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Background: Heart failure (HF) is the main cause of morbidity and mortality worldwide,

and metabolic dysfunction is an important factor related to HF pathogenesis and

development. However, the causal effect of blood metabolites on HF remains unclear.

Objectives: Our chief aim is to investigate the causal relationships between human

blood metabolites and HF risk.

Methods: We used an unbiased two-sample Mendelian randomization (MR) approach

to assess the causal relationships between 486 human blood metabolites and

HF risk. Exposure information was obtained from Sample 1, which is the largest

metabolome-based genome-wide association study (mGWAS) data containing 7,824

Europeans. Outcome information was obtained from Sample 2, which is based on the

results of a large-scale GWAS meta-analysis of HF and contains 47,309 cases and

930,014 controls of Europeans. The inverse variance weighted (IVW) model was used

as the primary two-sample MR analysis method and followed the sensitivity analyses,

including heterogeneity test, horizontal pleiotropy test, and leave-one-out analysis.

Results: We observed that 11 known metabolites were potentially related to

the risk of HF after using the IVW method (P < 0.05). After adding another

four MR models and performing sensitivity analyses, we found a 1-SD increase in

the xenobiotics 4-vinylphenol sulfate was associated with ∼22% higher risk of HF

(OR [95%CI], 1.22 [1.07–1.38]).

Conclusions: We revealed that the 4-vinylphenol sulfate may nominally increase the risk

of HF by 22% after using a two-sample MR approach. Our findings may provide novel

insights into the pathogenesis underlying HF and novel strategies for HF prevention.
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INTRODUCTION

Heart failure (HF) is a major public health problem and
has imposed considerable burden on society (1). Although
great progress has been made in current treatment of HF,
its morbidity and mortality continue to rise (2). HF is
estimated with a heritability of ∼26% (3). Previous genome-
wide association studies (GWAS) have identified a few genetic
loci for HF (4), while its roles in etiology are unclear. As
functional intermediates, circulating metabolites can reflect
the underlying biological links of the individual genetic
composition and the development of diseases. To date, metabolic
dysfunction was proposed as an important contributor in HF
(5), and metabolomic studies have identified a number of
circulating metabolites associated with HF (6, 7). However,
the causal relationships between the metabolites and HF
are unclear, and translating these metabolic findings into
pathophysiological mechanisms and novel therapies is difficult.
Hence, a comprehensive analysis is needed to uncover the
interactions between genetics and circulating metabolites in the
pathogenesis of HF.

The basic idea of Mendelian randomization (MR) is to use
genetic variation as an instrumental variable (IV), which is
strongly related to exposure factors and can infer the causal
effects between exposure factors and research outcomes (8).
To date, some MR studies have been performed in exploring
the causation between exposure and heart failure, though the
main focus was single exposure or routine exposure factors,
such as brain natriuretic peptide (9), interleukin-6 (10), and
heart rate (11). Few studies focused on the blood metabolites,
especially based on the metabolome. A previous study conducted
two-sample MR analysis on 486 blood metabolites and five
major psychiatric disorders. It has successfully identified several
disease-linked metabolites (12), providing novel insights into
integrating metabolic mechanism with psychiatric disorders.
However, no research about investigating the causal relationships
between blood metabolites and the risk of HF has been reported.
Hence, we used a two-sample MR approach for assessing the
causal relationships between 486 human blood metabolites and
risk of HF in this study to provide a deeper understanding of the
pathogenesis of HF.

METHODS

Study Design and Data Resources
The data we used in this study all came from the public dataset,
which are publicly available on the database website, and has
obtained ethics approval in the previous studies.

The study flow is illustrated in Figure 1. Exposure information
was obtained from Sample 1, which is the largest mGWAS
data published by Shin et al. (13) in 2014 and contains
7,824 Europeans. After strict quality control, ∼2.1 million

Abbreviations: HF, heart failure; MR, Mendelian randomization; mGWAS,

metabolome-based genome-wide association study; GWAS, genome-wide

association study; IV, instrumental variable; SNP, single nucleotide polymorphism;

LD, linkage disequilibrium; IVW, inverse variance weighted.

single nucleotide polymorphisms (SNPs) and 486 blood
metabolites (including 309 known metabolites and 177 unknown
metabolites) were employed. These metabolites can be split into
eight major categories: carbohydrates, amino acids, nucleotides,
cofactors and vitamins, lipids, peptides, energy products, and
xenobiotic metabolites. Summary data of all the mGWAS results
in Sample 1 are publicly available on a database website (http://
metabolomics.helmholtz-muenchen.de/gwas/).

Outcome information was obtained from Sample 2, which
is based on the results of a large-scale GWAS meta-analysis
conducted by Shah et al. (4) in 2020 on 26 studies of HF. This
dataset contains 47,309 cases and 930,014 controls of European
lineage, and ∼8.3 million SNPs were employed in association
analyses. The summary data of HF GWAS in Sample 2 were
downloaded from the CVDKP Datasets website (http://www.
kp4cd.org/datasets/mi).

Quality Control of IV
A series of unified selection standards was adopted for the
genetic variation in 486 metabolites in this study. We used a
relatively loose P-value threshold, which was widely used in MR
analysis (8), that is, P < 1 × 10−5, as a significant condition
for the preliminary selection of IVs. Then, we performed linkage
disequilibrium (LD) analysis to achieve independent genetic
instruments, which were derived from a stringent clumping
criterion [LD cutoff of r2 = 0.001 within a 10,000 kb window
in the 1000 Human Genomes Project (14) European (EUR)
reference panel]. Given that metabolites in similar metabolic
pathways may be regulated by the same SNPs and multiple
metabolites are significantly associated with the same IVs, so
the MR hypothesis could be disturbed. Hence, we conducted
the restricted selection of IVs (15) to exclude SNPs that were
significantly related to more than two metabolites. Besides, we
searched for keywords [(HF) OR (heart failure) AND (SNP) OR
(GWAS)] in the PubMed, and we collected SNPs related to HF
(including various types, e.g., dilated cardiomyopathy, incident
systolic heart failure, advanced heart failure, congestive hearts
failure) or its risk factors (such as interleukin-6, ejection fraction,
heart rate, aortic root size, etc.) in the published literature. We
deleted the disease-related SNPs (Supplementary Table 1) and
the duplicate SNPs after sorting and merging. Finally, we used
the unique SNP for subsequent analysis.

MR Analysis
The inverse variance weighted (IVW) model was used as the
primary two-sample MR analysis model. IVW was proposed
by Burgess et al. (16) and usually used in the MR studies of
multiple IVs. This method can be employed on the premises
that IVs satisfy the assumptions of relevance, independence, and
exclusivity and genetic variation affect outcomes only through
exposure in the study. The IVW method is ideal in estimating
robust causal detection ability. We considered that the features of
these metabolites and HF risk have a strong causal relationship
if the P-value of IVW exceeds the multiple-testing adjusted
threshold (P < 0.05/486 = 1.03 × 10−4). However, given that
the causal effects between blood metabolites and risk of HF
sometimes are limited, a strict threshold might lead to the loss of
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FIGURE 1 | Schematic view of the study design for two-sample MR analyses in this study.

some potential signals. Hence, we focused on potentially causal
metabolites (P > 1.03 × 10−4 but P < 0.05) and added four
extra MR models to test the causal influence features, namely,
MR-Egger regression (17), the weighted median method (18), the
simple mode-based estimator (19), and the weightedmode-based
estimator (19).

MR-Egger regression is the weighted linear regression of
the effects of IVs and exposure and the effects of IVs and
outcome (17). Different from the intercept term of IVW forced
linear regression, the latter is zero, the intercept term in this
model is a variable, and the horizontal pleiotropy of genetic
variation can be measured by the intercept term. The fact that the
intercept term does not correspond to zero indicates pleiotropy,
but MR-Egger can still get an unbiased estimation when the
IVs exist pleiotropy, which is its advantage. When applying the
MR-Egger model, the tool variables will have nothing to do
with the outcome, and only through exposure factors affect the
outcome, which weakens the exclusive hypothesis of the IVM

method to the tool variables. MR-Egger just needs to meet the
hypothesis named “InSIDE (instrument strength independent of
direct effect) assumption” that the precise effects of tool variables
and outcomes are independent of the correlation between tool
variables and exposure factors. It is to be noted that the direction
of all tool variables is the same in the analysis. Although the
assumption of IVs can be effectively evaluated through the
intercept item of MR Egger, it is less effective than IVW approach
in detecting the causality (20).

The weighted median method is generally employed in
measuring an effect, and the ratios of selected SNPs are
calculated for the estimation of a weighted empirical distribution
function (18). This method allows a strong SNP to provide an
asymptotically consistent estimate of causal effects; even when
an effective SNP is less, it can also reduce the bias of causal
effects estimation.

The simple mode-based estimator classifies SNPs according to
causal effects, and similar values are divided into a cluster. The
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TABLE 1 | Significant metabolites related to the risk of HF according to IVW results (P < 0.05).

ID Metabolite nSNP Beta SE P OR (95%CI)

M36098 4-vinylphenol sulfate 10 0.20 0.06 2.16E-03 1.22 (1.07–1.38)

M35187 X-13429 4 0.27 0.09 3.10E-03 1.32 (1.10–1.58)

M34035 Linolenate [alpha or gamma; (18:3n3 or 6)] 3 0.54 0.20 6.31E-03 1.71 (1.16–2.52)

M34336 X-12726 22 0.12 0.05 7.15E-03 1.13 (1.03–1.23)

M35160 Oleoylcarnitine 7 0.47 0.18 8.06E-03 1.60 (1.13–2.28)

M34112 X-12544 18 −0.15 0.06 1.06E-02 0.86 (0.77–0.97)

M01125 Isoleucine 16 0.73 0.29 1.11E-02 2.08 (1.18–3.67)

M16818 X-04495 11 0.35 0.14 1.32E-02 1.42 (1.08–1.87)

M35159 Cysteine-glutathione disulfide 9 −0.19 0.08 1.45E-02 0.82 (0.71–0.96)

M18477 Glycodeoxycholate 7 −0.11 0.05 1.53E-02 0.90 (0.82–0.98)

M33138 X-11793 11 0.30 0.13 1.67E-02 1.35 (1.06–1.73)

M33782 X-10346 14 0.08 0.04 1.81E-02 1.09 (1.01–1.17)

M12768 X-03088 16 −0.30 0.13 2.43E-02 0.74 (0.57–0.96)

M33203 X-11858 15 0.06 0.03 2.92E-02 1.06 (1.01–1.12)

M35186 1-arachidonoylglycerophosphoethanolamine 17 −0.32 0.15 3.05E-02 0.72 (0.54–0.97)

M33192 X-11847 11 0.10 0.05 3.31E-02 1.11 (1.01–1.22)

M11438 Phosphate 4 −0.84 0.40 3.40E-02 0.43 (0.20–0.94)

M35464 X-13671 14 −0.38 0.18 3.45E-02 0.68 (0.48–0.97)

M34530 X-12847 10 0.13 0.06 4.22E-02 1.14 (1.00–1.30)

M33973 Epiandrosterone sulfate 3 0.20 0.10 4.31E-02 1.22 (1.01–1.49)

M01114 Deoxycholate 17 0.11 0.05 4.41E-02 1.11 (1.00–1.24)

M33968 5-Dodecenoate (12:1n7) 11 −0.18 0.09 4.95E-02 0.83 (0.70–1.00)

nSNP, number of the SNP used for tests; SE, standard error; OR, odds ratio; 95% CI, 95% confidence interval; X, unknown metabolite.

estimated causal effect is estimated by a cluster with the largest
number of SNPs. The weighted mode-based estimator weighs the
causal effects values of each SNP pair to the number of SNPs
in each cluster, and the results returned are temporary estimates
with themaximum number of SNPs weight. The premise of using
Mode-based Estimate method to access the consistent estimation
of causal effect is to satisfy the “ZEMPA hypothesis” (Zero Modal
Pleiotropy Assumption), that is, in the total genetic variation, the
mode of the bias term is 0 (19).

In brief, if the five MR models mentioned above produce
similar estimates of causal effects and show significant P-values
(P < 0.05) in at least three models (including IVW), then we
consider the metabolite as a candidate causal feature for HF risk.

Sensitivity Analysis
Owing to the diversity of experimental conditions, analytical
platforms, and study subjects, there may be heterogeneity in the
two-sample MR analyses, resulting in bias in the estimation of
causal effects. Thus, heterogeneity testing of IVW analysis and
MR-Egger regression was adopted in this study. If the P > 0.05
in the test, evidence of heterogeneity in the included IVs is non-
existent, that is, the influence of heterogeneity on the estimation
of causal effects can be ignored.

When we use IVW to explore the causal relationship, there
may be other unknown confounding factors against genetic
multiplicity and bias estimation of causal effects. Hence, we
performed horizontal pleiotropy test by judging the intercept
of MR-Egger regression and evaluating the P-value of it on the

MR-Egger model. If the intercept is close to 0 (<0.1) and P >

0.05, we considered that there is no evidence for the existence
of horizontal pleiotropy in the tests. In addition, we adoptedMR-
PRESSOmethod to further test horizonal pleiotropy and possible
outliers by using MR-PRESSO package (21).

After implementing the heterogeneity test and horizontal
pleiotropy test, we used the leave-one-out method in conducting
sensitivity analysis on qualified metabolites. In this method,
related SNPs are removed one by one, and the amalgamation
effect of the remaining SNPs is calculated for the evaluation of
the effect of each SNP on the metabolites. If the overall error
line does not change considerably after the exclusion of each
SNP (i.e., all error lines do not pass through 0), the result is
considered reliable.

Pathway and Enrichment Analysis
We performed pathway and enrichment analysis of 11 HF-
related known metabolites (P < 0.05, IVW method) through the
online metabolomics data analysis website [(22); https://www.
metaboanalyst.ca/MetaboAnalyst/faces/home.xhtml]. First, we
found the ID corresponding to these metabolites on the
Human Metabolome Database [(23); https://hmdb.ca/]. Then,
we used Enrichment Analysis and Pathway Analysis modules
in the Annotated Features mode to perform the pathway
and enrichment analysis. Overall, we collected a number of
metabolite sets and pathways of metabolites related to HF
based on SMPDB [(24); https://smpdb.ca/] and KEGG database
[(25); https://www.kegg.jp/].
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TABLE 2 | Five MR models estimate the causal relationships between 11 known metabolites and the risk of HF and tests for heterogeneity and horizontal pleiotropy.

Metabolite Method nSNP P OR (95%CI) P Heterogeneity P Horizontal pleiotropy

4-vinylphenol sulfate MR Egger 10 1.69E-01 1.29 (0.93–1.79) 0.61 0.74

Weighted median 10 3.34E-03 1.29 (1.09–1.53)

IVW 10 2.16E-03 1.22 (1.07–1.38) 0.7

Simple mode 10 8.70E-02 1.31 (0.99–1.72)

Weighted mode 10 2.37E-02 1.34 (1.09–1.66)

Linolenate [alpha or gamma; (18:3n3 or 6)] MR Egger 3 2.93E-01 2.45 (1.03–5.86) 0.27 0.53

Weighted median 3 8.30E-03 1.88 (1.18–3.01)

IVW 3 6.31E-03 1.71 (1.16–2.52) 0.33

Simple mode 3 1.36E-01 1.91 (1.13–3.22)

Weighted mode 3 1.22E-01 1.90 (1.17–3.07)

Oleoylcarnitine MR Egger 7 6.03E-01 1.81

(0.22–14.86)

0.78 0.91

Weighted median 7 6.02E-02 1.54 (0.98–2.40)

IVW 7 8.06E-03 1.60 (1.13–2.28) 0.87

Simple mode 7 4.14E-01 1.36 (0.68–2.73)

Weighted mode 7 3.66E-01 1.40 (0.71–2.75)

Isoleucine MR Egger 16 2.02E-01 3.11

(0.59–16.39)

0.51 0.62

Weighted median 16 2.29E-01 1.67 (0.72–3.84)

IVW 16 1.11E-02 2.08 (1.18–3.67) 0.57

Simple mode 16 7.23E-01 1.33 (0.28–6.20)

Weighted mode 16 7.92E-01 1.20 (0.31–4.65)

Cysteine-glutathione disulfide MR Egger 9 2.16E-01 0.60 (0.29–1.25) 0.89 0.41

Weighted median 9 5.26E-02 0.82 (0.67–1.00)

IVW 9 1.45E-02 0.82 (0.71–0.96) 0.89

Simple mode 9 3.67E-01 0.86 (0.62–1.18)

Weighted mode 9 1.98E-01 0.80 (0.59–1.09)

Glycodeoxycholate MR Egger 7 8.79E-01 1.03 (0.72–1.46) 0.29 0.46

Weighted median 7 5.38E-02 0.89 (0.79–1.00)

IVW 7 1.53E-02 0.90 (0.82–0.98) 0.33

Simple mode 7 1.38E-01 0.87 (0.73–1.02)

Weighted mode 7 2.22E-01 0.89 (0.74–1.05)

1-arachidonoylglycerophosphoethanolamine MR Egger 17 2.48E-02 0.29 (0.11–0.77) 0.96 0.07

Weighted median 17 1.40E-02 0.60 (0.40–0.90)

IVW 17 3.05E-02 0.72 (0.54–0.97) 0.83

Simple mode 17 1.20E-01 0.54 (0.26–1.13)

Weighted mode 17 6.72E-02 0.51 (0.26–1.00)

Phosphate MR Egger 4 2.14E-01 0.33 (0.10–1.11) 0.17 0.59

Weighted median 4 7.07E-02 0.44 (0.18–1.07)

IVW 4 3.40E-02 0.43 (0.20–0.94) 0.24

Simple mode 4 2.31E-01 0.39 (0.11–1.34)

Weighted mode 4 1.38E-01 0.43 (0.19–0.98)

Epiandrosterone sulfate MR Egger 3 3.94E-01 1.30 (0.90–1.87) 0.07 0.73

Weighted median 3 1.34E-03 1.27 (1.10–1.47)

IVW 3 4.31E-02 1.22 (1.01–1.49) 0.13

Simple mode 3 2.36E-01 1.28 (0.96–1.71)

Weighted mode 3 8.64E-02 1.27 (1.10–1.47)

Deoxycholate MR Egger 17 6.08E-01 1.07 (0.83–1.37) 0.41 0.72

Weighted median 17 2.18E-01 1.10 (0.94–1.28)

IVW 17 4.41E-02 1.11 (1.00–1.24) 0.47

Simple mode 17 2.74E-01 1.18 (0.89–1.57)

(Continued)
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TABLE 2 | Continued

Metabolite Method nSNP P OR (95%CI) P Heterogeneity P Horizontal pleiotropy

Weighted mode 17 3.11E-01 1.15 (0.89–1.49)

5-dodecenoate (12:1n7) MR Egger 11 2.28E-01 0.78 (0.54–1.14) 0.75 0.7

Weighted median 11 3.68E-02 0.78 (0.61–0.98)

IVW 11 4.95E-02 0.83 (0.70–1.00) 0.81

Simple mode 11 2.60E-01 0.79 (0.53–1.17)

Weighted mode 11 1.48E-01 0.79 (0.60–1.06)

Statistical Analysis
Given that hundreds of exposures were used in this study, batch
MR analyses were implemented using our own script. Here,
we upload the core codes of batch two-sample MR analysis in
GitHub (https://github.com/zxwang2019/Two-sample-MR.git).
LD analyses were performed by using the PLINK software
(version 1.9) (26). Two-sampleMR analyses, including sensitivity
analyses, were all performed by using the TwoSampleMR package
(version 0.4.22) (27) in R (version 3.6.1).

RESULTS

IV Information
A total of 39,142 SNPs were significantly associated with the 486
metabolites (P < 1 × 10−5) in Sample 1. After LD analyses, the
number of these SNPs collapsed into 9,485, and the SNPs were
relatively independent from each other. Among the 9,485 SNPs,
335 were associated with at least two metabolites, and no SNP
was associated with HF or its risk factors (see Methods). We
excluded confounding SNPs and compared them with the SNPs
in Sample 2 (Figure 1). Finally, 8,656 (94.6%) SNPs were selected
for subsequent analyses. Five metabolites with IV number of less
than three or more than 100 were removed in the subsequent MR
analyses for stable and reliable statistical results.

MR Analysis Results
In this study, IVW model was used as the primary method
in estimating the causal relationships between the blood
metabolites and HF risk. Theoretically, the multiple-testing
adjusted threshold (P < 1.03 × 10−4) was used in assessing
significance, and no metabolite exceeded the strict threshold in
this study (Supplementary Table 2). A total of 22 metabolites
comprising 11 known metabolites and 11 unknown metabolites
showed nominally significant relation (P > 1.03 × 10−4 but
P < 0.05, IVW method) to HF (Table 1). In the results of
the pathway analysis of the 11 known metabolites, we found
that the “Valine, leucine, and isoleucine biosynthesis” metabolic
pathway that involves L-Isoleucine was significant (p = 0.026).
L-isoleucine is an essential amino acid andmust be supplemented
in the diet. A study (28) had shown that the concentration
of essential amino acids (including L-isoleucine) in the serum
of chronic heart failure patients was significantly lower than
that of the control group, suggesting that L-isoleucine may be
associated with HF progression. As for the enrichment analysis,

however, we did not identify significant (p< 0.05) metabolite sets
(Supplementary Tables 3–5 and Supplementary Figures 1–3).

What we found that 4-vinylphenol sulfate (OR [95%CI],
1.22 [1.07–1.38]), linolenate (alpha or gamma; [18:3n3
or 6]) (OR [95%CI], 1.71 [1.16–2.52]), oleoylcarnitine
(OR [95%CI], 1.60 [1.13–2.28]), isoleucine (OR [95%CI],
2.08 [1.18–3.67]), epiandrosterone sulfate (OR [95%CI],
1.22 [1.01–1.49]), and deoxycholate (OR [95%CI], 1.11
[1.00–1.24]) presented potentially increased HF risk, and
cysteine-glutathione disulfide (OR [95%CI], 0.82 [0.71–
0.96]), glycodeoxycholate (OR [95%CI], 0.90 [0.82–0.98]),
1-arachidonoylglycerophosphoethanolamine (OR [95%CI], 0.72
[0.54–0.97]), phosphate (OR [95%CI], 0.43 [0.20–0.94]), and 5-
dodecenoate (12:1n7) (OR [95%CI], 0.83 [0.70–1.00]) presented
potentially decreased HF risk. Furthermore, we added four other
models (see Methods) to estimate the causal effects between the
11 potentially HF-related metabolites and HF risk (Table 2).
Two metabolites were significant in at least three MR models
and showed consistent causal effects in all models (Table 2 and
Figure 2), namely, 1-arachidonoylglycerophosphoethanolamine
(P IVW = 3.05× 10−2, P MR Egger = 2.48× 10−2, P Weighted median

= 1.4 × 10−2, P Simple mode = 1.2 × 10−1, P Weighted mode =

6.72 × 10−2) and 4-vinylphenol sulfate (P IVW = 2.16 × 10−3,
P MR Egger = 1.69 × 10−1, P Weighted median = 3.34 × 10−3, P

Simple mode = 8.7× 10−2, P Weighted mode = 2.37× 10−2). For the
4-vinylphenol sulfate, the overall results were similar for the five
methods/models. The point estimate from MR-Egger regression
was similar to this from IVW, and the interval estimates were
relatively wide (Figure 2A). We noted that there may be an
outlier here, while the funnel plot (Supplementary Figure 4)
showed that the number of points was almost symmetrically
distributed when using individual SNPs as IVs (6 vs. 4). But the
corresponding causal effect values were less evenly distributed in
the IVW and MR-Egger regression models, suggesting that the
results obtained using these 10 SNPs as IVs may still be subject
to potential bias.

Evaluation of the Reliability and Stability of
the Results
We performed heterogeneity and horizontal pleiotropy tests on
the 11 known metabolites (P < 0.05, IVW method) to evaluate
the reliability and stability of the results. The P-values of the
test results (including MR-Egger and MR-PRESSO methods)
were more than 0.05 and the intercept of MR-Egger regression
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FIGURE 2 | Two metabolites showing causal relationships with HF and their subsequent sensitivity analyses. (A,B) Scatter plots of the 5 MR models (light blue line,

inverse variance weighted; blue line, MR Egger; light green line, simple model-based estimator; green line, weighted median estimator; red line, weighted model-based

estimator) for 4-vinylphenol sulfate and 1-arachidonoylglycerophosphoethanolamine with the risk of HF. (C,D) Forest plots show the results of leave-one-out analyses

of the two metabolites. (E) Re-analyses results of five MR models after the removal of sensitive SNP for 1-arachidonoylglycerophosphoethanolamine.

is close to 0 (<0.1), suggesting evidence of the existence of
heterogeneity and horizontal pleiotropy in these metabolites
is non-existent (Table 2 and Supplementary Table 6). As for

the two relatively robust metabolites (significant in at least
three MR models, 1-arachidonoylglycerophosphoethanolamine,
and 4-vinylphenol sulfate), we performed sensitivity analyses
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FIGURE 3 | Graphical summary. Among 486 human blood metabolites, this study found that a 1-SD increase in the xenobiotics 4-vinylphenol sulfate was associated

with ∼22% higher risk of HF by using two-sample MR approach.

by using a leave-one-out approach to test the stability. All IVs
(SNPs) of 4-vinylphenol sulfate showed no sensitivity to the
results, suggesting a strong link between exposure and outcome,
whereas the four IVs (rs1984049, rs17031728, rs11081670, and
rs39741) of 1-arachidonoylglycerophosphoethanolamine may
have significantly affected the result (Figures 2C,D). After
removing the four sensitive SNPs, we performed MR analyses
again using the five models, and we found that the results were
no longer significant (Figure 2E).

DISCUSSION

In this study, we performed unbiased two-sample MR analysis
to perform causal evaluation on 486 blood metabolites and
HF risk. We collected the largest mGWAS and large HF
GWAS summary data from public databases. We used genetic
variants as IVs and discovered 11 known metabolites, which
were considered potential risk predictors of HF after primary
IVW analysis. Moreover, to further ensure the reliability and
stability of the results, another four MR models and sensitivity
analysis were performed. The result consistently supported that
the xenobiotic 4-vinylphenol sulfate is related to increased HF
risk (see Figure 3).

As a sulfate conjugate, 4-vinylphenol sulfate is one of the
main metabolisms of 4-vinylphenol in vivo (29). Naturally found
in crops, such as peanut and wild rice (30), 4-vinylphenol is
an essential ingredient widely used in meat and seafood flavor

formulations (PubChem CID: 62453). Our findings showed that
4-vinylphenol sulfate could increase the incidence of HF by
22% (IVW method), suggesting that long-term or excessive diets
containing such compound or 4-vinylphenol, especially in the
additives, may increase the likelihood of HF. Previous studies
have shown that the level of 4-vinylphenol sulfate in the blood
is closely related to smoking (31), which is a key risk factor
for myocardial systolic dysfunction and hospitalization due to
mental failure (32). Petersen et al. (33) showed a significant
correlation between 4-vinylphenol sulfate and methylation at a
certain site of RARA, which is a transcription factor that regulates
differentiation and apoptosis (34), and the evidence may be
linked to the pathogenesis of HF.

Another metabolite is worth mentioning, namely, 1-
arachidonoylglycerophosphoethanolamine, which can be
referred to as LysoPE [20:4 (5Z,8Z,11Z,14Z)/0:0] or LPE
(20:4/0:0). After analysis by the primary IVW method, it is
found that the metabolite was related to decreased risk of HF
and showed a significant (P < 0.05) causation with HF in
another two MR models. However, it did not pass the final
leave-one-out analysis. LysoPE [20:4 (5Z,8Z,11Z,14Z)/0:0] is an
endogenous compound and a kind of lysolipid. Gao et al. (35)
found that LysoPE 20:4 is significantly related to Qi deficiency
syndrome in the treatment of congestive HF with traditional
Chinese medicine, suggesting that it may be one of the specific
metabolic biomarkers of congestive HF treated using traditional
Chinese medicine granules. In addition, HF is associated
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with significant disturbances in phospholipid metabolism. A
statistically significant decline in LysoPE level was found in
patients with chronic HF with reduced ejection fraction (36).
Supplementation with LysoPE in mammalian cells can reverse
mitochondrial impairments (37). Our findings suggested that
LysoPE 20:4 has a potential positive influence on HF risk,
providing an interesting and valuable evidence for future studies.

Innovations and Limitations
Our study has some innovations. First, from the perspective of
molecular mechanism, regarding blood metabolites as exposure
factors in exploring the causal relationships between metabolites
and HF risk has a solid theoretical basis and important clinical
research value. Second, the study used strict quality control
conditions and reasonable analysis methods, including a variety
of models, to evaluate the causal effects. Thus, the results of
this study are reliable and stable. Third, unlike in previous MR
analyses of single exposure factors, analysis of a large number
of blood metabolites may require huge workloads and present
analytical challenges. The analysis strategy we presented might
provide a reference for similar studies. Our study may have
some limitations. To begin with, all the mGWAS and HF
GWAS data were obtained from the European population, and
thus comprehensive studies involving different ethnic groups
are needed. Furthermore, half of the risk predictors of HF
obtained by preliminary analysis (IVW only) are unknown
metabolites, and their functional structures are unclear. Thus, the
findings in the study are limited. Finally, although we revealed
that 4-vinylphenol sulfate is nominal causal related to heart
failure by using an unbiased two-sample MR approach, while
this relationship was theoretical and we failed to confirm it
mechanistically. Hence, further work is still needed to uncover
the role of 4-vinylphenol sulfate in the pathogenesis of HF,
therefore confirming this causal relationship.

CONCLUSIONS

In conclusion, we used a two-sample MR approach to explore
the causal relationships between 486 blood metabolites and HF

among more than 0.9 million Europeans. We found that 1-SD
increase in the xenobiotic 4-vinylphenol sulfate could nominally
increase the risk of HF by 22%. Our findings strengthen
our knowledge of the relationships between blood metabolites
and HF, which potentially facilitate the establishment of
personalized explanation or markers for biological differences in
disease status.
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