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Abstract: Sphingomyelin is found in the cell membrane of all eukaryotic cells, and was for 

a long time considered merely as a structural component. However, during the last two 

decades, metabolites of sphingomyelin, especially sphingosine 1-phosphate (S1P), have 

proven to be physiologically significant regulators of cell function. Through its five 

different G protein-coupled receptors, S1P regulates a wide array of cellular processes, 

ranging from stimulating cellular proliferation and migration, to the inhibition of apoptosis 

and induction of angiogenesis and modulation of cellular calcium homeostasis. Many of 

the processes regulated by S1P are important for normal cell physiology, but may also 

induce severe pathological conditions, especially in malignancies like cancer. Thus, 

understanding S1P signaling mechanisms has been the aim of a multitude of investigations. 

Great interest has also been shown in understanding the action of sphingosine kinase 

(SphK), i.e., the kinase phosphorylating sphingosine to S1P, and the interactions between 

S1P and growth factor signaling. In the present review, we will discuss recent findings 

regarding the possible importance of S1P and SphK in the etiology of thyroid cancer. 

Although clinical data is still scarce, our in vitro findings suggest that S1P may function as 

a “double-edged sword”, as the receptor profile of thyroid cancer cells largely determines 

whether S1P stimulates or blocks cellular migration. We will also discuss the interactions 

between S1P- and VEGF-evoked signaling, and the importance of a S1P1-VEGF receptor 2 

complex in thyroid cancer cells. 
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1. Introduction 

Sphingomyelin is produced in cells through de novo synthesis in the endoplasmic reticulum (for a 

recent review see [1]. However, several intermediates in this pathway are important signaling 

molecules. Sphingomyelin may be hydrolyzed by sphingomyelinases, producing ceramide. This 

metabolite can further be hydrolyzed to sphingosine. Both ceramide and sphingosine are important 

regulators of calcium homeostasis, potassium channel activity and apoptosis, to name a few of their 

cellular effects [2–5]. Sphingosine can be phosphorylated to sphingosine 1-phosphate (S1P) by 

sphingosine kinases, of which two isoforms exist. Of these, sphingosine kinase 1 (SphK1) has been 

investigated more, but novel information regarding the physiological importance of SphK2 is also 

gathering. The SphKs are predominantly found in the cytosol of resting cells, but upon stimulation, 

SphK1 is translocated to the plasma membrane and the endoplasmic reticulum [6]. SphK2 has been 

found in the nucleus and in close proximity to the mitochondria [6], where the produced S1P may 

regulate histone function and energy metabolism, respectively [7,8]. 

S1P can be formed in almost all cell types, but erythrocytes and vascular endothelial cells are 

especially important producers of S1P that is found in the circulation [9,10], where it is bound to 

albumin and HDL [11]. The concentration of S1P in the circulation markedly exceeds the EC50 value 

for binding to its receptors [12]. Most effects of S1P are due to binding to its receptors on the plasma 

membrane. Five different, G protein-coupled receptors (S1P1–5) have been cloned. These receptors 

bind to several isoforms of G proteins (Gq/11, Gi or Gs) and the receptors may have a preference for 

which G protein they bind. However, the palette of both S1P receptors and G proteins of the cell 

determines the outcome of the stimulation. Interestingly, the receptors may have diametrically 

different effects on cell function. This is nicely exemplified by S1P1 and S1P2: stimulation of S1P1 

usually potently stimulates migration, whereas stimulation of S1P2 has an inhibitory effect on 

migration. For an extensive review of the different actions of S1P, the reader is referred to several 

excellent review articles [6,12–15]. 

2. Sphingosine 1-Phosphate and the Thyroid 

The first studies regarding the effect of sphingomyelin derivatives on the thyroid was performed 

using the well-characterized rat thyroid FRTL-5 cell model. These studies showed that both 

sphingosine and sphingosylphosphorylcholine evoked a substantial release of sequestered calcium and 

entry of extracellular calcium [16]. The mechanism of action could not be clarified, but the possibility 

that either sphingosine or sphingosylphosphorylcholine was converted to a “metabolite” was suggested 

by the fact that the calcium response was dependent on temperature. Furthermore, a receptor-mediated 

mechanism was suggested as the calcium response, in part, was sensitive to pertussis toxin. 

When S1P became available, we and other researchers unambiguously showed that in FRTL-5 

cells, S1P mobilized sequestered calcium from the ER and that this most probably was due to a 

receptor-mediated mechanism [17,18]. Okajima et al. [17] also concluded, that S1P mobilized calcium 

through an inositol 1,4,5-trisphosphate (IP3)-mediated mechanism in these cells. We could not confirm 

these observations, possibly due to methodological differences. In rat thyroid PCCl3 cells, S1P does 

slightly increase IP3 formation [19]. However, other reports suggested that S1P mobilized calcium 

through an IP3-independent mechanism [20], and we could show that intracellular S1P might be 
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involved in releasing intracellular calcium from the FRTL-5 cells [21]. The effect of intracellular S1P 

on calcium release is still enigmatic, as microinjections of S1P do induce calcium release in HEK-293 

cells, although an intracellular calcium-mobilizing receptor for S1P is yet to be found [22]. 

In addition to mobilizing sequestered calcium, exogenous S1P has been shown to stimulate an 

increase in the expression of c-fos and DNA synthesis in FRTL-5 cells [18], and also to activate  

Na
+
-H

+
 exchange [23], an important step in activation of proliferation. Furthermore, S1P stimulates the 

production of hydrogen peroxide by a calcium-dependent mechanism [17]. Interestingly, Kimura et al. 

showed that stimulating the cells with TNFα inhibited TSH-evoked hydrogen peroxide production in 

FRTL-5 cells [24]. The effect of TNFα was mimicked by ceramide. As the production of hydrogen 

peroxide in these cells was dependent on calcium [25], it is possible that TNFα attenuated hydrogen 

peroxide production by decreasing calcium entry in the cells. We base this suggestion on the fact that 

our results have shown that TNFα and ceramide potently hampers calcium entry in FRTL-5 cells, 

probably by blocking a potassium channel and depolarizing the membrane potential, thus decreasing 

the electrochemical gradient for calcium entry [26]. 

The receptor profile of FRTL-5 and PCCl3 thyroid cells is identical: both cell lines express only 

S1P2 and S1P3. As these receptors activate several different G proteins, including Gi [27], they 

potently inhibit the TSH-evoked activation of adenylate cyclase and cAMP production [17–19]. Taken 

together, the results obtained with rat thyroid cells clearly show that S1P can modulate thyroid 

function. However, it is important to note that very little is known in regard to the effect of S1P on 

normal human thyroid cells, except that these cells express all S1P receptors, albeit S1P4 at very low 

levels, and that S1P induces calcium responses also in primary cultures of normal thyroid cells [28]. 

3. Sphingosine 1-Phosphate and Thyroid Cancer 

The importance of S1P in regulating proliferation, invasion and migration in different types of 

cancer cells has been the subject of a multitude of investigations. The S1P pathway has been observed 

to be deregulated in several forms of cancers, including breast, ovary, and different forms of cancer in 

the gastrointestinal tract. This deregulation occurs at different parts of the pathway and might be due to 

overexpression of SphK1, deregulated S1P metabolizing enzymes, or mutations or changes in the 

expression of S1P receptors. For extensive reviews, please see [14,15,29]. In regard to thyroid cancer, 

only one report on the importance of S1P is available. In a recent report by Guang et al., the expression 

of SphK1 was shown to be upregulated in thyroid cancer and to correlate with malignancy. 

Furthermore, the expression of SphK1 correlated significantly with the expression of proliferating cell 

nuclear antigen (PCNA), indicating that proliferation of thyroid cancer cells is associated with the 

expression of SphK1 [30]. We have made a preliminary analysis of S1P receptor expression in a small 

sample of thyroid tumors, but were unable to detect any significant changes in the expression of S1P 

receptors in cancerous thyroid tissues (Balthasar and Törnquist, unpublished observations). 

3.1. Receptor Profile in Thyroid Cancer Cells 

In all the human thyroid cancer samples we analyzed, all five S1P receptors were expressed. As the 

expression was analyzed using qPCR from tissue samples, we cannot exclude that our results are in 

part due to the existence of receptors also on other cell types than thyroid epithelial cells (Balthasar 
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and Törnquist, unpublished observations). However, to obtain a more reliable picture of receptor 

expression, we analyzed several thyroid cancer cell lines and human thyroid cells in primary culture. 

In human primary cultures of thyroid cells, all receptors were expressed, albeit the expression of S1P4 

was minimal. Furthermore, most cell lines investigated (including, papillary, follicular and anaplastic 

thyroid cancer cell lines) expressed abundantly S1P1–3, the receptors that potently modulate migration 

of cells [28,31]. 

3.2. Effects on Proliferation and Migration 

Several studies have shown, that administration of exogenous S1P may enhance proliferation of 

both normal and cancer cells [14,27]. In normal human thyroid cells in primary culture and in the 

normal thyroid Nthy-ori 3-1 cell line, administration of exogenous S1P was without any effects on 

proliferation [28]; Asghar and Törnquist, unpublished observations). In follicular ML-1 cells, 

anaplastic FRO and WRO thyroid cancer cells, and in papillary NPA cancer cells, S1P slightly 

attenuated proliferation [28]. However, as the origin of all but the ML-1 cells was dubious, we 

investigated some other original thyroid cancer cells lines. In follicular FTC-133 cells, and anaplastic 

C643 and THJ-16T thyroid cancer cells, S1P was without an effect on proliferation [31]. Thus, 

although the number of cell lines tested is limited, the effect of S1P on the proliferation of thyroid 

cancer cells seems minimal.  

If S1P had, at most, a very modest effect on proliferation, the effect on migration was much more 

prominent. In almost all cell lines tested, S1P potently attenuated migration. The inhibitory effect was 

investigated in detail using anaplastic thyroid cancer C643 cells. In these cells, the inhibitory effect 

was crucially dependent on the expression of S1P2 and on Rho activity [31], as has been shown also 

for other types of cancer cells [32]. In addition, S1P inhibited Rac activity [31]. 

In the follicular thyroid ML-1cancer cell line, on the other hand, administration of exogenous S1P 

potently stimulated migration. The migratory response was mediated by S1P1 and a pertussis  

toxin-dependent mechanism. Downstream from the receptor, Rac, PKCα and ERK1/2 were important 

for S1P-evoked migration, as well as the activation of PI3K and Akt [28,33]. The importance of the 

PKC-activated pathway was underlined by results showing that direct activation of PKC with the 

diacylglycerol analogue 1-oleyl-2-acetyl-sn-glycerol (OAG) potently stimulated migration. However, 

in follicular thyroid FTC-133 cancer cells, which have a receptor profile very similar to the ML-1 

cells, S1P potently attenuated migration. Furthermore, the receptor profile in the anaplastic C643 

thyroid cancer cell line (in which S1P also inhibited migration) was similar to that in ML-1 cells. This 

is, in our opinion, a very important and disappointing observation, as it suggests that the S1P receptor 

profile per se probably cannot be used as a marker for a migratory phenotype of thyroid cancer cells.  

3.3. Importance of Sphingosine Kinase 

Several studies have suggested that SphK1 may have an oncogenic potential or even be classified as 

an oncogene (although no mutated forms of SphK have so far been reported). By measuring tumor 

growth in immunodeficient mice and colony formation in soft agar, it was concluded that SphK might 

be an oncogene [34]. Furthermore, overexpression of SphK in NIH3T3 cells revealed an enhanced cell 

cycle transition [35], and expression of SphK was considered a marker of poor prognosis in breast 
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cancer [36], and correlated with malignancy in thyroid cancer [30]. The effect of overexpression of 

SphK and enhanced production of S1P most probably affected cancer cells by an autocrine effect of 

S1P (see [37]). 

The study by Guan et al. [30] clearly indicated that silencing of SphK1 attenuated the proliferation 

of several follicular and anaplastic thyroid cancer cell lines. In clinical samples, overexpression of 

SphK1 correlated significantly with the expression of PCNA, suggesting a strong association between 

SphK1 overexpression and proliferation of thyroid cancer cells. Furthermore, using thyroid cell lines 

Guan et al. also observed a decreased β-catenin-TCF/LEF-induced transcriptional activity in SphK1 

knock-down cells, resulting in decreased expression of cyclin D-1 and c-myc. Furthermore, they also 

observed decreased Akt phosphorylation, and dephosphorylation and activation of GSK-3 [30]. 

In our studies, overexpression of SphK1 in follicular ML-1 and FTC-133 thyroid cancer cells 

resulted in a decreased proliferation, compared with mock-transduced cells or cells transduced with the 

inactive G82D mutant of SphK1 [33]. The reason for the difference from the results obtained by  

Guan et al. is presently not known. One possibility is a different set-up of S1P receptors in the cell 

lines used in the two studies. Another possibility is that cross talk between S1P receptors and some 

growth factor receptors (see [38]) resulted in an enhanced proliferative potential in the cells used by  

Guan et al. [30]. However, the migration of ML-1 cells overexpressing SphK1 was significantly 

increased. Further investigations showed that this effect was due to autocrine S1P signaling. The 

migration was attenuated by pretreatment with pertussis toxin, by pharmacologically blocking S1P1 

and ERK1/2, by siRNA against PKCα, and finally by blocking the ATP-binding cassette transporter 

C1 (ABCC1) [33]. Other investigations have shown that ABCC1, and the ATP-binding cassette 

transporter A1 (ABCA1), both are involved in transporting S1P out of cells, resulting in autocrine S1P 

signaling [39,40]. Taken together, the results obtained by us and by Guan et al. [30] suggest, that 

overexpression of SphK and autocrine S1P signaling may be detrimental in the etiology of thyroid cancer. 

As is always the case in biology, nothing is as straightforward as it first seems. In the study  

by Bergelin et al. [33], overexpression of SphK enhanced migration. However, in a study by  

Asghar et al. [31], pharmacological inhibition of SphK1, on the other hand, enhanced migration of the 

anaplastic C643 thyroid cancer cells, probably due to decreased autocrine S1P signaling. Addition of 

exogenous S1P to these cells resulted in a decreased migration. Furthermore, our results showed that in 

these cells, S1P predominantly activated S1P2. Our results thus indicate that activation of SphK1 may, 

in some cell types, evoke an anti-migratory effect. We conclude that the receptor profile of the cells, 

again, may decide the outcome of such an autocrine S1P signaling. Thus, it probably is advisable to 

proceed with caution before considering the use of SphK-inhibitors in the treatment of thyroid cancer.  

3.4. Signaling cross Talk with VEGF 

Signaling between G protein-coupled receptors and tyrosine kinase receptors probably is a common 

mechanism regulating cell fate (see review by Pyne et al. [41]). In an early article, Berk’s group 

showed cross talk between S1P signaling and EGF on Erk1/2 signaling in bovine aortic endothelial 

cells [42]. Furthermore, cross-communication between S1P-receptors and both platelet-derived growth 

factor (PDGF)-, transforming growth factorβ (TGFβ), and insulin-like growth factor receptors have 

also been shown [43–45], suggesting that also the receptors for S1P may participate in cross 



Biomolecules 2013, 3 308 

 

communication with tyrosine kinase receptors. For further details, the readers are referred to reviews 

by Lebman and Spiegel [46], and Pyne and Pyne [38].  

Signaling between S1P receptors and growth factor receptors can be either sequential or  

integrative [46,47]. Sequential signaling means that a growth factor binds to and activates its receptor, 

resulting in the activation of SphK. The produced S1P is then transported out from the cell and 

activates its own receptor through an autocrine or paracrine mechanism. Integrative signaling, on the 

other hand, is the result of activation of a complex containing both a growth factor receptor and a S1P 

receptor. The activation of the complex is most probably bidirectional, meaning that activation of 

either one receptor will result in activation of the other, and that activation of both receptors is 

necessary for the activation of downstream signaling pathways [46,47]. 

Several investigations have shown that thyroid carcinoma cells express receptors for VEGF and that 

the cells also express and secret VEGF [48–50]. Furthermore, S1P and VEGF have been shown to 

cooperate to regulate cellular functions in several cell types, both normal cells and in malignant cell 

types. In, e.g., endothelial cells, S1P transactivates and phosphorylates VEGF receptor 2 [42,51]. 

VEGF, in turn, regulates the expression of S1P1 and S1P3 [52–54]. In addition, VEGF may enhance 

SphK activity and the production of S1P [55]. 

We thus wanted to investigate whether S1P receptors and receptors for VEGF interacted in ML-1 

thyroid cancer cells. In the first study, we showed that ML-1 cells express VEGF receptor 2 

(VEGFR2) and constitutively secrete VEGF [56]. Furthermore, S1P stimulated a small, but significant 

increase in the secretion of VEGF-A. VEGFR2 activity was also of crucial importance for migration, 

as inhibition of VEGFR2 pharmacologically, or sequestering VEGF with an antibody, clearly 

decreased both basal and S1P evoked migration. Interestingly, the expression of S1P receptors seemed 

to be, at least in part, regulated by VEGFR2 activity, as blocking VEGFR2 rapidly decreased the 

expression of S1P1 but increased the expression of S1P3 [56]. Adding to the complexity was our 

observation that stimulation of ML-1 cells with S1P, in turn, transiently increased VEGFR2 expression 

through a mechanism dependent on S1P3, PKCα and ERK1/2 [57]. 

The above results suggested that S1P receptors and VEGFR2 might function as a complex  

in regulating ML-1 cell migration. This is strengthened by our observation that S1P, indeed, 

phosphorylated VEGFR2, and that S1P1 and VEGFR2 colocalized at the plasma membrane, as shown 

by immunocytochemistry [57]. In addition, several other investigations have shown an intimate 

relationship between S1P receptors and growth factor receptors, e.g., the PDGFβ-receptor, the  

EGF-receptor and the IGF receptor this is transactivation through SK [44,58,59]. 

To further investigate the interactions between VEGFR2 and S1P1, we immunoprecipitated 

VEGFR2 and showed that S1P1 also was immunoprecipitated. In addition, both ERK1/2 and PKCα 

was coimmunoprecipitated in the complex [57]. Immunoprecipitation of VEGFR2 also resulted in 

detectable amounts of S1P 2,3,5 in the complex. When S1P1 was immunoprecipitated, VEGFR2, PKCα 

and ERK1/2 was coimmunoprecipitated. Thus, at least in ML-1 cells, VEGFR2 and S1P1 are in a 

complex together with PKCα and ERK1/2, i.e., the signaling molecules important for ML-1 cell migration.  

We next investigated by which mechanisms VEGFR2 and S1P1 interacted to regulate ML-1 cell 

migration. Our investigations showed that treatment of the cells with pertussis toxin (Ptx) or a PKCαβ 

inhibitor, inhibited VEFG-A-evoked ERK1/2 phosphorylation in a manner similar to that of S1P. 

Previous investigations have also showed that both IGF and PDGFβ may phosphorylate ERK1/2 by a 
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Ptx-dependent mechanism [44,58]. Furthermore, downregulation of PKCα or PKCβ attenuated both 

the SEW-2871 (a S1P1 agonist) and VEGF-A-evoked ERK1/2 phosphorylation. Furthermore, both 

S1P and VEGF-A-evoked haptotaxis was attenuated by Ptx [57]. A schematic presentation of the  

S1P- and VEGF-evoked signaling in regard to thyroid cancer ML-1 cell migration is presented  

in Figure 1. 

Figure 1. Schematic presentation of the different signaling pathways employed by S1P and 

VEGF in stimulating migration of follicular ML-1 thyroid cancer cells. The * in the Figure 

denotes a complex between S1P receptors and VEGF receptor 2. 

 

Thus, S1P1-VEGFR2 cross talk seems to be integrative and bidirectional: both S1P- and  

SEW-induced ERK1/2 phosphorylation and haptotaxis was inhibited by a VEGFR2 inhibitor, whereas 

VEGF-A-evoked ERK1/2 phosphorylation and haptotaxis was inhibited by S1P1 siRNA. As thyroid 

cancer cells also may express receptors for other growth factors, an interesting question is if and how 

S1P interacts with these receptors, and how such an interaction could modulate either proliferation or 

migration of thyroid cancer cells.  

4. Cross Talk with Ion Channels: HERG 

HERG potassium channels have been implicated to participate in the regulation of migration and 

proliferation of several types of cancer [60,61]. Furthermore, the enhanced expression of HERG has 

been shown to correlate with a worse prognosis in, e.g., glioblastoma multiforme [62]. As the possible 

significance of HERG in thyroid cancer has not been evaluated, we investigated this in anaplastic 

cancer cells. Our data showed that both normal human thyroid cells, as well as thyroid cancer cells, 

express HERG channels [31]. Interestingly, HERG-like currents did not parallel the channel 

expression. However, in both anaplastic and follicular cancer cells, inhibition of the HERG channels 

with E-4031 resulted in a decreased migration of the cells. Interestingly, incubation of the anaplastic 
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C643 thyroid cancer cells with S1P resulted in a transient decrease in the expression of the HERG 

protein. A similar S1P-evoked reduction in HERG protein expression was seen in HEK cells 

overexpressing HERG, and in these cells, S1P also decreased migration. The reason for the 

downregulation is not clear, but could be due to S1P-evoked receptor activation, the activation of 

phospholipase C and the production of diacylglycerol, resulting in internalization and degradation of 

HERG channels (see [63]). Whether the link between S1P-receptor signaling and HERG 

internalization can be of clinical importance is an open question. Another interesting observation is 

that HERG channel activity may enhance VEGF secretion [62]. As VEGF may activate VEGFR2 

through an autocrine mechanism in thyroid cancer cells, enhanced HERG expression or activity could 

then worsen the prognosis of the disease. This observation may possibly be of clinical significance. 

5. Concluding Remarks 

The studies described above clearly suggest that SphK1 and S1P may be important in the etiology 

of thyroid cancer, and in the regulation of both invasion and migration of thyroid cancer cells. 

However, the fact that migration of thyroid cancer cells of different cancer forms, but with very similar 

S1P receptor profiles, may either be inhibited or stimulated by S1P, is a matter of concern. This 

suggests that the receptor profile per se cannot be used as a marker for discerning a more migratory 

phenotype of cancer cells. Similarly, the observations that overexpression of SphK1 also may either 

have an inhibitory or stimulatory effect on migration, might be problematic if inhibition of SphK is to 

be used in clinical settings: the treatment might, in fact, enhance instead of inhibit migration and 

metastasis of cancer cells. However, the intimate cross-communication between S1P1 and VEGFR2 

might prove to be an advantage in the search for an effective treatment for thyroid cancer. Clearly, 

more investigations are needed to clarify if inhibition of SphK1 or S1P-receptors will be of clinical 

significance in the treatment of thyroid cancer.  
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