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Abstract: The contamination of animal feed with aflatoxins is an ongoing and growing serious issue,
particularly for livestock farmers in tropical and subtropical regions. Exposure of animals to an
aflatoxin-contaminated diet impairs feed efficiency and increases susceptibility to diseases, resulting
in mortality, feed waste, and increased production costs. They can also be excreted in milk and
thus pose a significant human health risk. This systematic review and network meta-analysis aim to
compare and identify the most effective intervention to alleviate the negative impact of aflatoxins on
the important livestock sector, poultry production. Eligible studies on the efficacy of feed additives to
mitigate the toxic effect of aflatoxins in poultry were retrieved from different databases. Additives
were classified into three categories based on their mode of action and composition: organic binder,
inorganic binder, and antioxidant. Moreover, alanine transaminase (ALT), a liver enzyme, was the
primary indicator. Supplementing aflatoxin-contaminated feeds with different categories of additives
significantly reduces serum ALT levels (p < 0.001) compared with birds fed only a contaminated diet.
Inorganic binder (P-score 0.8615) was ranked to be the most efficient in terms of counteracting the
toxic effect of aflatoxins, followed by antioxidant (P-score 0.6159) and organic binder (P-score 0.5018).
These findings will have significant importance for farmers, veterinarians, and animal nutrition
companies when deciding which type of additives to use for mitigating exposure to aflatoxins, thus
improving food security and the livelihoods of smallholder farmers in developing countries.

Keywords: aflatoxins; binders; network meta-analysis; additives; mitigation; livestock; clay minerals;
antioxidant; yeast cell wall

Key Contribution: The network meta-analysis enabled us to, directly and indirectly, compare the
effectiveness of three different categories of feed additives that had previously been evaluated for
their potential to mitigate poultry exposure to aflatoxins. The results showed that inorganic binders
provided more protection than antioxidants and organic binders.

1. Introduction

Aflatoxins are a group of naturally occurring mycotoxins produced by fungal species
belonging to Aspergillus section Flavi, particularly A. flavus [1,2]. More than 20 aflatoxin
molecules have been identified to date; the most important ones from a food and feed
safety perspective are the difurocoumarocyclopentenone group (aflatoxin B1 and aflatoxin
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B2) and the difurocoumarolactone group (aflatoxin G1 and aflatoxin G2) [1,2]. Aflatoxin
contamination of feed and feed ingredients is a global problem, especially in tropical and
subtropical regions where warm temperatures and humidity favour the growth of aflatoxin-
producing fungi [1,2]. Furthermore, agricultural practices such as poor harvesting and
improper crop storage significantly influence aflatoxin contamination of feed raw materials
such as wheat, soybean, and maize [2,3].

Livestock’s dietary exposure to feed contaminated with aflatoxins result in a wide
range of adverse health effects, including a significant alteration in biochemical, haema-
tological, and performance parameters [4,5]. Monogastric animals, including pigs and
poultry, are the farm animals most sensitive to the toxic effects of aflatoxins [6,7]. Ruminants
are more resistant than non-ruminant animals because the rumen microbiota can degrade
or deactivate toxins [6,7]. Of all the aflatoxin molecules, AFB1 is the most prevalent in
feedstuffs and recognised as the most hazardous due to its genotoxic and carcinogenic
potential [4]. The liver is the primary target organ for aflatoxins. Metabolism of these
compounds in the liver by cytochrome P450 enzymes results in the formation of aflatoxin
B- 8-9-epoxide (AFBO)—a major carcinogenic metabolite of aflatoxins [8]. AFBO is very
unstable and spontaneously reacts to form adducts with DNA, RNA, and proteins, leading
to hepatic cell and tissue injury as well as pro-inflammation and oxidative stress, which
promotes liver damage, reduced feed intake, body weight, and mortality [8]. Besides the
adverse health effects of aflatoxins on animal health, welfare, and productivity, aflatoxin-
contaminated feed also poses a food safety concern for humans as aflatoxin M1 (a possible
human carcinogen) is excreted in milk [9]. Moreover, long-term exposure of farm animals
to contaminated feeds can lead to the carry-over of aflatoxins to animal-derived foods,
including meat and egg [10].

In regions, particularly Sub-Saharan Africa and Southeast Asia, where poverty and
food insecurity are increasing due to a wide range of factors, aflatoxins have to date been
neglected as being a significant contributing factor. Aflatoxin occurrences of between 25%
and 100% have been reported in livestock feed and feed ingredients in these regions at
levels above the European Union (EU) regulatory limit of 20 µg/kg [11–13]. The annual
cost of aflatoxin contamination in the Philippines, Thailand, and Indonesia was estimated
to be nearly USD 1 billion [14]. This study is nearly 30 years old, and the costs are likely
substantially higher. Similarly, African countries incur losses of several millions of dollars
annually due to aflatoxin contamination of agricultural products [15]. These substantial
economic losses are largely associated with costs incurred from surveillance, handling and
testing of feed lots/batches, feed waste due to mortality and reduced animal performance,
product rejection mostly due to non-compliance with the established regulatory limits, and
veterinary care to improve health and productivity of farm animals. Therefore, the health
consequences and economic importance of dealing with aflatoxins in feed need to be better
understood in terms of mitigating one of the impacts of climate change on food security.

A wide range of feed additives with different compositions and modes of action have
been developed and evaluated over the last decades as a post-harvest dietary intervention
strategy to curtail exposure to aflatoxins [16–18]. These additives can be divided into
three groups: binders, modifiers, and antioxidants [16]. Mycotoxin binders prevent the
absorption of mycotoxins from the gastrointestinal tract of livestock animals by adsorbing
the toxins to their surface to form a binder-mycotoxin complex, which is later excreted
in the faeces. Examples of binders include clay minerals, yeast-cell walls, polymers, and
agricultural waste products [16]. Mycotoxin modifiers are of biological origin (bacteria,
fungi, and enzymes); they can modify (bio-transform) the chemical structure of mycotoxins
to yield metabolites that are less toxic to non-toxic compared to the parent compounds.
Antioxidants do not bind nor modify mycotoxins, but they can counteract the toxic effects
of aflatoxins by targeting oxidative stress and inflammatory signalling pathways to prevent
aflatoxin-induced toxicities [16].
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Due to the abundance and different composition and modes of action, as well as
claims of performance of these agents, it is challenging for farmers, animal nutrition com-
panies, and feed processors to select and utilise the most suitable agents [17]. In addition,
because of socioeconomic status and lack of knowledge of farmers in low-income coun-
tries regarding the detrimental impact of aflatoxins and available intervention strategies,
animals are often fed contaminated feed [13]. This contributes to poor animal health, low
profit margins, and feed waste. Therefore, this study conducted a systematic review of
aflatoxin intervention studies in livestock to compare and identify the most efficient agent
for mitigating aflatoxin toxicity in livestock using a frequentist network meta-analysis.
Following the initial database search, the majority of studies retrieved were focused on
poultry species, with few studies available for pigs and ruminants. Therefore, to prevent
publication bias, we conducted only the network meta-analysis of poultry studies. Net-
work meta-analysis allows the comparisons of the effects of multiple treatments on a health
outcome. Moreover, it allows for a quantitative synthesis by combining direct and indirect
evidence from comparisons of treatments within experimental trials based on a common
comparator, which in this study is a control feed or aflatoxin-free diet.

2. Results
2.1. Search Results

The database search identified 1010 articles from the Web of Science, PubMed, and
Scopus. These studies were assessed for inclusion and exclusion using the pre-specified
eligibility criteria. The title and abstract of 323 articles were assessed following the removal
of 687 duplicates. Of the 145 articles examined for full texts, only 31 met the inclusion
criteria and were selected for network meta-analysis. The number of included and excluded
articles at different phases of the selection process are presented as a flowchart in Figure 1.
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Figure 1. A summary of the screening and selection process to retrieve eligible studies for network
meta-analysis.

2.2. Characteristics of the Included Studies

Most of the included articles were field and randomised controlled studies conducted
in Asia (68.5%), followed by Africa (20%), America (8.5%), and Europe (3%). In total,
2752 birds (mostly broiler chickens) were used for the trials. They were randomly dis-
tributed into three feeding groups, namely negative control (aflatoxin-free feed), positive
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control (aflatoxin-contaminated feed), and intervention (aflatoxin-contaminated feed +
additive). While the levels of aflatoxins in groups exposed to contaminated feed and
contaminated feed plus additives ranged from 50 µg/kg to 2500 µg/kg, no aflatoxins were
detected in feeds given to animals in the control group (<0 µg/kg). The mean aflatoxin
levels in contaminated feed supplemented with antioxidants, inorganic binders, and or-
ganic binders were 744 µg/kg, 855 µg/kg, and 839 µg/kg, respectively. Animals were fed
ad libtum, and the average duration of trials was 25 days. The background characteristics of
the included studies are summarized in Table 1.

Table 1. Background characteristics of studies included in network meta-analysis.

Reference Country Breed Duration (Days)
Feed Additive

Type Inclusion Level Category

[19] China Broiler 21 Total flavonoids of
Rhizoma Drynariae 125 mg/kg Antioxidant

[20] Iran Broiler (Cobb 500) 35 L-Threonine 125% of the
requirement Antioxidant

[21] China Cobb broilers 28 Penthorum chinense
Pursh extract 3 g/kg Antioxidant

[22] Iran Ross broiler 42 Berberine 600 mg/kg Antioxidant

[23] Iran Broiler (Ross 308) 42 Licorice extract 6 g/kg Antioxidant

[24] Iraq Broiler (Ross 308) 35 Grape seed extract 200 mg/kg Antioxidant

[25] Mexico Broiler 21 Curcumin 0.20% Antioxidant

[26] Pakistan Broiler 42 Chlorella pyrenoidosa
ethanolic extract 500 mg/kg Antioxidant

[27] Iraq Broiler (Ross 308) 35 Levamisole 0.2 mL/kg Antioxidant

[27] Iraq Broiler (Ross 308) 35 Vitamin E +
Selenium 0.5 mL/L Antioxidant

[28] China Cobb broiler 28
Grape seed

proanthocyanidin
extract

500 mg/kg Antioxidant

[29] China Male arbor acre
broiler 44

Sporoderm-broken
spores of Ganoderma

lucidum
200 mg/kg Antioxidant

[30] India Male broiler 35 Carvacrol 1.00% Antioxidant

[8] China Avian male broilers 35 Astaxanthin 10 mg/kg Antioxidant

[31] Iran Broiler chicks (Ross
308) 42 Essential oil 500 mg/kg Antioxidant

[32] India Broiler 42 Resveratrol 1.00% Antioxidant

[33] Pakistan Broiler 35 Milk thistle 10 g/kg Antioxidant

[34] Thailand Arbor acre broiler 42 Essential oil 0.50% Antioxidant

[10] Iran Broiler chickens
(Ross 308) 42 Saccharomyces

cerevisiae 0.05% Organic binder

[35] Nigeria Arbor acre broiler 30 Saccharomyces
cerevisiae 2 g/kg Organic binder

[36] Mexico Male broiler
(Ross 308) 21

Yeast cell wall from
Saccharomyces

cerevisiae
0.05% Organic binder

[23] Iran Broiler (Ross 308) 42 Saccharomyces
cerevisiae 0.5 g/kg Organic binder

[25] Mexico Broiler 21 Cellulosic polymer 0.30% Organic binder

[37] Egypt Broiler 42 Saccharomyces
cerevisiae 1 kg/ton Organic binder
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Table 1. Cont.

Reference Country Breed Duration (Days)
Feed Additive

Type Inclusion Level Category

[7] Iran Broiler chicks
(Cobb 500) 42 Bacillus Subtilis

JQ618 strains 1 kg/ton Organic binder

[7] Iran Broiler chicks
(Cobb 500) 42 Saccharomyces

cerevisiae’s cell wall 1 kg/ton Organic binder

[8] China Avian male broilers 35 Esterified
glucomannan 5 g/kg Organic binder

[38] Egypt Broiler chicks
(Ross 308) 28 Yeast cell wall 1% Organic binder

[39] Turkey Broiler 21 Esterified
glucomannan 1 g/kg Organic binder

[40] USA Broiler 30 Saccharomyces
cerevisiae 0.10% Organic binder

[4] China Arbor Acres
broilers 42 Smectite clay 2.5 kg/ton Inorganic binder

[5] Iran Broiler chickens
(Ross 308) 42 Aluminosilicate 2.5 g/kg Inorganic binder

[41] Egypt Male Japanese
quail chicks 42 Bentonite 1% Inorganic binder

[41] Egypt Japanese
quail chicks 42 Bentonite 1% Inorganic binder

[23] Iran Broiler chickens
(Ross 308) 42 Biochar 5 g/kg Inorganic binder

[42] Bulgaria Toulouse geese 42 Aluminosilicate 0.5 g/kg Inorganic binder

[24] Iraq Broiler (Ross 308) 35 Aluminosilicate 100 mg/kg Inorganic binder

[7] Iran Broiler (Cobb 500) 42 Aluminosilicate 1 kg/ton Inorganic binder

[7] Iran Broiler (Cobb 500) 42
Hydrated Sodium

Calcium
Aluminosilicate

15 kg/ton Inorganic binder

[43] Greece Broiler (Ross 308) 42 Bentonite 1% Inorganic binder

[43] Greece Broiler (Ross 308) 42 Bentonite 1% Inorganic binder

[43] Greece Broiler (Ross 308) 42 Bentonite 1% Inorganic binder

[33] Pakistan Broiler 35 Aluminosilicate 3 g/kg Inorganic binder

2.3. Study Classification

The selected studies reported different feed additives ranging from clay minerals, such
as bentonite, zeolite, kaolin, and humic acid, to polymers, yeast, and bacterial cell walls, as
well as plant extracts, vitamins, and essential oils (Table 1). These agents were grouped into
three categories based on their composition and mode of action: inorganic binder, organic
binder, and antioxidant. Studies with additives that could not be classified under these
groups were removed from the analysis. Out of the 31 studies found eligible, eleven studies
investigated the efficacy of three or more different feed additives (Table 1). Thus, 43 trials
or paired groups (control vs. intervention) were included in the network meta-analysis.
Out of the 43 trials, 18, 13, and 12 trials were grouped, respectively, under antioxidants,
inorganic binder, and organic binder (Table 1). The percentage number of trials for each
additive category is shown in Figure 2. The type of additive and inclusion level used in
each trial are presented in Table 1.
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2.4. Meta-Analysis Results
Effect of Aflatoxins on Serum Alanine Transaminase

Thirty-one studies comprised of 43 trials evaluated the effect of aflatoxin-contaminated
feed on poultry serum ALT. Conventional pair-wise meta-analysis of pooled mean differ-
ence (MD) was 8.83 with 95% Confidence Intervals (CIs) of 6.9 to 10.7; p < 0.0001, suggesting
a significant increase in serum ALT of birds fed aflatoxin-contaminated feed compared
with birds given negative or aflatoxin-free diet (Figure 3). No significant heterogeneity was
observed (I2 value = 26%; p = 0.06), thus, subgroup analysis was not performed. Moreover,
the symmetrical distribution of the funnel plot and Egger’s test p-value (p = 0.68) suggested
no risk of publication bias (Figure 4).

2.5. Efficacy of Feed Additives to Mitigate Aflatoxins

In total, 26 different feed additives were used and were classified into three groups based
on modes of action and composition (Table 1). The efficacy of different additives estimated
using MD with 95% CIs is displayed in Figure 5. As indicated in the results, compared to
control groups, all the feed additive groups effectively mitigated the toxic effect of aflatoxins.
Supplementation of feed with antioxidant (MD = −1.82 [95% CI = −3.45 to −0.18; p = 0.04);
inorganic binder −2.83 (95% CI: −5.28 to −0.35; p = 0.02), and organic binder −1.53 (95%
CI: −3.19 to 0.14; p = 0.05), led to a significant reduction in serum levels of ALT in birds fed
contaminated diet. The efficacy of the additives was ranked using P-scores derived from
the network point estimates. The P-score was highest for the inorganic binder (P-score
0.8615), followed by the antioxidant (P-score 0.6159) and organic binder (P-score 0.5018).
There was a statistically significant difference between the efficacy of inorganic binders
and antioxidants (p < 0.05) as well as organic binders (p < 0.05). However, no significant
difference was observed between the efficacy of antioxidants and organic binders (p > 0.05).
The percentage of direct and indirect evidence used for each estimated comparison and the
random effect network estimates for all treatment comparisons, with effect sizes and CIs, are
presented in Supplemental Table S2, Figures S1 and S2. Moreover, the network structure graph
of comparisons of different categories of feed additives is shown in Supplemental Figure S3.
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Figure 3. Random effect model forest plot of serum level of alanine transaminase in poultry birds fed
natural diet contaminated with and without aflatoxins. Each data marker represents a study, and the
size of the red box is proportional to the weight of the study. The summary effect size is denoted by
the blue diamond. References: Liu et al. [29], Subhani et al. [26], Rajput et al. [28], Sridhar et al. [30],
Solis-Cruz et al. [25], Sridhar et al. [32], Bintvihok et al. [34], Sadeghi et al. [31], Muhammad et al. [33],
Nabi et al. [21], Cao et al. [8], Almusawi et al. [24], Malekinezhad et al. [22], Rashidi et al. [23],
Ulaiwi et al. [27], Lin et al. [19], Mesgar et al. [20], Muhammad et al. [33], Rashidi et al. [23],
Pappas et al. [44], Allameh et al. [5], Almusawi et al. [24], Mahrose et al. [41], Pappas et al. [44],
Barati et al. [7], Rashidi et al. [23], Valchev et al. [42], Xie et al. [4], Stanley et al. [40], Ejiofor et al. [36],
Allameh et al. [5], Motawe et al. [38], Barati et al. [7], Rashidi et al. [23], Basmacioglu et al. [39],
Hernandez-Ramires et al. [36], Solis-Cruz et al. [25], Cao et al. [8], Salem et al. [37], Barati et al. [7],
Ulaiwi et al. [27], Mahrose et al. [41], Pappas et al. [44].



Toxins 2022, 14, 707 8 of 15

Toxins 2022, 14, x FOR PEER REVIEW 8 of 16 
 

 

et al. [23], Ulaiwi et al. [27], Lin et al. [19], Mesgar et al. [20], Muhammad et al. [33], Rashidi et al. 
[23], Pappas et al. [44], Allameh et al. [5], Almusawi et al. [24], Mahrose et al. [41], Pappas et al. [44], 
Barati et al. [7], Rashidi et al. [23], Valchev et al. [42], Xie et al. [4], Stanley et al. [40], Ejiofor et al. 
[36], Allameh et al. [5], Motawe et al. [38], Barati et al. [7], Rashidi et al. [23], Basmacioglu et al. [39], 
Hernandez-Ramires et al. [36], Solis-Cruz et al. [25], Cao et al. [8], Salem et al. [37], Barati et al. [7], 
Ulaiwi et al. [27], Mahrose et al. [41], Pappas et al. [44]. 

 
Figure 4. Funnel plot of serum level of alanine transaminase in poultry birds fed natural diet con-
taminated with and without aflatoxins (p-value = 0.82). The symmetry and p-value indicate no evi-
dence of publication bias. 

2.5. Efficacy of Feed Additives to Mitigate Aflatoxins 
In total, 26 different feed additives were used and were classified into three groups 

based on modes of action and composition (Table 1). The efficacy of different additives 
estimated using MD with 95% CIs is displayed in Figure 5. As indicated in the results, 
compared to control groups, all the feed additive groups effectively mitigated the toxic 
effect of aflatoxins. Supplementation of feed with antioxidant (MD = −1.82 [95% CI = −3.45 
to −0.18; p = 0.04); inorganic binder −2.83 (95% CI: −5.28 to −0.35; p = 0.02), and organic 
binder −1.53 (95% CI: −3.19 to 0.14; p = 0.05), led to a significant reduction in serum levels 
of ALT in birds fed contaminated diet. The efficacy of the additives was ranked using P-
scores derived from the network point estimates. The P-score was highest for the inor-
ganic binder (P-score 0.8615), followed by the antioxidant (P-score 0.6159) and organic 
binder (P-score 0.5018). There was a statistically significant difference between the efficacy 
of inorganic binders and antioxidants (p < 0.05) as well as organic binders (p < 0.05). How-
ever, no significant difference was observed between the efficacy of antioxidants and or-
ganic binders (p > 0.05). The percentage of direct and indirect evidence used for each esti-
mated comparison and the random effect network estimates for all treatment compari-
sons, with effect sizes and CIs, are presented in Supplemental Table S2, Figure S1 and S2. 
Moreover, the network structure graph of comparisons of different categories of feed ad-
ditives is shown in Supplemental Figure S3. 

The tests of heterogeneity (within experimental designs) and total inconsistency (be-
tween experimental designs) were used to assess the validity or consistency of the fre-
quentist model based on the full design-by-treatment interaction random effects model. 
There was no evidence suggesting inconsistencies between direct and indirect compari-
sons in the results of our network meta-analysis (Supplemental Figure S1 and S2). Neither 
the within-design heterogeneity nor between-design inconsistency were significant (ps > 

Figure 4. Funnel plot of serum level of alanine transaminase in poultry birds fed natural diet
contaminated with and without aflatoxins (p-value = 0.82). The symmetry and p-value indicate no
evidence of publication bias.

Toxins 2022, 14, x FOR PEER REVIEW 9 of 16 
 

 

0.977). Moreover, the Q statistics for assessing homogeneity was not statistically signifi-
cant (Q = 0.2; p = 0.979; tau2within = 0) (Supplemental Figure S1 and S2), indicating con-
sistency for head-to-head comparisons. In addition, the symmetry of the comparison-ad-
justed funnel plot for the network meta-analysis and Egger’s test p-value (0.30) indicated 
no publication bias (Figure 6). 

 
Figure 5. Forest plot of the efficacy of different additives (compared to control) to restore serum 
levels of alanine transferase in poultry birds exposed to aflatoxin-contaminated diets. Effects are 
presented as mean differences (MD), with negative values representing a reduction in the serum 
level of alanine transferase (higher negative value indicates more efficacy). The horizontal lines in-
dicate 95% confidence intervals. 

 
Figure 6. Funnel plot of network meta-analysis comparing the efficacy of different feed additives to 
mitigate the toxic effects of aflatoxin on poultry serum alanine transaminase. Egger’s test (p = 0.30) 
shows no evidence of publication bias. 

  

Figure 5. Forest plot of the efficacy of different additives (compared to control) to restore serum
levels of alanine transferase in poultry birds exposed to aflatoxin-contaminated diets. Effects are
presented as mean differences (MD), with negative values representing a reduction in the serum level
of alanine transferase (higher negative value indicates more efficacy). The horizontal lines indicate
95% confidence intervals.

The tests of heterogeneity (within experimental designs) and total inconsistency (be-
tween experimental designs) were used to assess the validity or consistency of the frequen-
tist model based on the full design-by-treatment interaction random effects model. There
was no evidence suggesting inconsistencies between direct and indirect comparisons in the
results of our network meta-analysis (Supplemental Figures S1 and S2). Neither the within-
design heterogeneity nor between-design inconsistency were significant (ps > 0.977). More-
over, the Q statistics for assessing homogeneity was not statistically significant (Q = 0.2;
p = 0.979; tau2within = 0) (Supplemental Figures S1 and S2), indicating consistency for
head-to-head comparisons. In addition, the symmetry of the comparison-adjusted funnel
plot for the network meta-analysis and Egger’s test p-value (0.30) indicated no publication
bias (Figure 6).
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3. Discussion

The recent global mycotoxins surveys showed that over 23% of finished feed and feed
ingredients were contaminated with aflatoxins [11]. Aflatoxins feed crop contamination
varies significantly from region to region, with countries in the tropics and subtropics
(mostly Southeast Asia, Africa, and South and Central America) having higher concentra-
tions compared to the rest of the world (Figure 7) [11,13]. Reliance on smallholdings or
family-operated farms in most of these regions not only plays an important role in rural
communities and their agriculture but also plays a crucial role in food security. According
to the Food and Agriculture Organization, small family farmers produce a third of the
world’s food [44]. Besides the health consequence of aflatoxin-contaminated feed ingre-
dients, this problem also raises concerns for food safety and food security. Nutritionally,
chicken provides a rich source of high-quality protein. It is also relatively low in fat and
contains significant levels of monounsaturated fatty acids and polyunsaturated fatty acids,
as well as numerous vitamins, essential minerals, and amino acids [45]. The increasing
contamination of feed, exacerbated by climate change, will influence the health and pro-
ductivity of animals, affecting the supply of safe and nutritious food [11–13]. Therefore, it
is crucial that reliable and effective mitigations are in place.

Several additives have been developed and evaluated to help minimise livestock
exposure to aflatoxins and improve animal health and performance [16,46]. There are
very limited studies investigating the efficacy of additives to mitigate aflatoxin toxicity in
ruminants and pigs; thus, this study focused solely on poultry. An extensive literature
search and systematic review were conducted to identify eligible studies. Only studies
that exposed poultry birds to natural aflatoxin-contaminated feed were included in our
network meta-analysis. This is because naturally contaminated feed is more toxic than
pure compounds due to the synergistic effects of different types of aflatoxins [16,47].
Additionally, because there are very few studies that monitored the aflatoxin biomarker,
ALT, an enzyme found primarily in the liver, was selected as the primary indicator of
aflatoxin exposure and the efficacy of the additives [48]. ALT exists in the blood at a very
low concentration. However, when the liver is damaged (i.e., following aflatoxin exposure),
ALT is released into the blood, resulting in an elevated concentration. This often precedes
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more apparent symptoms such as reduced body weight and feed refusal. Thus, ALT is
considered an early and specific marker of hepatocellular damage [26,48].
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The studies that met the pre-determined eligible criteria were meta-analysed using
a frequentist network approach. Frequentists define and interpret an event’s probability
in terms of how often it is expected to occur if repeated [49]. The results of our pair-wise
meta-analysis revealed that compared to the control group, exposure of poultry birds to an
aflatoxin-contaminated diet significantly increased serum ALT levels (up to 53%, MD = 8.83
[95% CI = 6.9 to 10.7]; p < 0.0001). All 43 trials included in our meta-analysis reported
a significant increase in poultry ALT levels following aflatoxin exposure, with severity
dependent on the duration of exposure. Regarding the efficacy of additives supplemented
with the feeds to restore or normalise serum ALT levels, all the additives evaluated were
found to reduce serum ALT levels compared with the control group and birds fed only
an aflatoxin-contaminated diet. The additives were ranked according to their level of
effectiveness using the frequentist P-score values derived from the frequentist network
point estimates. The P-score measures the extent of certainty that one intervention is better
than another on a scale from 0 (worst) to 1 (best) [50]. The inorganic binder was found to
be the most efficient (P-score 0.8615), followed by antioxidant (P-score 0.6159) and organic
binder (P-score 0.5018).

Inorganic binders are aluminosilicates composed of silica, alumina, and significant
amounts of alkaline and alkaline earth ions [17]. Due to a high cation exchange capacity,
they can bind or adsorb aflatoxins to their interlayer spaces, external surfaces, and edges
through a different mechanism of action, including chemisorption and ion exchange,
i.e., between clay cations and aflatoxin carbonyl groups [17,51]. Several clay minerals with
aflatoxin-binding capacity have been patented, with some commercially available as feed
additives for livestock farmers and animal nutrition companies. Clay minerals are low-cost
and widely available [16,51]. However, their effectiveness varies depending on source and
composition. There are also concerns about the safety and stability of these agents in the
gastrointestinal tract and their effect on the palatability of animal feed. Moreover, their
non-specific binding activity can negatively affect the bioavailability of essential nutrients
and veterinary medicine [16,17].
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Antioxidants are additives supplemented with feed primarily for prolonging the shelf
life and sensory qualities, preventing rancidity, and the oxidation of critical nutrients such
as pigments and vitamins. Antioxidants do not bind or modify mycotoxins, but they can
counteract the toxic effects of mycotoxins by targeting oxidative stress and inflammatory
signalling pathways to alleviate aflatoxin-induced toxicities [19,37]. Aflatoxins inhibit
the expression of antioxidant enzymes, including superoxide dismutase and glutathione
peroxidase resulting in the overproduction of free radicals or reactive oxygen species
(ROS) [8,25]. When the production of ROS exceeds the antioxidant capacity of a cell, several
intracellular mechanisms that promote cell death and oxidative damage to DNA, proteins,
and membrane lipids (lipid peroxidation) are activated. Many natural antioxidants have
been demonstrated to act as free radical scavengers, conferring beneficial or protective
effects against toxic effects induced by aflatoxins [19,25,37]. Generally, most antioxidants
activate the nuclear factor erythroid 2-related factor 2(Nrf2)-associated genes leading to the
release of the battery of detoxification and antioxidant enzymes, which protect the cells
from aflatoxin-induced inflammatory and oxidative damage [52]. The antioxidants used in
studies selected for our meta-analysis are outlined in Table 1.

Organic binders are mostly yeast and lactic and propionic acid bacteria cell walls and
polymers such as glucomannan. The yeast cell wall (Saccharomyces cerevisiae) comprises
lipids, chitins, protein, and polysaccharides such as mannan and glucan [38]. The reticular
organization of β-D-glucans and the distribution between β-(1,6)-D-glucan and β-(1,3)-D-
glucan play a significant role in the adsorption of aflatoxins [16,38]. The binding potential
of lactic and propionic acid bacteria (mostly Propionibacterium and Lactobacillus species) is
attributed to peptidoglycan and teichoic acid, a glycopolymer, which is embedded within
the peptidoglycan layers [16]. The mechanism of aflatoxin binding by the cell walls of
yeast and lactic acid bacteria is mainly through ionic and hydrophobic interactions [16].
Glucomannan, a water-soluble polysaccharide, has also been shown to be a good aflatoxin
adsorbent [39].

In contrast to antioxidants, inorganic, and organic binders, studies on in vivo efficacy
of modifiers or detoxifiers (i.e., probiotics and enzymes) are scarce in the scientific literature.
The few available studies [53,54] were not sufficient for meta-analysis, thus, were excluded
to avoid publication bias. The application of probiotics and enzymes in mycotoxin mitiga-
tion in farm animals is limited because microbes/enzymes are mostly active in their strict
environment. Moreover, the cost of production is high, and it is very difficult to evaluate
the mechanism of biotransformation and the identification of metabolites and their tox-
icities [16]. Nevertheless, they offer an alternative environmentally friendly strategy for
minimising livestock exposure to aflatoxins.

4. Conclusions

To our knowledge, the present study is the first meta-analysis to investigate the efficacy
of different categories of feed additives to minimise poultry exposure to aflatoxins. The
network meta-analysis enabled us to, directly and indirectly, compare the effectiveness of
three different categories of feed additives that had previously been evaluated for their
potential to mitigate poultry exposure to aflatoxins. This study revealed that supplement-
ing aflatoxin-contaminated feed with antioxidants (such as vitamins and plant extracts),
inorganic binders (including bentonite and aluminosilicates), and organic binders (lactic
acid bacteria & yeast cell walls and polymers) counteracted the toxic effect of aflatoxins in
poultry birds. In terms of performance, inorganic binders provided more protection than
antioxidants and organic binders. The importance of these findings needs to be conveyed
to stakeholders, especially in the regions most affected by aflatoxins.

5. Materials and Methods
5.1. Search Strategy and Eligibility Criteria

Preferred Reporting Items of Systematic reviews and Network Meta-Analyses (PRISMA-
NMA) recommendations were followed for literature search, study selection, and data
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extraction. Since this review did not involve any animal trials, ethical approval was not
required. The following databases were searched: PubMed, Scopus, and Web of Science,
from inception to April 2022 and updated in May 2022, to identify additional publications.
The search keywords for each database are provided in Supplementary Table S1. Eligibility
criteria were defined based on PICOS (population, intervention, comparator, outcome, and
study) design approach:

Population (P): Poultry birds fed natural aflatoxin-contaminated and aflatoxin-free feed.
Intervention (I): The eligible interventions were additives or products for counteracting

the toxic effects of aflatoxins in poultry birds.
Comparator (C): Negative control, aflatoxin-free or control feed.
Outcome (O): Serum level of alanine transaminase (ALT). ALT is a liver enzyme

released into the blood following liver damage. Thus, it represents a good marker for
accurately predicting aflatoxins exposure.

Study designs (S): Field studies were eligible for inclusion. Meanwhile, observational
studies without a comparator group (control) were excluded.

Additionally, all eligible studies must indicate the type and levels of aflatoxins in
feed. The duration of the feeding trial must be at least 21 days. Conference abstracts,
proceeding papers, editorials, commentaries, study protocols, and reviews were excluded.
Furthermore, studies with no full text and incomplete data were not included.

5.2. Study Selection Process and Screening

All references were exported to Mendeley and then transferred to Covidence (https:
//www.covidence.org/, accessed on 1 April 2022) for deduplication, screening, and data
extraction. To minimise the likelihood of expunging the potentially relevant studies, two
reviewers independently screened the title and abstracts against the pre-defined eligibility
criteria. Full texts of the eligible articles were then screened by the same authors to exclude
the irrelevant studies. Any disagreements were resolved by consensus.

5.3. Data Extraction and Assessment of Risk of Bias

All the studies included were thoroughly assessed for quality to ensure compliance
with the eligibility criteria for this review before being included. Data were extracted
independently from trials that met the inclusion criteria of a pre-defined data extraction
sheet. The extracted data included: (a) bibliographic and general information (including
author, title, publication year, and location); (b) details of animals used in each study/trial
(including sample size, age, and breed); (c) aflatoxins levels in control and treatment
groups; (d) intervention (type of additive (single/combined), dose of supplementation and
duration); (e) mean serum level of ALT, with standard deviations. When the mean and
standard deviation of serum ALT were reported as graphs, the data were extracted using
WebPlotDigitizer Version 4.4 (Pacifica, CA, USA). When the data was missing or unclear,
relevant authors were contacted to obtain the necessary information. Two researchers inde-
pendently assessed the quality of the eligible studies selected for meta-analysis to eliminate
biases such as incomplete outcome data, statistical methods, and selective reporting of
results. All the included trials were of low risk of bias. Extracted data were cross-verified
for typographic errors and accuracy.

5.4. Data Analysis

The primary outcome was estimated as a mean difference (MD) with a 95% confidence
interval (CI). A pair-wise meta-analysis was performed to make a direct comparison be-
tween control and aflatoxin-contaminated feed and interventions. In addition to traditional
meta-analysis, a network meta-analysis was performed using the random effect model
within a frequentist framework. Heterogeneity (within designs) and total inconsistency
(between designs) were used to assess the consistency of our network model. Heterogeneity
was assessed using the Q and I-squared statistics, and was considered low, moderate, or
high for I-squared values of <25%, 25% to 50%, and >50%, respectively. The netsplit func-

https://www.covidence.org/
https://www.covidence.org/
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tion was used to assess inconsistencies between the direct and indirect comparisons and
visualised using a forest plot. The P-score values for ranking the efficiency of the additives
were calculated using the netrank function, with a forest plot used to visualise the pooled
treatment comparison. A comparison-adjusted funnel plot and Egger’s regression test were
used to evaluate the risk of publication bias. All the data analyses were performed with
“meta”, “metafor”, and “dmetar” packages in the statistical program R version 4.2.0.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/toxins14100707/s1. Table S1: Database search strategy with
keywords to retrieve eligible articles for systematic review and network meta-analysis. Table S2: The
network estimates for all possible treatment comparisons with effect size estimates and confidence
intervals. Figure S1: Plot showing the percentage of direct and indirect evidence used for each
estimated comparison. Figure S2: Netsplit forest plot showing the consistency of contribution of direct
and indirect evidence estimates of individual comparisons in the network. Figure S3: Network graph
of treatment comparisons. The thicknesses of the lines correspond to the number of comparisons.

Author Contributions: Conceptualization, O.K.; methodology, O.K. and W.S.-A.; software, O.K.;
validation, O.K. and W.S.-A.; formal analysis, O.K.; data curation, O.K.; writing—original draft
preparation, O.K.; writing—review and editing, C.E. and J.M.; supervision, C.E., J.M., and A.P.;
project administration, C.E., J.M., and A.P.; funding acquisition, C.E. and A.P. All authors have read
and agreed to the published version of the manuscript.

Funding: This research has received funding support from Thailand Science Research and Innovation
Fundamental Fund (Project No. 2461863) and the National Science, Research and Innovation Fund
(NSRF) via the Program Management Unit for Human Resources & Institutional Development,
Research and Innovation (PMU-B, Thailand: B16F640114).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data used in this study are available in the Figshare repository
under the access number: 10.6084/m9.figshare.20145605.

Acknowledgments: This work was supported by Thammasat University Center of Excellence in
Food Science and Innovation.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study, in the collection, analyses, or interpretation of data, in the writing of the manuscript, or
in the decision to publish the results.

References
1. Godet, M.; Munaut, F. Molecular strategy for identification in Aspergillus section Flavi. FEMS Microbiol. Lett. 2010, 304, 157–168. [CrossRef]
2. Shabeer, S.; Asad, S.; Jamal, A.; Ali, A. Aflatoxin Contamination, Its Impact and Management Strategies: An Updated Review.

Toxins 2022, 14, 307. [CrossRef] [PubMed]
3. Benkerroum, N. Aflatoxins: Producing-Molds, Structure, Health Issues and Incidence in Southeast Asian and Sub-Saharan

African Countries. Int. J. Environ. Res. Public Health 2020, 17, 1215. [CrossRef] [PubMed]
4. Xie, K.; He, X.; Hu, G.; Zhang, H.; Chen, Y.; Hou, D.; Song, Z. The preventive effect and mechanisms of adsorbent supplementation

in low concentration aflatoxin B1 contaminated diet on subclinical symptom and histological lesions of broilers. Poult. Sci. 2022,
101, 101634. [CrossRef]

5. Allameh, A.; Khanian, M.; Karimi-Torshizi, M.; Kalantari-Hesari, A. Hepatoprotective effects of Lactobacillus plantarum 299v
supplemented via drinking water against aflatoxin-induced liver damage. Avian Pathol. 2021, 50, 522–530. [CrossRef]

6. Gallo, A.; Giuberti, G.; Frisvad, J.; Bertuzzi, T.; Nielsen, K. Review on Mycotoxin Issues in Ruminants: Occurrence in Forages,
Effects of Mycotoxin Ingestion on Health Status and Animal Performance and Practical Strategies to Counteract Their Negative
Effects. Toxins 2015, 7, 3057–3111. [CrossRef] [PubMed]

7. Barati, M.; Chamani, M.; Mousavi, S.; Hoseini, S.; Ebrahimi, M. Broiler Tavuklarda Aflatoksin ile Kontamine Diyette Ticari Toksin
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