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ABSTRACT: Predicting drug-target affinity (DTA) is beneficial
for accelerating drug discovery. In recent years, graph structure-
based deep learning models have garnered significant attention in
this field. However, these models typically handle drug or target
protein in isolation and only extract the molecular structure
information on the drug or protein itself. To address this limitation,
existing network-based models represent drug-target interactions or
affinities as a knowledge graph to capture the interaction
information. In this study, we propose a novel solution. Specifically,
we introduce drug similarity information and protein similarity
information into the field of DTA prediction. Moreover, we
propose a network framework that autonomously extracts similarity
information, avoiding reliance on knowledge graphs. Based on this
framework, we design a multibranch neural network called GASI-DTA. This network integrates similarity information, sequence
information, and molecular structure information. Comprehensive experimental results conducted on two benchmark data sets and
three cold-start scenarios demonstrate that our model outperforms state-of-the-art graph structure-based methods in nearly all
metrics. Furthermore, it exhibits significant advantages over existing network-based models, outperforming the best of them in the
majority of metrics. Our study’s code and data are openly accessible at http://github.com/XiaoLin-Yang-S/GASI-DTA.

■ INTRODUCTION
Drug discovery plays a crucial role in the development of new
medications, aiming to identify compounds that interact with
specific biological targets, especially the target proteins.1

However, this process is time-consuming and requires
substantial funding, making it challenging.2 Predicting drug-
target affinity provides valuable information about the strength
of interaction between drugs and their targets, as measured by
the dissociation constant (Kd), inhibition constant (Ki), or
maximum inhibition concentration (IC50), etc.

3 By using
computational methods to predict affinity instead of relying
solely on rigorous experiments, researchers can efficiently
screen and prioritize drug candidates with promising research
value. This accelerates the drug development process,
providing timely and effective assistance in improving
treatment outcomes for various diseases.4

The existing computational methods are mainly divided into
three categories: traditional physics-based methods, machine
learning-based methods, and deep learning-based methods.
Traditional physics-based methods, such as molecular
docking5,6 and molecular dynamics simulations,7,8 have
achieved excellent predictive results by utilizing the three-
dimensional (3D) structure of drug molecules and proteins.
However, these methods face the challenge of computing
resource consumption and scoring function design.9 Machine

learning-based approaches have had a significant impact in this
field. Researchers use various methods to predict drug-target
affinity, such as support vector machines, logistic regression,
random forests, and least-squares.10,11 However, due to their
inherent limitations, such as reliance on complex feature
engineering and expert domain knowledge, it is challenging to
achieve adequate generalization in this field.12,13

In recent years, inspired by successful applications in various
research fields, deep learning methods have also been widely
utilized in bioinformatics and cheminformatics.14−16 In the
field of drug-target affinity (DTA) prediction, the advantage of
deep learning-based methods is their ability to uncover hidden
interactions between drugs and targets.17 These methods can
be categorized into structure-based methods and nonstructure-
based methods. Structure-based methods focus on utilizing the
three-dimensional structure of drug and target. These methods
typically employ fully connected neural network (FCNN),18
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three-dimensional (3D) convolutional neural network
(CNN),19,20 graph neural network (GNN),21,22 and so on
for feature extraction. They are capable of capturing spatial
relationships and geometric features between drugs and targets,
thereby offering more accurate prediction results.23 However,
these methods have a notable limitation: they do not work
when the 3D structure of the drug and target is unknown, and
currently, obtaining the exact 3D structure of the drug and
target remains a very challenging task. Nonstructure-based
methods typically have a dual-encoder architecture, which
separately learns representations of drugs and targets. These
models can be divided into the following categories: sequence-
based methods, graph structure-based methods, and network-
based methods.
Sequence-based models take the sequence information on

drugs and proteins directly as input for the model. For
example, DeepDTA24 used two convolutional neural networks
to extract features from drug simplified molecular input line
entry system (SMILES) strings and protein sequences.
Subsequently, the learned features of drugs and proteins
were combined and fed into a multilayer perceptron for DTA
prediction. AttentionDTA25 utilizes attention mechanisms to
merge the obtained drug and protein representations, resulting
in improved performance. ELECTRA-DTA26 applied the
ELECTRA27 pretrained model, which extracts feature
representations from a large amount of original sequence
data, to the model. Utilizing the pretrained model alleviated
the issue of insufficient data in DTA prediction tasks to some
extent and achieved competitive performance at that time.
MFR-DTA28 found that most methods ignore the individual
information on sequence elements, leading to inadequate
sequence feature representation. Therefore, they proposed a
new biological sequence feature extraction block, which
includes a global feature extractor and an individual feature
extractor to effectively extract global and individual features.
Moreover, they use a spatial attention block to capture the
local relationship among the adjacent elements, further
enriching the extracted individual features. Although se-
quence-based approaches have made some progress, they
overlook information regarding the molecular structure of
drugs and proteins. This oversight can compromise the
predictive power of models and their ability to learn functional
correlations in underlying feature spaces.3

Graph structure-based models usually process the drug
SMILES string or protein sequences into molecular graphs to
extract molecular structure information. For instance, Graph-
DTA29 constructs a drug molecule graph with atoms as nodes
and bonds as edges. In this model, a GNN is used to extract
features from the drug molecule graph, which enhances the
prediction performance of DTA. DGraphDTA30 further
constructs the protein graph using Pconsc4.31 This allows
the model to acquire protein structure information simulta-
neously. WGNN-DTA32 optimizes the generation of protein
graph by introducing evolutionary scale modeling (ESM),
which yields superior results. MGraphDTA3 believes that
GNN models with few layers are insufficient to capture the
overall structure of compounds. Therefore, a deep graph
convolutional network (GCN)33 model is proposed to extract
structure features. GLGN-DTA34 integrates a graph learning
module into the existing graph architecture. This module is
designed to learn a soft adjacency matrix and extract more
structure information than the traditional fixed adjacency
matrix method.

Graph structure-based methods generally outperform
sequence-based models because they incorporate molecular
structure information. However, these models typically handle
drug or protein in isolation and only extract the molecular
structure information on the drug or protein itself. To solve
this problem, network-based models have begun to emerge.
Network-based models typically represent drug-target

interactions or affinities as a knowledge graph to extract the
interaction information.35 For example, BERT-DTA36 repre-
sents drug-target interactions as a graph and utilizes GCN for
feature extraction. HGRL-DTA37 optimizes the modeling of
interaction information by representing drug-target affinities as
an affinity graph. In this graph, drugs and proteins serve as
nodes, while drug-target affinities as the edges. HGRL-DTA
inputs the affinity graph into the network along with the
molecular graphs. It learns fine-level representations from
molecular graphs and coarse-level representations from affinity
graph. Finally, a coarse-to-fine information fusion method is
used to further enhance the fine-level representation. Because
of the aforementioned design, HGRL-DTA achieved the best
current performance on both benchmark data sets.
Network-based models achieve better results compared with

graph structure-based model. This offers a new research
direction for DTA prediction tasks. However, these methods
also have certain limitations. In cold start scenarios, new drugs
or proteins are unseen in the training set, and we also do not
know any interaction relationships between these new drugs/
proteins and known proteins/drugs. In this case, it is
impossible to construct a knowledge graph containing these
new drugs or proteins during testing, making network-based
methods unusable. One solution is a similarity-based
representation inference method. During testing, the model
only utilizes the graph node features obtained from the
training. For nodes that are not included in the training set, it
utilizes the similarity function to calculate their features by
existing similar node features. However, this approach is
limited by the manually designed similarity functions, which
hinders the development of end-to-end deep learning methods
in DTA prediction. Meanwhile, existing network-based
methods typically employ simple, manually designed initial
features. They do not leverage the features that contain rich
semantic information provided by the rapidly evolving
pretrained models.
In this study, We introduce drug similarity information and

protein similarity information into the field of DTA prediction.
Specifically, different from traditional drug/protein sequence
processing, which treats atoms/residues as tokens, each drug/
protein is considered a sequence. We input each drug/protein
as a token, and all or partial drugs/proteins as a sequence into
a bidirectional long short-term memory (BiLSTM) network. In
the BiLSTM network, each token can learn not only its own
sequence information but also useful information contained in
other similar tokens. In this way, we do not need to manually
construct a knowledge graph, the model can autonomously
extract similarity information. Then based on this method, we
design a multibranch neural network called GASI-DTA, which
integrates similarity information, sequence information, and
molecular structure information. To be specific, we utilize two
branches to extract information for both drugs and proteins.
One branch is the molecular structure branch. We use the
methods described in DGraphDTA30 to construct molecular
graphs for drugs and proteins, and utilize simple yet effective
GCN to extract molecular structure information from these
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graphs. The other branch is similarity branch. We use
pretraining models to obtain the sequence features of drugs
and proteins that contain rich semantic information. These
features are then input into the BiLSTM38 to extract sequence
and similarity information.
In cold start scenarios, our model has two advantages

compared to network-based models. First, our model does not
require the construction of a knowledge graph, enabling it to
run directly in cold start scenarios. However, when the test set
data differs significantly or even entirely from the training set
data, the similarity information extracted by the training set is
unusable and misleading in the test set. Hence, our model
GASI-DTA would be subject to certain interference when
directly utilizing all similarity information, which makes it
challenging to compare its performance with the state-of-the-
art models in these scenarios. Second, our model extracts drug
similarity information and protein similarity information in a
decoupled manner, ensuring that changes in one do not affect
the extraction of similarity information for the other within the
test set. Therefore, to address the aforementioned issues, we
designed a combinatorial approach by leveraging this
decoupling property to extract partial available similarity
information and avoid interference from misleading informa-
tion.
Our main contributions are summarized as follows:

• We utilize pretrained models to extract sequence
features containing rich semantic information. This
approach help alleviate the challenges of data scarcity
and overfitting to some extent in the DTA prediction
task.

• We introduce drug similarity information and protein
similarity information into the field of DTA prediction.
Moreover, we propose a network framework that
autonomously learns similarity information, avoiding
reliance on knowledge graphs.

• We design a multibranch neural network called GASI-
DTA that integrates multiple information. Specifically,
the model can autonomously extract similarity informa-
tion and sequence information from sequence features
using a similarity branch. Meanwhile, molecular
structure information is extracted from molecular graphs
using a molecular structure branch.

• Comprehensive experimental results conducted on two
benchmark data sets and three cold-start scenarios
demonstrate that our model outperforms state-of-the-art
graph structure-based methods in nearly all metrics.
Furthermore, it exhibits significant advantages over
existing network-based models, outperforming the best
of them in the majority of metrics.

■ METHODS
In this section, we introduce the details of our model GASI-
DTA. The general framework of GASI-DTA is illustrated in
Figure 1. Entire framework is divided into three modules: data
preprocessing, feature extraction, and prediction. In the data
preprocessing module, we preprocess the drug SMILES strings
and protein sequences in the data set to derive the
corresponding sequence features and molecular structure
graphs. In particular, we utilize pretrained models to acquire
sequence features that contain rich semantic information. In
the feature extraction module, both drugs and proteins pass

Figure 1. Framework of the proposed GASI-DTA model. Entire framework is divided into three modules: data preprocessing, feature extraction,
and prediction. In the data preprocessing module, drug SMILE strings and protein sequences are preprocessed to obtain their respective sequence
features and molecular graphs. In the feature extraction module, both drugs and proteins use two branches to exact information. The upper
similarity branch utilizes Bi-LSTM to extract similarity information and sequence information from sequence features. The lower molecular
structure branch utilizes GCN to extract molecular structure information from molecular graphs. The results from the two branches are fused to
derive the ultimate features of drugs and proteins, respectively. In the prediction module, the features of drugs and proteins are concatenated and
then input into fully connected layers to obtain affinity.
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through two network branches to exact information. The upper
similarity branch utilizes Bi-LSTM to extract similarity
information and sequence information. For each token in the
sequence, Bi-LSTM generates the corresponding output using
an Module A and an Module A’. The lower molecular structure
branch employs GCN to extract molecular structure
information. Subsequently, the results of the two branches
are fused through multiple fully connected layers to obtain the
final features of the drugs/proteins. Finally, the acquired drugs
and proteins features are fed into the prediction network to
obtain the affinity values of the corresponding drug-target
pairs.
Data Preprocessing. Pretrained Model. To encode drug

SMILES sequences and proteins sequences, existing deep
learning models such as DeepDTA24 and DeepCDA39 utilize
simple label/one-hot encoding to represent each symbol in the
sequences. These encoding methods can only extract simple
features and cannot encode advanced semantic information
within the sequence, which is often the most crucial. Using
pretrained models to encode sequences can effectively address
this issue. Through pretraining, the model can learn some
general feature representations that capture advanced semantic
information on the data more effectively. In addition, the
pretrained model offers several advantages. First, it typically
leverages a substantial amount of unlabeled data for training,
enabling it to fully utilize data resources. This is particularly
advantageous in the biological field, where data scarcity is
common. For example, the data set used by the drug
pretrained models chemBERTa-240 is over one million times
larger than the DTA benchmark data set, Davis. Second,
employing pretrained strategies can significantly enhance the
model’s generalization capability, leading to improved perform-
ance on unseen data. In conclusion, the feature encoding based
on pretrained models can significantly provide additional and
indispensable assistance to specific downstream research areas,
especially in data-limited biological fields. Therefore, our study
utilizes this feature encoding to acquire drug and protein
sequence features.

Pretrained Representation of Drug SMILES. For drug
SMILES strings, we selected the current best molecule
pretrained model, chemBERTa-2,40 to generate the corre-
sponding string features. The authors of chemBERTa-2
collected 77 million strings from PubChem41 to construct an
unsupervised pretraining data set, which is one of the largest
molecular pretrained data sets available to date. The pretrained
model has demonstrated excellent performance in various

downstream tasks, confirming its reliability. As illustrated in
Figure 1, we first obtain features for each drug string symbol
using this pretrained model. The features were averaged to
derive embedding for the entire drug. Then all drug
embeddings will be fed into the drug similarity branch.

Pretrained Representation of Protein Sequences. For
protein sequences, we selected the classical ProtT5-XL-
UniRef5042 pretrained model, which has been validated and
extensively utilized in numerous downstream tasks, to extract
protein sequence features. This model was pretrained on
UniRef50, which comprises 45 million protein sequences. We
utilized ProtT5-XL-UniRef50 to obtain features for each
protein residue. Then, we computed the average features of
all residues for each protein to generate the overall protein
sequence features. Subsequently, these features were input into
the protein similarity branch.

Drug Graph Representation. For drug molecules, following
the previous study GraphDTA,29 we use RDKit43 to convert
the drug SMILES strings into molecular graphs, where nodes
represent atoms and edges represent bonds. In this study, we
select the same set of atomic features as GraphDTA to
initialize the features of the graph nodes. Specifically, we
concatenate several different one-hot encodings along with a
determination of whether the atom is aromatic, forming a 78-
dimensional vector. This vector serves as the initial feature
input for the drug graph nodes in our model.

Protein Graph Representation. For protein molecular
graphs, following the previous study DGraphDTA,30 We first
preprocess the protein sequence, which includes sequence
alignment and filtering. Then, the results were fed into
Pconsc431 to convert the sequence into a contact map. Finally,
we apply the same threshold filtering to obtain the adjacency
matrix of the protein graphs. Through this process, the protein
sequence is transformed into graph form, where nodes
represent protein residues. We utilize the same set of residue
features as DGraphDTA to initialize the features of the graph
nodes. Specifically, we concatenate the one-hot encoding of the
residue, position-specific scoring matrix (PSSM), and the
biological features of the residue to form a 54-dimensional
vector as the input feature for the protein graph nodes.
Feature Extraction. Similarity Branch. In the existing

sequence-based DTA prediction networks, each atom/residue
within the drug/protein sequence is treated as a token, and the
entire sequence is input into the network as a whole. In this
setup, the network can only learn the intrinsic sequence
information on the drug/protein itself. In our study, we regard

Figure 2. Framework of the LSTM model. Three tokens, Xt−1, Xt, and Xt+1, are input into the model, and the model processes them sequentially.
For each input, the model passes through a Module A to obtain the cell state C and output h. In the Module A, yellow blocks represent neural
network layers, while pink circles denote bitwise or element-wise operations.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.4c05607
ACS Omega 2024, 9, 35978−35989

35981

https://pubs.acs.org/doi/10.1021/acsomega.4c05607?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c05607?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c05607?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c05607?fig=fig2&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.4c05607?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


each drug/protein as a token, and input either all or a portion
of the drugs/proteins as a sequence into the similarity branch
to acquire its own sequence information and similarity
information. The similarity branch employs a BiLSTM38

network. BiLSTM consists of two long short-term memory
(LSTM) networks in opposite directions, and the output of
each token is determined collectively by these two LSTM
networks.
The processing procedure of LSTM is illustrated in Figure 2.

Three tokens, Xt−1, Xt, and Xt+1, are input into the model, and
the model processes them by the Module A sequentially. After
processing Xt−1, the model obtains the current cell state, Ct−1,
and output, ht−1. The cell state, Ct−1, is crucial in LSTM as it
preserves the state information at time t − 1, which is then
propagated to the next time through the upper channel in
Figure 2. Since the state information transmitted through this
channel undergoes minimal linear operations, it only induces
minor changes, enabling tokens further down the sequence to
comprehend the information contained in earlier tokens.
Meanwhile, ht−1 interacts with the input of token Xt through
the lower channel to generate Ct and ht at time t. The above
process continues sequentially until the end of the sequence. It
can be seen from the above that LSTM depends on the input
order of the sequence, and a single LSTM can only predict the
output of the next time based on the previous temporal
information. Therefore, our study adopts BiLSTM to obtain
similarity information. In BiLSTM, data will be input into two
independent LSTM networks in the opposite order of
Xt−1XtXt+1 and Xt+1XtXt−1. This arrangement enables each
token to access all preceding and succeeding temporal
information. In this way, each drug/protein can fully acquire
useful information from other similar drugs/proteins.

Molecular Structure Branch. As demonstrated in previous
studies,3,30 graph structures-based models can effectively learn
molecular structure information that is missing in sequence-
based models, thereby achieving better predictive performance.
In our study, we also acknowledge the importance of molecular
structure information. Hence, we introduce a molecular
structure branch to extract the molecular structure information
on drugs and proteins. We employ a multilayered GCN as the
backbone of the molecular structure branch. The calculation
formula of GCN is shown in formula 1

= =+ +H f H A D AD H W( , ) ( )l l l l1 1/2 1/2 1 (1)

where Hl is the output of the l-th layer and also serves as the
input to the (l + 1)-th layer, A ∈ Rn×n is the adjacency matrix
of the molecular graph, where n is the number of nodes in the
graph. D̂ is the diagonal node degree matrix calculated from A,
and with the same dimension as A. Â is the sum of A and the
identity matrix I ∈ Rn×n. Wl+1 is the learnable weight parameter
of the (l + 1)-th layer.

Feature Fusion. Through the two aforementioned branches,
we obtain the sequence and similarity features of drugs/
proteins as well as the molecular structure features. Then, we
concatenate the obtained features and then allow the model to
autonomously learn useful information from them through two
fully connected layers, aiming to achieve better fusion
effectiveness. During this process, we employ dropout to
prevent overfitting and achieve better predictive performance.
Drug-Target Affinity Prediction. After the feature

extraction module described above, we obtain feature vectors
for both drugs and proteins. We concatenate these two feature

vectors and further process the result through three fully
connected layers to obtain the final drug-target affinity. During
this process, we also employ dropout to prevent overfitting and
achieve better predictive performance.
Prediction for Cold-Start Scenarios. Different from

current network-based models, GASI-DTA autonomously
extracts drug similarity information and protein similarity
information in a decoupled manner. Therefore, in cold-start
scenarios, when partial similarity information is unavailable,
our model can still learn from other useful similarity
information. Leveraging this advantage, we devise a combina-
torial approach to extract only the partial available similarity
information and circumvent interference from the misleading
information in cold-start scenarios.
As illustrated in Figure 3, we design a sequence branch to

only learn sequence information. The pretrained sequence

features of drugs or proteins are used as inputs. These features
are processed by four ResBlocks, each consisting of two fully
connected layers. Leveraging pretrained features including rich
semantic information, the network can effectively extract
sequence information. In cold-start scenarios, we use this
branch to substitute the similarity branch including unavailable
similarity information, while keeping the input-output feature
dimensions consistent for both branches. We designate the
resulting model as GAS-DTA. Specifically, when only the drug
is unseen in the training, we merely substitute the drug’s

Figure 3. Sequence branch. FC represents Fully Connected layer, and
ResBlock denotes residual block. Sequence information is extracted
from sequence features by the multilayer residual blocks.
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similarity branch, allowing GAS-DTA to still extract partial
similarity information from the protein data.

■ RESULTS AND DISCUSSION
Data Sets. To ensure a comprehensive comparison with

existing methods, we choose to assess all models on two widely
used and publicly available DTA data sets, named Davis44 and
KIBA.45 Based on these two data sets, we utilized four different
experimental setups, including the baseline data set and three
cold start scenarios. Detailed information about these two data
sets is provided in Table 1.

In the Davis data set, the average length of drug SMILES
strings is 64, while the average length of protein sequences is
788. The data set is curated by selecting specific kinase
proteins and their inhibitors, where the affinity is represented
by the dissociation constant (Kd). Higher Kd values indicate
weaker binding strength for drug-target pairs. Following prior
research,24 affinity values in this data set are processed by
formula 2

=pK
K

log
10d 10

d
9 (2)

In the KIBA data set, the average length of drug SMILES
strings is 58, while the average length of protein sequences is
728. The data set compiles the bioactivities of kinase inhibitors
from multiple sources, including inhibition constants (Ki),
dissociation constants (Kd), and half-maximal inhibitory
concentrations (IC50). The KIBA score is utilized to denote
the binding affinity between drugs and proteins, where lower
KIBA scores indicate stronger binding strength.
To better evaluate our model, we adopt the same

experimental setup as HGRL-DTA. We divided each data set
into training and test sets in a 5:1 ratio. Meanwhile, we
conducted 5-fold cross-validation on the training set to select
the best hyperparameters for our model.
Evaluation Metrics. In our study, we employ three widely

used metrics to assess our model’s performance: mean squared
error (MSE), concordance Index (CI) and rm2.
MSE is a common metric in regression tasks used to

quantify the deviation between predicted values and ground
truths. A smaller MSE signifies that the model’s predictions are
closer to the actual values of the samples. MSE is defined by
formula 3

=
=n

p yMSE
1

( )
i

n

i i
1

2

(3)

where pi denotes the predicted value of the i-th data sample, yi
represents the true value of the i-th data sample, and n signifies
the number of drug-target pairs in the data set.
CI measures the consistency in order between predicted and

true values. This metric ranges from 0 to 1, where higher values
indicate better results. The calculation of CI is described by
formula 4

= =
>

=
<>Z

h b b h x

x

x

x

CI
1

( ), ( )

1, if 0

0.5, if 0

0, if 0d d
x y

x y

l
m
ooooo

n
ooooo (4)

where bx denotes the predicted value corresponding to the
larger true value dx, while by represents the predicted value
corresponding to the smaller true value dy. h(x) stands for a
commonly used step function, and Z is a normalization
constant.
The rm2 involved in DeepDTA

24 is used to evaluate the
model’s external prediction capability. We calculate the rm2
metric by formula 5

= ×r r r r(1 )m
2 2 2

0
2

(5)

where r2 and r02 are the squared correlation coefficients with
and without intercept respectively.
Experimental Environment and Settings. We imple-

mented our method using PyTorch 2.0.0 and Torch-Geo-
metric 2.3.1. All experiments were conducted on a NVIDIA
GeForce RTX 3080 GPU. The hyperparameters of our model
are presented in Table 2.

Comparison with Existing Methods on Two Bench-
mark Data Sets. To thoroughly evaluate the effectiveness of
our proposed method GASI-DTA in the DTA prediction task,
we compare it with various existing methods across two
benchmark data sets. These methods include sequence-based
models such as DeepDTA,24 AttentionDTA,25 ELECTRA-
DTA,27 graph structure-based models like GraphDTA,29

DGraphDTA,30 MGraphDTA,3 GSAML-DTA,46 GLCN-
DTA,34 as well as network-based models BERT-DTA36 and
HGRL-DTA.37

Table 3 presents the comparative results. It can be observed
that our model, GASI-DTA, still outperforms the state-of-the-
art model HGRL-DTA on all metrics in the Davis data set,
demonstrating the superiority of our model. Additionally, on
the KIBA data set, our model slightly lags behind HGRL-DTA
in the most important metric, MSE. But it also approaches the
current best level, matching or surpassing other graph
structure-based models. This is because in the Davis data set,
where the data volume is relatively small, our method of
autonomously extracting similarity and sequence information
using pretrained sequence features enables the model to
acquire more effective information, leading to the best
experimental outcomes. However, in the KIBA data set,
where the data volume is larger and information is more
abundant, the performance differences between all models are
generally smaller. Network-based models such as HGRL-DTA
set a threshold when creating interaction knowledge graphs,
which artificially filters the information to a certain extent,
thereby avoiding information interference. In contrast, our

Table 1. Summary of the DTA Datasets

data set drugs proteins binding entries

Davis 68 442 30,056
KIBA 2111 229 118,254

Table 2. Hyperparameter Settings of GASI-DTA

hyperparameter setting

learning rate 0.0005
batch size 512
Epoch 2000
dropout rate 0.2
GCN layers 3
optimizer Adam
loss function MSE
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method of autonomously extracting similarity information did
not conduct additional filtering, which affected the results to
some extent. In our future work, we will further study this issue
to avoid the mutual influence of large amounts of information
and improve prediction performance.
Among all baselines, sequence-based methods such as

DeepDTA, AttentionDTA, and ELECTRA-DTA simply
represent drugs and proteins as one-dimensional sequences,
which are insufficient to capture molecular structure
information. Hence, their performance is relatively poor. On
the other hand, graph structure-based models represent drugs
and proteins as graphs, leading to better predictive perform-
ance. However, these models only extract molecular structure
information and handle drug and protein in isolation. This is
why they generally perform lower than our model in most
cases. Compared to network-based methods, our model GASI-
DTA achieved better performance on the Davis data set,
indicating the advantages of our approach.

Comparison with Existing Methods in Cold-Start
Scenarios. In the previous experiment, we described the
experimental results on two benchmark data sets (i.e., where
the training and test sets share the same drugs and proteins but
contain different drug-target pairs). However, in more practical
applications, we still encounter cold-start scenarios where new
drugs or proteins are completely unseen in the training set. In
these cold-start scenarios, only partial similarity information is
available, and other similarity information may be misleading
when inferring new drugs or proteins. To address this issue, we
modified our model to adapt to such scenarios. The modified
model is named GAS-DTA. In this section, to provide a more
comprehensive evaluation of our model, GAS-DTA, we
conduct experiments using three different cold-start scenarios.

• S1: each drug in the test set is unseen in the training set,
but all protein is seen.

• S2: each protein in the test set is unseen in the training
set, but all drug is seen.

Table 3. Prediction Performance on the Two Benchmark Datasetsa

Davis KIBA

model MSE CI rm2 MSE CI rm2

DeepDTA 0.245 0.888 0.665 0.181 0.868 0.711
AttentionDTA 0.233 0.889 0.676 0.150 0.883 0.760
ELECTRA-DTA 0.238 0.897 0.671 0.162 0.889 0.727
GraphDTA 0.229 0.893 0.685 0.139 0.891 0.730
DGraphDTA 0.216 0.900 0.686 0.132 0.902 0.800
GSAML-DTA 0.201 0.896 0.718 0.132 0.900 0.800
MGraphDTA 0.207 0.900 0.710 0.128 0.902 0.801
GLCN-DTA 0.215 0.903 0.720 0.127 0.899 0.792
BERT-GCN 0.199 0.896 0.741 0.149 0.888 0.761
HGRL-DTA 0.166 0.911 0.751 0.125 0.906 0.789
GASI-DTA(ours) 0.157 0.911 0.778 0.127 0.905 0.791

aThe best score in each column is in bold and the second best score is underlined.

Table 4. Prediction Performance in Cold-Start Scenariosa

Davis KIBA

scenarios model MSE CI rm2 MSE CI rm2

S1 DeepDTA 0.985 0.548 0.027 0.494 0.747 0.377
AttentionDTA 0.869 0.642 0.079 0.506 0.744 0.298
GraphDTA 0.801 0.659 0.160 0.475 0.753 0.380
DGraphDTA 0.818 0.646 0.114 0.458 0.754 0.298
MGraphDTA 0.907 0.599 0.082 0.469 0.752 0.366
HGRL-DTA 0.776 0.684 0.163 0.434 0.757 0.370
GAS-DTA(ours) 0.765 0.674 0.164 0.388 0.775 0.443

S2 DeepDTA 0.552 0.729 0.258 0.732 0.676 0.273
AttentionDTA 0.436 0.787 0.304 0.529 0.693 0.254
GraphDTA 0.860 0.666 0.134 0.469 0.710 0.388
DGraphDTA 0.445 0.788 0.289 0.364 0.718 0.429
MGraphDTA 0.359 0.813 0.415 0.483 0.674 0.342
HGRL-DTA 0.383 0.816 0.375 0.322 0.741 0.502
GAS-DTA(ours) 0.386 0.817 0.349 0.340 0.735 0.489

S3 DeepDTA 0.767 0.508 0.009 0.700 0.627 0.140
AttentionDTA 0.679 0.554 0.005 0.609 0.629 0.143
GraphDTA 0.988 0.569 0.020 0.676 0.641 0.149
DGraphDTA 0.658 0.569 0.020 0.676 0.641 0.148
MGraphDTA 0.764 0.507 0.001 0.660 0.627 0.152
HGRL-DTA 0.642 0.602 0.044 0.532 0.642 0.207
GAS-DTA(ours) 0.616 0.610 0.041 0.493 0.679 0.245

aThe best score in each column is in bold and the second best score is underlined.
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• S3: both the drug and protein in the test set are unseen
in the training set.

In the cold-start scenarios, we compared our GAS-DTA
model with the models introduced in the previous experiment.
It is worth noting that some models, like GLCN-DTA and
GSAML-DTA, their papers did not include cold-start scenarios
results. Therefore, we did not compare them with our method.
All cold-start scenario experimental results are presented in
Table 4, where our model outperforms the current best models
in almost all metrics for experimental settings S1 and S3,
effectively validating the generalization and effectiveness of our
proposed GAS-DTA model for cold-start scenarios. In
experimental setting S2, our model exhibits a slight perform-
ance gap compared to the current best model HGRL-DTA.
One possible reason is that in both data sets, the similarity
information on proteins is crucial. In this cold-start scenario,
our model, GAS-DTA, only extracts drug similarity informa-
tion, leading to a performance gap. At the same time,
MGraphDTA achieved the best results on the MSE metric
of the Davis data set in the S2 experiment. One possible reason
is that MGraphDTA utilizes a deep graph network, while other
models typically use a shallow graph network. The overall
structure of the graph can be better obtained through the deep
graph networks.
Comparative Experiment to Verify the Role of

Similarity Information in Our Model. In the Method
chapter, we analyzed how the similarity branch proposed in
our study extracts similarity information in principle. However,
this branch extracts both sequence information and similarity
information, making it challenging to quantify the contribution
of each part based solely in principle. Therefore, in this section,
we conduct a comparative experiment to address this issue.
The comparison models are as follows:

• GASI-DTA (w/o MSB): GASI-DTA without Molecular
Structure Branch learns similarity information and
sequence information from sequence features.

• GASI-DTA-S (w/o MSB): The model utilizes sequence
branch, as shown in Figure 3, to replace the similarity
branch in GASI-DTA (w/o MSB). Hence, it only learns
sequence information.

• ELECTRA-DTA: This is a sequence-based DTA
prediction model from recent years and only learns
sequence information. This model has the same
architecture as GASI-DTA-S (w/o MSB), both utilizing
pretrained models to extract initial sequence features. To
achieve more authoritative verification, we use the model
for supplementary comparison.

The experimental results are shown in Figure 4, it can be
seen that the performance of GASI-DTA-S (w/o MSB) and
ELECTRA-DTA is not significantly different in most metrics
across the two data sets. However, GASI-DTA (w/o MSB)
outperforms other models in all metrics due to the influence of
similarity information, especially in the most important
performance metric MSE. Compared with GASI-DTA-S (w/
o MSB), GASI-DTA (w/o MSB) increased the MSE from
0.234 to 0.166 and from 0.155 to 0.132 on two data sets,
respectively. Therefore, this comparative experiment confirms
the significance of similarity information in the field of DTA
from an experimental perspective.
Comparative Experiment to Investigate the Advan-

tages of Our Similarity Branch. Our model, GASI-DTA,
consists of two branches: the molecular structure branch and
the similarity branch. In this section, to comprehensively
validate the advantages of our proposed similarity branch, we
conduct comparative experiments using only the similarity
branch against the classical models. These models include

Figure 4. Performance evaluation of models with or without similarity information.

Figure 5. Performance evaluation of GASI-DTA (w/o MSB) compared to network-based models and graph structure-based model.
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graph structure-based model DGraphDTA, network-based
models BERT-DTA and HGRL-DTA without Molecular
Structure Branch(w/o MSB).
As shown in Figure 5, our GASI-DTA (w/o MSB) model

outperforms network-based models on almost all metrics
across both data sets, effectively demonstrating the advantages
of our proposed method. On the Davis data set, our model and
network-based models exhibit markedly superior performance
compared to the graph structure-based model DGraphDTA.
However, on the KIBA data set, DGraphDTA’s performance
surpasses them. Only our proposed model, GASI-DTA (w/o
MSB), achieves comparable performance across various
metrics. The occurrence of this phenomenon illustrates a
conclusion: graph structure-based models have a bigger
dependency on data compared to network-based models and
our model.
Ablation Study for Network Branch. To analyze the role

of each branch in our model, we conducted an ablation study
using the following GASI-DTA variants on two data sets:

• GASI-DTA (w/o MSB): GASI-DTA without molecular
structure branch learns similarity information and
sequence information from sequence features.

• GASI-DTA (w/o SIB): GASI-DTA without similarity
branch only learns molecular structure information from
molecular graphs.

Figure 6 illustrates the performance comparison between
GASI-DTA and its variants on two data sets. GASI-DTA
outperforms the other variants in nearly all metrics across both
data sets. This clearly demonstrates the significant roles played
by both the similarity branch and the molecular structure
branch in our model. There is no straightforward substitution
relationship between similarity-based method and graph

structure-based method; instead, they exhibit a complementary
relationship. This is because these models capture distinct
information from the data set. Through mutual supplementa-
tion, better results can be achieved. This also explains the high
performance of GASI-DTA across both data sets.
GASI-DTA and GASI-DTA(w/o SIB) exhibit the more

significant performance difference in all metrics on the Davis
data set, suggesting that similarity branch contributes more to
our model on this data set. Conversely, on the KIBA data set,
the two variants, GASI-DTA(w/o SIB) and GASI-DTA(w/o
MSB), each have advantages in CI and rm2 metrics. In the MSE
metrics, there is only a very small gap between the two variants,
indicating that the contributions of both types of branch are
equally important on this data set. It can be seen from the
different results of the two data sets that our model GASI-
DTA(w/o MSB) does not have high data requirements.
Contrarily, GASI-DTA(w/o SIB) heavily relies on data sets. It
does not perform well on the Davis data set.
Ablation Study for Pretrained Information. In this

section, we conduct an ablation study for the pretrained
information. Specifically, we compared the performance of
GASI-DTA and GASI-DTA without Pretrained Information
(w/o PtI) to investigate the impact of pretraining on our
model. GASI-DTA (w/o PtI) utilizes the label encoding
method employed by AttentionDTA25 to acquire initialized
sequence features. As shown in Figure 7, GASI-DTA, which
utilizes pretrained models to obtain initialized sequence
features, outperforms GASI-DTA (w/o PtI) across all metrics
on both data sets, demonstrating the importance of pretrained
information in our study.
Visualization Analysis. In this section, we designed an

additional visualization experiment to explore the specific
prediction performance of our model on different data

Figure 6. Results of the ablation study for network branch.

Figure 7. Results of the ablation study for pretrained information.
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distributions and to analyze the characteristics of the model. As
shown in Figure 8, we compared our models GASI-DTA and
GASI-DTA (w/o MSB) with the network-based model
HGRL-DTA37 and the classical graph structure-based model
DGraphDTA.30 We utilize kernel density plots to visualize the
distribution of model predictive values and ground truths. In
the kernel density plots, the horizontal axis represents affinity,
and the vertical axis indicates the data volume, with higher
values representing larger data volumes. The more the two
color graphics coincide, the closer the data distribution of
predictive values and ground truths. In the Davis data set, there
is a peak that represents a large subset of the data, while the
rest can be represented as a small subset. It can be observed
that in the Davis data set, DGraphDTA shows large deviations
for smaller data subsets, while our GASI-DTA (w/o MSB)
treats the data equally, exhibiting similar gaps in different
distribution.
Because HGRL-DTA integrates interaction information into

molecular structure information, enhancing the representation
capacity of molecular structure features. Compared with
DGraphDTA, it shows more similar distributions in larger
data subsets. However, in the smaller data subset where
DGraphDTA struggles to make accurate predictions, HGRL-
DTA shows less improvement. In contrast, our model
integrates the two types of model in a decoupled manner,
combining the advantages of both methods, and overall shows
more similar distributions in the Davis data set. The
characteristics of each model can also be observed from the
results of the KIBA data set. Our model GASI-DTA combines
the advantages of both methods, while HGRL-DTA represents
an optimization of DGraphDTA.

■ CONCLUSIONS AND FUTURE WORK
Graph structure-based models typically handle drugs or
proteins in isolation and only extract the molecular structure
information on the drug or protein itself. In order to solve this
problem, We introduce drug similarity information and protein
similarity information into the field of DTA prediction.
Moreover, we propose a network framework that autono-

mously learns similarity information, avoiding reliance on
knowledge graphs. Additionally, based on this framework, we
design a new multibranch DTA prediction model, GASI-DTA.
The model integrate multiple information. Specifically, it can
autonomously extract similarity information and sequence
information from pretrained sequence features using the
similarity branch. Molecular structure information is extracted
from molecular graphs using molecular structure branch.
We offer an interpretation of the model’s behavior through

theoretical analysis and substantial experimental conclusions,
thereby enhancing the model’s credibility and comprehensi-
bility. From a theoretical perspective, we utilize BiLSTM as the
backbone network for the similarity branch. In BiLSTM, each
network unit receives two inputs: the sequence information on
the drug/protein and the useful information on other similar
drugs/proteins. This approach effectively extracts both
sequence and similarity information. From the perspective of
experimental conclusions, we designed a comparative experi-
ment between the separate similarity branch and other classic
model branches, and a comparison experiment between
models with and without similarity information to quantify
the contributions of similarity information and sequence
information to the model. Additionally, we design visualization
experiments to further study the impact of each branch on the
model’s specific predictive capability. This further explains the
model’s behavior and fully demonstrates the value of the
proposed similarity branch for DTA prediction. Certainly,
employing post hoc interpretability, local interpretability,
intrinsic interpretability methods, and so on can provide
more insight into the model’s decision-making process, aiding
in understanding the model’s behavior on specific instances.
The absence of this section is also one of the limitations of this
paper. We will delve deeper into the model’s interpretability in
future research.
In cold-start scenarios, we introduce a combinatorial method

to gain partial available similarity information and avoid
interference from the misleading information. In most of the
cold-start experiments, we have achieved better performance
compared to state-of-the-art models. However, our method

Figure 8. Kernel density estimate plots of affinities between predictive values and ground truths in (a) Davis and (b) KIBA data sets.
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also has limitation as it requires separate designs when dealing
with cold-start scenarios. In future research, we will continue to
delve into the cold-start scenarios problem to design improved
methods. This method should utilize partial effective similarity
information and circumvent interference from misleading
information without separate design. For instance, we are
considering incorporating the voting method in ensemble
learning into our model to achieve this purpose.
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