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Introduction

The plant kingdom produces a diverse array of chemicals, collectively making an estimated

105 to 106 different metabolites [1,2]. These compounds are either known or likely to have

important ecological functions, for example, in providing protection against herbivores, pests,

and pathogens; in allelopathy (competition with neighboring plants); and in shaping the plant

microbiome. In some cases, they have also been shown to function as regulators of plant

growth and defense as well as primary metabolites sensu lato [3]. Plant natural products are

formed by a series of enzyme-mediated chemical reactions that together constitute biosyn-

thetic pathways. While it is well known that the genes for some well-characterized plant natu-

ral product pathways are dispersed throughout the genome, the last 2 decades have revealed a

growing number of examples in which the genes for specific biosynthetic pathways are co-

localized in plant genomes in biosynthetic gene clusters (BGCs). Several comprehensive

reviews covering the nature and general features of plant BGCs have been published previously

[4–8]. However, there has not as yet been a focused review of the roles of these clusters in the

context of plant defense and plant interactions. Here, we review this topic, highlight major

recent advances in the field, and discuss potential implications for crop improvement.

Gene clustering occurs for diverse plant specialized metabolic

pathways

The plant BGCs characterized to date range in size from tens to several hundred kilobases and

typically contain 3 to 10 (for the most part) nonhomologous genes that participate in a shared

biosynthetic pathway. An arbitrary definition of 3 genes as the minimal requirement for a

plant BGC has been adopted for algorithm-based genome mining purposes, since the signal-

to-noise ratio if 2 genes were used as the threshold level for predicting BGCs would be high

[9]. Clearly, clustered pairs of nonhomologous but functionally related genes also exist in plant

genomes and may together confer selective advantages. Examples include clustered pairs of

terpene synthases and cytochrome P450s, e.g., for the biosynthesis of the phytoalexin capsidiol

in pepper [10]. Such pairing of terpene synthases and cytochrome P450s is prevalent in multi-

ple plant genomes [11]. Interestingly, pairing of protein functionality in plant defense can also

occur in the form of fusion of functional domains within a single protein; nucleotide-binding

leucine-rich repeat (NLR) proteins, involved in pathogen recognition, can be fused with vari-

ous protein domains that serve as baits for pathogen effectors [12]. Some plant BGCs are

highly compact, while others contain intervening genes and/or are more fragmented. The bio-

synthetic pathway genes encoded within BGCs are typically co-expressed, a feature that can be

used as an additional criterion for identifying promising new clustered pathways [9,13,14].
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While BGCs are less prevalent in plants than in bacteria or fungi [15], it is now clear that the

phenomenon of gene clustering in plant specialized metabolism is not rare or exceptional, with

over 30 BGCs reported to date from distant phylogenetic clades across the plant kingdom, from

both lower and higher plants. They encompass diverse classes of compounds, including terpe-

noids, alkaloids, fatty acids, polyketides, and cyanogenic glycosides, which exhibit activity

against various types of pests and pathogens, including bacteria, fungi, insects, and herbivores,

as well as against competing plants (Table 1 and Fig 1). These examples include defense com-

pounds that are preformed (phytoanticipins) or produced in response to biotic stress (phyto-

alexins), as well as compounds that confer resistance to abiotic stresses (e.g., components of leaf

waxes, which protect against desiccation). The specialized metabolites encoded by these BGCs

have diverse modes of action, for example, disrupting pathogen cell membranes [16], conferring

bitterness or toxicity that deters herbivores [17,18], undergoing pathogen-induced degradation

to give bioactive volatiles [19], or forming physical barriers against biotic and abiotic stress fac-

tors [20]. Compounds produced by BGCs have also been shown to have other roles in interac-

tions between plants and the environment, such as modulation of the root microbiome [21],

although the consequences of this for plant growth and fitness are not yet known.

BGCs have not been identified for some prominent groups of plant natural products (e.g.,

carotenoids and glucosinolates). For phenylpropanoids, a large, structurally diverse, and widely

distributed class of compounds that includes many defense-related molecules [22], a first BGC

has only recently been reported [23]. However, multispecies in silico analysis has predicted the

existence of phenylpropanoid clusters in plant genomes in similar numbers to those of terpe-

noids and alkaloids [14]. It is not yet known why the biosynthetic genes for some types of com-

pound are clustered in plant genomes and others are not. This may become clearer as the

number of available plant genome sequences and characterized plant natural product pathways

increases, and we learn more about the distribution, nature, and raison d’etre for plant BGCs.

In some cases, BGCs for closely related compounds appear to have independently evolved

more than once. For instance, clusters for the biosynthesis of the diterpene defense compound

momilactone A have evolved both in cereals and independently in the bryophyte Calohypnum
plumiforme [24–26]. Other examples include clusters for 5-keto-7,8-epoxy-casbene biosynthe-

sis in Euphorbiaceae [27] and the related diterpene 5,10-diketo-casbene, implicated in resis-

tance to bacterial blight in rice [28], and clusters for the biosynthesis of cyanogenic glycoside

defense compounds in Lotus japonicus, cassava, and sorghum [29]. In other cases, different

“flavors” of clusters appear to have arisen and diversified from a common ancestral BGC, as

has been shown for cucurbitacin triterpenoids associated with bitterness and defense in the

Cucurbitaceae (cucumber, melon, and watermelon) [18,30] and for antinutritional and anti-

fungal steroidal glycoalkaloids in the Solanaceae (tomato, potato, and eggplant) [31].

The roles of BGC-produced compounds in plant interactions are indicated in Table 1,

where known. In some cases (e.g., the noscapine cluster in poppy), the role of the pathway end

product(s) in the producing plant, whether in defense or otherwise, is not known. Importantly,

numerous nonclustered pathways for defense-related compounds are found in plants, and

BGC-produced compounds are known to have other roles in plants, in addition to their pro-

tective roles in chemical defense. For instance, benzoxazinoids (defense compounds produced

by grasses and some eudicots) have been implicated in regulation of defense responses, flower-

ing time, auxin metabolism, and iron uptake in maize [32]; cyanogenic glycosides serve as

nitrogen storage compounds in the rubber tree [33]; and perturbation of the pathway for the

oat defense compound avenacin A-1 can result in accumulation of the precursor β-amyrin

with associated effects on root epidermal cell patterning [34].

The phenomenon of gene clustering in specialized metabolism is intriguing from an evolu-

tionary perspective, and several hypotheses have been put forward to explain the evolutionary
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Table 1. Examples of characterized plant BGCs, and where known, their involvement in defense, and other ecological-related roles.

Compound(s)/pathway Class Plant species Role in plant Reference for

BGC

No. of functionally

characterized genes in BGC

Avenacins triterpenes Avena sp. antifungal [69]

[48]

12

Arabidiol/arabidin triterpenes Arabidopsis thaliana anti-oomycete,

microbiome modulation

[70]

[21]

3

Thalianol/thalianin triterpenes Arabidopsis thaliana
Arabidopsis lyrata

microbiome modulation [71]

[21]

[39]

5

Marneral triterpenes Arabidopsis thaliana unknown [70] 2

Tirucallol triterpenes Capsella rubella unknown [39] 5

Euphol triterpenes Brassica rapa unknown [39] 3

Cucurbitacins triterpenes Cucumis sativus
Cucumis melo
Citrullus lanatus

antibacterial, antifungal,

insecticidal, anti-herbivore

[18]

[30]

3

Yossosides triterpenes Spinacia oleracea unknown [50] 2

20-Hydroxy-betulinic acid triterpenes Lotus japonicus unknown [53] 2

Momilactones diterpenes Oryza sp.

Echinochloa crus-galli
Calohypnum
plumiforme

antibacterial,

antifungal,

allelopathic

[24]

[26]

4

Phytocassanes/oryzalides diterpenes Oryza sativa antibacterial, antifungal [72] 5

Casbene diterpenoids diterpenes Ricinus communis
Euphorbia peplus
Jatropha curcas

antifungal, antibacterial [27] 7

5,10-Diketo-casbene diterpenes Oryza sativa antifungal,

antibacterial

[28] 3

Various monoterpenes and

diterpenes

diterpenes/

monoterpenes

Solanum sp. antibacterial, antifungal [36] 3

Lycosantanolol diterpenes Solanum lycopersicum unknown [73] 3

α-Tomatine steroidal glycoalkaloids Solanum lycopersicum antibacterial, antifungal,

insecticidal

[31] 6

α-Solanine

α-Chaconine

steroidal glycoalkaloids Solanum tuberosum antibacterial, antifungal,

insecticidal

[31] 4

Noscapine benzylisoquinoline

alkaloids

Papaver somniferum unknown [47] 10

Thebaine benzylisoquinoline

alkaloids

Papaver somniferum unknown [74] 5

Hydroxycinnamoyl-tyramine

conjugates

phenolamides Oryza sativa antibacterial, antifungal [23] 4

Dhurrin cyanogenic glucosides Sorghum bicolor insecticidal,

anti-herbivore

[29] 3

Linamarin

Lotaustralin

cyanogenic glucosides Lotus japonicus
Manihot esculenta

insecticidal,

anti-herbivore

[29] 4

α-/β-/γ-Hydroxynitrile

glucosides

hydroxynitrile

glucosides

Hordeum vulgare unknown [75] 6

Falcarindiol fatty acids Solanum lycopersicum antifungal, antibacterial [60] 4

β-Diketones polyketides Hordeum vulgare
Triticum turgidum

forming physical barrier on leaf

surface

[20] 3

DIBOA/DIMBOA benzoxazinoids Zea mays antibacterial, antifungal,

insecticidal, allelopathic

[67] 7

Various acylsugars acylsugars Solanum sp. antifungal, insecticidal, anti-

herbivore

[66] 2

BGCAU : AbbreviationlistshavebeenaddedtoTable1andFig1:Pleaseverifythattheentriesarecorrect:, biosynthetic gene cluster.

https://doi.org/10.1371/journal.ppat.1009698.t001
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driving forces behind BGC formation in plants. Arguments regarding gene co-inheritance,

gene co-expression, and mitigation against accumulation of toxic intermediates have been pre-

viously reviewed in relation to plant specialized metabolism in general [6] and discussed spe-

cifically with regard to chemical defense pathways [35]. It has been established that plant

BGCs have not originated by horizontal gene transfer from microbes but rather by duplication,

recruitment, and neofunctionalization of plant genes [6,36]. Clustering of specialized biosyn-

thetic pathways, many of which have evolved relatively recently in evolutionary time, implies

that they are under particular selective pressures and are therefore likely to underlie important

traits that enhance fitness (e.g., by providing resistance to pests and pathogens). Genomic fac-

tors that may contribute to the formation, regulation, and evolution of BGCs include transpos-

able element-mediated recombination [37], chromosomal inversion [38], gene shuffling

[39,40], whole genome duplications [41,42], copy number variations of genes within BGCs

[43], chromatin modification [44,45], and chromosomal 3D structure [46].

Clustering facilitates pathway discovery and elucidation

The organization of genes in BGCs in plants has accelerated gene discovery and elucidation of

various biosynthetic pathways. In instances where biosynthetic pathway genes are clustered

and genome sequences are available, discovery of one gene in a pathway can lead to identifica-

tion of others, simply by searching for flanking genes with relevant functional annotations.

Clustering has thus facilitated delineation of various plant biosynthetic pathways, including com-

plex pathways for alkaloids [31,47] and terpenes [48]. Additionally, once a BGC is discovered in

Fig 1. Examples of plant-specialized metabolites produced by BGCs and their roles in defense or other biotic

interactions. Activities associated with each compound are depicted with color coding. From top, clockwise: allelopathy

(green), insecticidal (red), antibacterial (yellow), anti-herbivore (purple), antifungal (blue), and modulation of

microbiome (gray). BGC, biosynthetic gene cluster.

https://doi.org/10.1371/journal.ppat.1009698.g001
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one plant species, similar clusters can in some cases be identified in related species by searching

for clustered orthologs or syntenic regions [27,30]. The physical proximity of genes for biosyn-

thetic pathways in plant genomes can also lead to the discovery of unexpected pathway compo-

nents that would have been difficult to single out based on orthology or gene expression data

alone. For example, investigation of the oat avenacin cluster resulted in the identification of a non-

canonical sugar transferase required for avenacin biosynthesis that does not belong to the

expected UDP-sugar-dependent glycosyltransferase family (UGT1) traditionally associated with

plant specialized metabolism [49]. The association of a new gene family with biosynthesis of plant

specialized metabolites, whether or not discovered via a gene cluster, can in turn lead to character-

ization of additional members of that family that may also have functions in plant specialized

metabolism [50,51]. Clustering can also facilitate identification of nonenzymatic components

associated with metabolic pathways such as transporters and regulators [51,52].

Importantly, gene clustering can facilitate not only elucidation of biosynthetic pathways for

known metabolites of interest, but also de novo pathway discovery, complementing other in

silico methods based on gene expression and phylogeny. Several examples of the discovery of

previously unknown pathways and chemistries based on gene clustering have been reported,

including for thalianol and other Arabidopsis thaliana root triterpenoids that shape the root

microbiome [21], 20-hydroxybetulinic acid, implicated in root and nodule development in the

legume Lotus japonicus [53], and triterpenoids of unknown function (yossosides) in spinach

[50]. Nontargeted genome mining approaches for BGCs have been widely applied in microbes,

for example, for antibiotic discovery [54]. Genome mining approaches to detect BGCs are par-

ticularly useful for discovery of pathways for compounds that may be produced only in partic-

ular plant tissues or under particular conditions, and so may escape detection by metabolite

analysis or bioassays. A genome mining approach for BGCs can be employed, for example, for

pathway elucidation of defense-related metabolites [55] or bioactive compounds in medicinal

plants [56]. Several bioinformatic tools have been developed in recent years for prediction of

candidate BGCs in plants [9,13,14]. Where transcriptome data are available, candidate BGCs

identified by genome mining can be triaged to identify those that contain co-expressed genes

and so are likely to represent active metabolic pathways. For example, co-expression network

analysis combined with a genomic survey of neighboring genes has been demonstrated in sev-

eral studies to be useful for identifying BGCs in Arabidopsis thaliana [57]. For defense-related

pathways for which expression is induced in response to challenge, genome mining for BGCs

can be coupled with analyses of transcriptomic data (e.g., generating co-expression networks)

from experiments in which plants are challenged with pathogens, pathogen-associated elici-

tors, defense-related hormones, or abiotic stresses. While new genes and pathways can be

identified and accessed in this way, often with validation of biochemical function in a heterolo-

gous host [58,59], understanding the biological roles of newly discovered molecules in the pro-

ducing plant represents a significant challenge. However, knowledge of the expression profiles

of the newly discovered pathway genes and of the fate of the compounds that these pathways

produce (for example, secretion from the root) may provide clues as to their possible roles

[21]. WhereAU : PleaseconfirmthattheeditstothesentenceWherepossible; biologicalfunctioncanthenbetestedbygenerating:::didnotaltertheintendedthoughtofthesentence:possible, biological function can then be tested by generating plant lines that do

not produce the compound(s) of interest by mutation, gene silencing, or gene editing, and

evaluating these for altered abiotic/biotic stress tolerance [23,28,60].

Potential application in crop protection by metabolic engineering

of plant BGCs

Elucidation of biosynthetic pathways for defense compounds and other plant metabolites can

ultimately lead to practical applications. Several examples of heterologous expression of plant
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genes comprising biosynthetic pathways have been reviewed previously [59,61] including

those in which increased tolerance to pathogens or pests was demonstrated [17,62]. Although

the notion of transferring an entire BGC between plant species via genetic engineering is entic-

ing, this is likely to be technically challenging because BGCs typically range from tens to sev-

eral hundred kilobases in size [6], and the endogenous promoters controlling gene expression

would not necessarily drive sufficient or appropriate expression in the heterologous host

(although interestingly, the oat avenacin pathway promoters retain their root meristem expres-

sion patterns in heterologous plant species, including both monocots and eudicots [34]). A

more plausible approach is cloning of individual genes followed by reassembly of the pathway

by multigene cloning or sequential gene stacking in the target plant. This will reduce the over-

all size of the introduced DNA by removal of any irrelevant intervening genes and intergenic

regions, while also allowing for optimization of the control of transgene expression using

selected promoters and terminators (e.g., to achieve constitutive, induced, or tissue-specific

expression). Clearly, such strategies apply to any plant biosynthetic pathway, regardless of

whether the genes are clustered or not in the plant of origin.

Improved understanding of how BGCs are regulated may provide insights into new strate-

gies for optimization of coordinate regulation of multistep pathways engineered into other

plant species. For example, genome editing for alteration of chromatin structure at a specific

BGC locus could allow activation or repression of the entire biosynthetic pathway at one

stroke. Two prominent chromatin marks, H2A.Z and H3K27me3, are associated with activa-

tion and repression of plant BGCs, respectively [6], thus manipulation of cluster regulation at

this level could potentially be achieved by selectively interfering with chromatin remodeling at

the cluster locus. Locus-specific epigenetic editing for gene activation/repression with the

CRISPR-Cas9 system has already been demonstrated by several studies in mammalian cells via

coupling of dCas9 with chromatin-modifying enzymes [63], and BGC activation in filamen-

tous fungi using CRISPR-Cas9 has also recently been reported [64].

Another approach for trait improvement in crops that has been used for decades and does

not rely on genetic engineering or genome editing is introgression breeding. Here, wild rela-

tives of crop plants are commonly used as a genetic pool from which beneficial genes are intro-

gressed into the cultivated species, usually with the aim of conferring enhanced pathogen

resistance or abiotic stress tolerance [65]. The co-localization of genes in a BGC allows for an

entire biosynthetic pathway to be transferred into the cultivated species in a single introgressed

segment. In contrast, transfer of a dispersed biosynthetic pathway using such an approach

would be difficult. While intentional, breeding-mediated introduction of a clustered biosyn-

thetic pathway has not yet been reported, this is very likely to be possible. Introgression of an

acylsugar BGC into tomato from its wild relative Solanum pennellii, for example, was shown to

increase levels of medium chain acylsugars in trichomes of an isolated tomato introgression

line [66].

Concluding remarks

Since the first report of a BGC in plants more than 20 years ago [67], numerous other examples

of such clusters have been identified and characterized. The discovery of these gene clusters

has facilitated elucidation of complex metabolic pathways and revealed genetic mechanisms

for chemical diversification. It has further enabled the roles of newly discovered BGC pathway

products in interactions between plants and other organisms to be shown, as demonstrated by

the combined use of gene silencing and plant–pathogen assays [23,28,60]. The inventory of

characterized BGCs will inevitably continue to increase as sequencing technologies continue

to develop and become cheaper, and more plant genome sequences become available. Key
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advances include single-molecule long read sequencing, physical mapping technologies such

as optical mapping and Hi-C, improved genome assembly algorithms [68], and the establish-

ment of ambitious new initiatives for large-scale sequencing of eukaryote genomes, such as the

Earth BioGenome (https://www.earthbiogenome.org/) and Darwin Tree of Life Projects

(https://www.darwintreeoflife.org/).

Although much progress has been made with regard to our understanding of BGCs in

plants, many questions remain open. One notable question is the extent to which gene cluster-

ing occurs in plant metabolism in general, and in chemical defense pathways specifically.

Many of the compounds produced by plant BGCs are known to provide protection against

pests or pathogens. In other cases, the ecological roles are not known, but the BGC products

are important as therapeutic drugs or drug precursors (e.g., noscapine and thebaine). Thus,

future discoveries of novel BGCs will provide new insights into the roles of specialized metabo-

lites in interactions between plants and other organisms and may offer solutions for crop

improvement through metabolic engineering (e.g., for enhanced abiotic/biotic stress tolerance

or optimized production of medicinal compounds). They will also furnish gene sets for the

production of drugs and other high value compounds in heterologous expression systems such

as yeast and tobacco [58].
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