
nervous system function, neurological or psychiatric disorder, history of head trauma, current substance abuse, 
and the MEG Laboratory’s standard exclusion criteria (e.g., dental braces, metal implants, and/or any type of 
ferromagnetic implanted material). After a complete description of the study, written informed consent was 
obtained from participants following the guidelines of the University of Nebraska Medical Center’s Institutional 
Review Board, which reviewed and approved the study protocol. All methods were carried out in accordance with 
relevant guidelines and regulations.

Experimental Paradigm. During MEG recording, participants sat in a nonmagnetic chair within a 
magnetically-shielded room and performed a visual SWM task (Fig. 1). Participants were instructed to fixate on 
a centrally-presented crosshair that was embedded within a 7 × 9 grid throughout the task. Each trial began with 
the presentation of the crosshair and an empty grid for 1500 ms. Next, four black squares were presented within 
the grid, one in each quadrant (i.e., encoding). After 1500 ms, these black squares disappeared and the empty grid 
remained on the screen for 2500 ms (i.e., maintenance). Subsequently, a probe consisting of four black squares 
was presented for 1000 ms (i.e., retrieval). In 50% of trials, the probe was identical to the previous encoding stim-
ulus, while in the remaining trials the probe differed in that one of the previously presented black squares had 
moved in location by one square within the grid. Additionally, the crosshair changed from blue to green during 
retrieval, to cue participants to respond. Participants were instructed to respond via button press as to whether 
the probe was identical to the previous encoding stimulus (yes or no). Each trial lasted 6500 ms and there were a 
total of 128 trials, resulting in a total run-time of ~14 minutes.

MEG data acquisition. Recordings occurred in a one-layer magnetically-shielded room with active shield-
ing engaged. Neuromagnetic responses were sampled continuously at 1 kHz, with an acquisition bandwidth 
of 0.1–330 Hz, using an Elekta MEG system featuring 102 magnetometer and 204 planar gradiometer sensors 
(Elekta, Helsinki, Finland). MEG data from each participant were individually corrected for head motion and 
noise reduced using the signal space separation method with a temporal extension100,101.

MEG Coregistration & Structural MRI Acquisition and Processing. Preceding MEG measurement, 
four coils were attached to the participant’s head and localized, together with the three fiducial points and scalp 
surface, with a 3-D digitizer (Fastrak 3SF0002, Polhemus Navigator Sciences, Colchester, VT, USA). During MEG 
recording, an electric current with a unique frequency label (e.g., 322 Hz) was fed to each of the coils, inducing 
a measurable magnetic field that allowed each coil to be localized in reference to the sensors throughout the 
recording session. Since coil locations were also known in head coordinates, all MEG measurements could be 
transformed into a common coordinate system. With this coordinate system, each participant’s MEG data were 
coregistered with structural T1-weighted neuroanatomical data before source space analyses using BESA MRI 
(Version 2.0; BESA GmbH, Gräfelfing, Germany). These data were acquired with a Philips Achieva 3T X-series 
scanner using an eight-channel head coil (TR: 8.09 ms; TE: 3.7 ms; field of view: 240 mm; slice thickness: 1 mm; 
no gap; in-plane resolution: 1.0 × 1.0 mm). Structural MRI data were aligned parallel to the anterior and posterior 
commissures and transformed into standardized space, along with the functional images, after beamforming (see 
MEG Source Imaging & Statistics).

MEG Time-Frequency Transformation and Statistics. Cardiac-artifacts were removed from the data 
using signal-space projection (SSP), which was accounted for during source reconstruction102. The continuous 
magnetic time series was divided into epochs of 5500 ms duration, with the onset of the encoding stimulus 
being defined as 0 ms and the baseline being defined as the 400 ms preceding encoding (i.e., −400 to 0 ms). 
Given our task and epoch design, maintenance onset occurred at 1500 ms and retrieval onset occurred at 
4000 ms. Epochs contaminated with artifacts were rejected based on a fixed threshold method, supplemented 
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with visual inspection. Briefly, for each individual, the distribution of amplitude and gradient values was 
approximated across all trials, and those trials containing the highest amplitude and/or gradient values relative 
to the full distribution were rejected by selecting a threshold that excluded extreme values. Importantly, these 
thresholds were set individually for each participant, as inter-individual differences in variables such as head 
size and proximity to the sensors strongly affects MEG signal amplitude because these variables affect the 
distance between neuro-electric currents and the MEG sensors. Additionally, only correct trials were included 
in subsequent analyses. On average, 82 (range: 66–98) correct trials per participant remained after artifact 
rejection. Artifact-free epochs were transformed into the time-frequency domain using complex demodula-
tion with a resolution of 1.0 Hz and 50 ms from 4 to 50 Hz. This procedure involves filtering the complex signal 
into a number of frequency bands of a predetermined width and overall range (e.g., 1 Hz bands from 4 to 
50 Hz), and calculating the power within each band across each successive temporal window103,104. Of note, this 
time-frequency decomposition method has been employed in a wide variety of previous neurophysiological 
studies71,79,105–110. The resulting spectral power estimations per sensor were averaged across all trials to generate 
time-frequency plots of mean spectral density. These sensor-level data were then normalized using the −400 
to 0 ms time period.

The time-frequency windows used for imaging were determined by statistical analysis of the sensor-level 
spectrograms across all gradiometers during the encoding and maintenance periods. Each data point in the spec-
trogram was initially evaluated using a mass univariate approach based on the general linear model (GLM). 
To reduce the risk of false positive results while maintaining reasonable sensitivity, a two-stage procedure was 
followed. In the first stage, one-sample t-tests were conducted on each data point and the output spectrogram of 
t-values was thresholded at p < 0.05 to identify time-frequency bins containing potentially significant oscillatory 
activity across all participants. In stage two, time-frequency bins that survived this threshold were clustered with 
temporally and/or spectrally neighboring bins that were also significant, and a cluster value was computed by 
summing the t-values of all data points in the cluster. Nonparametric permutation testing was then used to derive 
a distribution of cluster-values and the significance level of the observed clusters (from stage one) were tested 
directly using this distribution111,112. For each comparison, at least 10,000 permutations were computed to build 
a distribution of cluster values. Based on these analyses, only the time-frequency windows that contained signif-
icant oscillatory events across all participants were subjected to the beamforming (i.e., imaging) analysis. Thus, a 
data-driven approach was utilized for determining the time-frequency windows to be imaged.

MEG Source Imaging & Statistics. Cortical networks were imaged through an extension of the linearly 
constrained minimum variance vector beamformer113–115, which calculates source power for the entire brain vol-
ume by employing spatial filters in the frequency domain. The single images were derived from the cross spectral 
densities of all combinations of MEG gradiometers averaged over the time-frequency range of interest, and the 
solution of the forward problem for each location on a grid specified by input voxel space. The source power in 
these images was normalized per participant using a separately averaged pre-stimulus noise period (i.e., baseline) 
of equal duration and bandwidth114. MEG pre-processing and imaging used the Brain Electrical Source Analysis 
(version 6.1) software.

Normalized source power was computed for the selected time-frequency bands over the entire brain 
volume per participant at 4.0 × 4.0 × 4.0 mm resolution. Each participant’s functional images were trans-
formed into standardized space using the transform that was previously applied to the structural images and 
then spatially resampled (see MEG Coregistration & Structural MRI Acquisition and Processing). To assess 
the anatomical basis of the significant oscillatory responses identified through the sensor-level analysis, 
the resulting 3D maps of brain activity were statistically evaluated using a mass univariate approach based 
on the GLM. That is, one-sample t-tests were used to calculate statistical parametric maps per frequency 
band across all participants during the encoding and maintenance phases. The output statistical maps were 
displayed as a function of alpha level (p < 0.000001), and adjusted for multiple comparisons using a spatial 
extent threshold (i.e., cluster restriction, k = 300 contiguous voxels) based on the theory of Gaussian ran-
dom fields116–118. To quantify the temporal dynamics, we extracted virtual sensors (i.e., voxel time series) 
from the peak voxel of each cluster in the statistical parametric maps. When computing the virtual sensors, 
we applied the sensor weighting matrix derived from the forward solution to the preprocessed signal vec-
tor, which yielded a time series for the specific coordinate. Additionally, to ensure that transient evoked 
responses did not account for the responses observed, we conducted the same virtual sensor time series 
analyses for each theta and alpha peak after removing evoked activity.

Whole-Brain Performance Correlation Maps. To identify brain regions in which oscillatory activity was 
related to SWM performance, we utilized the data from the individual whole-brain maps computed in the previ-
ous step (see MEG Source Imaging & Statistics). We performed a Pearson correlation using each participant’s maps 
and their respective accuracy on the task. Specifically, we computed correlation maps between theta activity and 
accuracy, alpha activity and accuracy, and beta activity and accuracy. Reaction time was included as a covariate 
in these calculations, and as such, the final product was a whole-brain map of partial correlation coefficients, per 
time-frequency bin of interest. These correlation maps were displayed as a function of alpha level, and adjusted 
for multiple comparisons using a cluster restriction (k = 300 contiguous voxels).

Data availability. The datasets generated during and/or analyzed during the current study are available from 
the corresponding author on request.
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