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REVIEW

Toxic metals in the regulation of epithelial–
mesenchymal plasticity: demons or angels?
Xu‑Li Chen†   , Yan‑Ming Xu†    and Andy T. Y. Lau*    

Abstract 

Epithelial cells can trans-differentiate into motile mesenchymal cells through a dynamic process known as epithe‑
lial–mesenchymal transition (EMT). EMT is crucial in embryonic development and wound healing but also contributes 
to human diseases such as organ fibrosis and cancer progression. Heavy metals are environmental pollutants that 
can affect human health in various ways, including causing cancers. The cytotoxicity and carcinogenicity of heavy 
metals are complex, and studies have demonstrated that some of these metals can affect the progress of EMT. Here, 
we focus on reviewing the roles of six environmentally common toxic metals concerning EMT: arsenic (AS), cadmium 
(Cd), cobalt (Co), chromium (Cr), nickel (Ni), and copper (Cu). Noteworthily, the effects of these elements on EMT may 
vary according to the form, dose, and exposure time; the dual role of heavy metals (e.g., AS, Cd, and Cu) on EMT is also 
observed, in which, sometimes they can promote while sometimes inhibit the EMT process. Given the vast number of 
toxicologically relevant metals that exist in nature, we believe a comprehensive understanding of their effects on EMT 
is required to dictate in what circumstances these metals act more likely as demons or angels.
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Background
It is becoming very common for humans to expose to 
toxicologically relevant metals  due to the diverse appli-
cations of metals in agriculture, medicine, household, 
technology, and industry [1]. Exposure to toxic metals 
has now permeated into all aspects of our lives, and not 
just from toxic waste sites or sporadic poisoning events. 
Thus, it is more important than ever before to pay atten-
tion to the potential adverse effects of metals on the envi-
ronment as well as human health. In fact, the harmful 
effects of certain metals have only been noticed over the 
past few decades following the increase of human expo-
sure worldwide owing to industrialization [2]. One of the 
reasons for slow recognition of metals’ perniciousness 

to human health is that the toxic effects are usually not 
instant and can take ages to accumulate. Therefore, even 
after knowing the potentially toxic effects, people are still 
willing to take the risks of using certain toxicologically 
relevant metals and alloys for the need of manufacture 
and ease of life. For example, dental “silver” amalgam fill-
ings that contain about 50% elemental mercury are tra-
ditionally and are still commonly used in oral treatments 
despite having debatable safety issues [3].

Over the years, a great number of metallic elements 
have successively been proven to be carcinogenic based 
on epidemiological, clinical, in vitro, and in vivo studies 
[3]. All these metals have been classified as human car-
cinogens (either known or probable) by reputable organi-
zations such as the International Agency for Research 
on Cancer (IARC) and the United States Environmental 
Protection Agency (USEPA) [1]. Epithelial–mesenchy-
mal transition (EMT), a dynamic process where epithelial 
cells acquire mesenchymal features, is involved in devel-
opmental and morphogenetic processes but also contrib-
utes to human diseases such as organ fibrosis and cancer 
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progression, especially metastasis [4, 5]. Recently, heavy 
metals such as arsenic (AS), cadmium (Cd), cobalt (Co), 
chromium (Cr), nickel (Ni), and copper (Cu) have been 
shown to play a role in EMT, and this review aims to pro-
vide a more holistic view of the effects of these metals in 
the progress of EMT.

What is EMT? Complex regulatory networks of EMT
Epithelial cells can trans-differentiate into motile mes-
enchymal cells through EMT, a morphogenetic process 
associated with wound healing, embryonic development, 
tissue formation, stem cell behavior, and cancer metasta-
sis [6]. Conversely, a reversed process of EMT, known as 
mesenchymal–epithelial transition (MET), occurs when 
mesenchymal cells loss their migratory freedom and shift 
toward the epithelial state [6]. The concept of EMT was 
first described by Professor Elizabeth D. Hay in the early 
1980s, as she observed the phenotypic changes of epithe-
lial to mesenchymal state in the primitive streak of chick 
embryos [7]. Since then, EMT has attracted consider-
able attention in the field of cell biology as well as cancer 
research—it is now more than 20  years since EMT was 
first shown to be strongly associated with cancer progres-
sion [8, 9].

EMT is a complicated process involving more than 
hundreds of protein-coding and non-coding genes [10]. 
Some of these genes are selected and widely used as EMT 
markers, and these “classical” epithelial and mesenchy-
mal markers are summarized in Fig.  1. In general, the 
simplest description of EMT from a molecular aspect is 
the loss of E-cadherin (CDH1; a cell–cell adhesion pro-
tein) and the gain of vimentin (VIM; a type-III interme-
diate filament protein) [6]. However, since EMT/MET 
occurs in a gradual manner, several intermediate states 
between the transition have been recently suggested, and 
these states can be classified as the partial-, incomplete-, 
and hybrid-EMT states in addition to the fully epithelial 
or mesenchymal state (reviewed in [6]). In many tumors, 
diverse EMT states of cancer cells have been observed, 
and these cells are associated with different metastatic 
potentials [11, 12].

The activation of the EMT transcription program is 
induced by signaling pathways mediated by transforming 
growth factor β (TGF-β), bone morphogenetic protein 
(BMP), Wnt/β-catenin, Notch, Hedgehog, and receptor 
tyrosine kinases [13, 14]. These pathways are usually trig-
gered by various stimuli in the local microenvironment, 
such as growth factors, cytokines, hypoxia, and contact 

Fig. 1  An overview of the EMT process and classic gene markers. The EMT is a dynamic and reversible process modulated by epithelial and 
mesenchymal marker expression: Some of the typical epithelial markers include β-catenin (CTNNB1) and E-cadherin (CDH1), whereas mesenchymal 
markers include N-cadherin (CDH2), SNAI1/2 (SNAI1/2), and vimentin (VIM). Studies have shown that toxicologically relevant metals such as AS, Cd, 
Co, Cr, Ni, and Cu can promote the progress of EMT, and three of these metals (AS, Cd, and Cu) may inhibit EMT
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with the surrounding extracellular matrix [14]. Among 
the EMT-inducing pathways, the TGF-β signaling path-
way is the most well-characterized, and it is usually acti-
vated by TGF-β superfamily ligands, including three 
TGF-β isoforms (β1, β2, and β3) and six BMP isoforms 
(BMP2 to BMP7) [14]. The Wnt/β-catenin signaling 
pathway is also considered to be a key signaling pathway 
driving EMT, which is mainly mediated by the Frizzled 
and low-density lipoprotein receptor-related protein 
(LRP) receptors. These Wnt receptor proteins can sta-
bilize cytoplasmic β-catenin by preventing β-catenin 
from being phosphorylated by GSK-3β and degraded by 
proteasomes, resulting in the translocation of stabilized 
β-catenin to the nucleus and therefore activation of EMT 
[15]. Furthermore, in addition to the classical Wnt/β-
catenin signaling pathway, Dissanayake et  al. showed a 
noncanonical Wnt signaling pathway (Wnt5A/PKC sign-
aling) that could also induce EMT [16].

The effect of heavy metals in EMT–demons or angels?
Most researchers would have agreed that almost all toxico-
logically relevant metals are evil because these toxic metals 
usually promote or exacerbate the process of EMT upon 
long-term and short-term exposures. However, analysis of 
recent experimental results shows that certain toxic metals 
can also inhibit EMT, depending on the dose and exposure 
time, and therefore these metals are portrayed as a combina-
tion of angels and demons. Take AS for example, although 
studies have shown that AS (III) exposure promotes intes-
tinal tumor cell proliferation and invasion associated with 
EMT, exposure to low levels of AS (III) may also disrupt nor-
mal wound healing and angiogenesis processes of metastatic 
cancer cells [17, 18]. The current knowledge regarding the 
EMT promoting or inhibitory effects of AS, Cd, Co, Cr, Ni, 
and Cu is summarized in Table 1.

Arsenic
AS is widely distributed in the environment due to its 
natural existence and industrial and medical applications. 

The major inorganic forms of AS are the pentavalent 
arsenate and trivalent arsenite. The organic forms include 
the methylated metabolites monomethylarsonous acid 
(MMA), dimethylarsinic acid, and trimethylarsine oxide. 
Although there is AS pollution in the air, soil, and other 
sources, people are mainly exposed to unsafe levels of AS 
through contaminated drinking water [19]. Exposure to 
AS can cause serious health consequences, such as car-
diovascular disease, conjunctival congestion, diabetes 
mellitus, weakness, neurological deficits, hypertension, 
cancer, and other chronic diseases [20].

Evidence is clear that AS can induce EMT in normal 
epithelial cells of various organs, even at low concentra-
tions. For example, studies have indicated that chronic 
exposure to low levels of AS (1.0–2.5  μM of NaAsO2) 
resulted in human bronchial epithelial (HBE) cells to 
acquire stem cell-like properties and malignant transfor-
mation, in which, these changes were shown to be asso-
ciated with the deletion of miR-200 family members and 
upregulation of miR-21 that induced EMT [21–23]. Fur-
thermore, several experiments have demonstrated that 
HBE or human epidermal keratinocyte (HaCaT) cells 
chronically exposed to NaAsO2 resulted in increased IL-6 
and miR-21, decreased PTEN, and activation of STAT3 
and AKT signaling pathways [24–28]. Further mechanis-
tic studies revealed that EMT activated β-catenin in AS-
transformed HBE cells, which upregulated the level of 
angiogenic-stimulating growth factor VEGF and promot-
ing angiogenesis [29].

In human bronchial epithelial BEAS-2B cells, chronic 
exposure to sub-lethal doses of NaAsO2 resulted in 
the inhibition of miR-100 expression, activation of 
autophagy, and induction of EMT via the MEK/ERK1/2 
signaling pathway [30, 31]. It has been shown that miR-
191 is a highly conserved oncogenic miRNA [32]. In 
human liver epithelial L-02 cells, NaAsO2 exposure 
increased the level of HIF-2α-mediated miR-191, and 
thus promoting EMT and cancer stem cell-like phe-
notypes [33]. In another study, treatment with various 
concentrations (0–8  μM) of NaAsO2 for 12  h or with 
2  μM NaAsO2 for selected periods (0–24  h) in L-02 
cells indicated that AS could increase the number of 
autophagosomes by blocking autophagic flux, leading to 
the accumulation of SQSTM1/p62 and upregulation of 
mesenchymal protein SNAI1 [34]. Similarly, treatment 
of human lung peripheral epithelial cells (HPL-1D) and 
human immortalized uroepithelial cells (SV-HUC-1) 
with low levels of NaAsO2 can induce EMT [35, 36]. By 
exposing NaAsO2 to renal cortex/proximal tubule (HK-2) 
epithelial cells for 72 h (acute), 3 months (long-term), and 
6  months (chronic), Chang and Singh found that HK-2 
cells could undergo neoplastic transformation through 
the acquisition of EMT when chronically exposed to a 

Table 1  An overview of the effect of the six toxicologically 
relevant metals in EMT

Yes reported in the literature, ND no data (no relevant data was available at the 
time of this publication)

Element Form Promotes EMT Inhibits EMT

Arsenic AsO2
- Yes ND

ATO Yes Yes

Cadmium Cd2+ Yes Yes

Cobalt Co2+ Yes ND

Chromium Cr6+ Yes ND

Nickel Ni2+ Yes ND

Copper Cu2+ Yes Yes
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relatively lower concentration of AS [37]. Furthermore, 
they also found that long-term AS exposure could cause 
HK-2 cells to acquire DNA methylation-mediated fibrotic 
phenotypes and treatment of DNA methylation inhibitor 
5-Aza-2’-dC could reverse the EMT properties [38].

In additional to normal epithelial cells, AS-induced 
EMT can also be observed in other cell types, includ-
ing cancer cells. For instance, in colorectal cancer cell 
lines Caco2 and HCT116, exposure to NaAsO2 could 
induce SEPT9 promoter hypomethylation, which further 
initiated EMT [39]. In another study, long-term treat-
ment (6  months) of immortalized human keratinocytes 
(NHEK/SVTERT3-5) cells with AS trioxide (ATO) could 
induce EMT, impair differentiation of organotypic skin 
models, and mimic aspects of human skin derangements 
(e.g., Bowen’s disease) [40]. Also, EMT and global meth-
ylation changes were observed in human cervical cancer 
HeLa cells when treated with 0.5 µM NaAsO2 for about 
45 days [41].

Although the above data have shown that AS can pro-
mote EMT and enhance tumor malignancy, some con-
tradictory results indicate that AS can suppress EMT 
and may be a potent anticancer agent. Several stud-
ies have indicated that low levels of AS (III) may inhibit 
wound healing and angiogenesis of metastatic cancer 
cells [17]. In gastric cancer cell lines (AGS and MGC803), 
As4S4 treatment could upregulate the expression of 
miR-4665-3p, which in turn downregulated the expres-
sion of oncoprotein GSE1 and resulted in the reverse of 
EMT in these cell lines [42]. In another study, EMT in 
AGS cells was inhibited by ATO treatment (5 or 10 μM, 
48  h) via the induction of SHP-1 and attenuation of 
p-JAK2/p-STAT3 [43]. ATO was also shown to suppress 
EMT, tumor progression, and metastasis in Buffalo rat 
hepatoma cell line Mca-Rh7777 by inhibiting TWIST 
activation [44]. Furthermore, ATO could weaken the 
invasiveness of chondrosarcoma cells and reverse the 
cells to more epithelial states by increasing the expression 
of miR-125b, a process associated with the demethyla-
tion of DNA [45]. In hepatocellular carcinoma cell lines, 
ATO treatment was able to inhibit EMT by suppressing 
the expression of PKM2 via the induction of anticancer 
lncRNA MEG3 [46]. Overall, based on these results, we 
can observe that exposure to AS could promote angio-
genesis and EMT, leading to malignant transformation 
of cells as well as enhancing the migration and invasion 
of tumor cells; on the other hand, short-term AS expo-
sure, especially ATO, may inhibit tumor progression 
and metastasis and therefore have clinical implications. 
However, caution should be taken when applying AS for 
clinical used since the EMT inhibition properties of AS 

could also cause other non-cancer disorders, particularly 
cardiovascular diseases: it was indicated that MMA (III) 
could inhibit EMT of epicardial cells that result in AS-
associated cardiovascular disorders [47]. Also, Allison 
et al. showed that NaAsO2 exposure could disrupt TGF-
β2 signals and Smad activation, leading to the blockage of 
developmental EMT gene programming in murine coro-
nary progenitor cells, but AS toxicity had no significant 
effect on smooth muscle differentiation [48].

Cadmium
Cd is a toxic heavy metal with considerable effect on the 
environment and human health.  As a naturally occur-
ring element, the presence of Cd in the environment 
has been substantially magnified by industrialization 
and human activities. Humans are mainly exposed to Cd 
through a number of sources, including consumption of 
Cd-contaminated food, working in Cd-contaminated 
workplaces, and smoking of  cigarettes [49]. Findings 
from repeated studies of occupational Cd exposure and 
lung cancer have concluded that Cd is a human carcino-
gen according to the IARC and the USEPA. Some studies 
have also determined that Cd exposure is associated with 
cancers of the prostate, kidney, liver, hematopoietic sys-
tem, and stomach [50].

Given the fact that Cd exposure (even through the gas-
trointestinal system) is strongly correlated to lung can-
cer, many studies have used lung cell models to study Cd 
toxicity [51, 52]. In our previous studies, we found that 
BEAS-2B cells chronically exposed to CdCl2 exhibited 
EMT phenotype that ubiquitin carboxyl-terminal hydro-
lase isozyme L1, a newly identified EMT suppressor, was 
severely downregulated in the Cd-resistant BEAS-2B cell 
model [53, 54]. In another study by Tanwar et al., short-
term Cd exposure (0, 2.5, 5, and 10 μM CdCl2 for 72 h) 
was able to decrease the level of miR-30 family genes and 
upregulated SNAI1 in human lung epithelial cells [55]. In 
addition to human lung cells, Cd could also induce EMT 
in tissues of other organs: it was shown that non-can-
cerous breast (MCF10A) and pancreas (hTERT-HPNE) 
epithelial cell lines underwent EMT after exposure to 
2.5  µM CdCl2 for 40  weeks [56]. As a key regulator of 
EMT, SNAI1 was also found to be upregulated upon 
treatment with 1 μM or 3 μM CdCl2 for 4 weeks in both 
normal and cancer-derived breast epithelial cells [57]. 
Furthermore, Shan et  al. showed that triple-negative 
human breast cancer cell line MDA-MB-231 treated 
with 1–3  μM of CdCl2 for 8  weeks resulted in the sup-
pression of breast cancer prognostic marker ferroportin, 
increased intracellular iron concentration, promotion of 
cell proliferation and migration, and induction of EMT 
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[58]. Similarly, in other cancer cell lines, Cd-associated 
EMT was observed. For example, in renal cancer Caki-1 
cells, EMT was promoted by Cd treatment via upregula-
tion of PGE2 through cAMP/PKA-COX2 signaling path-
way [59]. In lung adenocarcinoma A549 cells, prolonged 
CdCl2 exposure induced EMT and malignant progression 
via the activation of Notch1, hypoxia-inducible factor-1α 
(HIF-1α), and IGF-1R/Akt/ERK/S6K1 signaling pathways 
[60]. The induction of EMT by Cd described above has 
also been supported by animal studies. In order to mimic 
long term and chronic Cd exposure, Chakraborty et  al. 
used drinking water containing environmentally relevant 
Cd (100  mg/l of CdCl2) to feed mice for 12  weeks, and 
renal fibrosis was observed, along with activation of the 
Wnt pathway and increased expression of EMT-related 
genes in the kidney tissues [61].

Despite overwhelming evidence indicating that Cd pro-
motes EMT, one study has suggested that “physiologi-
cally” relevant concentrations of CdCl2 (0.25 and 2.5 μM) 
can inhibit EMT in adult mammary stem cells via the 
inhibition of HIF-1α activity (important for human mam-
mary stem cell proliferation and branching morphogen-
esis) and downregulation of EMT-associated genes (e.g., 
VIM, ZEB1, and TGFBI) [62].

Cobalt
As a rare element, the chemical properties of Co are 
highly similar to iron and Ni. Co can form stable salts and 
complex compounds, mainly as Co (II) oxide and Co (III) 
oxide [63]. Humans are often exposed to a wide variety 
of Co compounds due to their widespread occurrence in 
daily life, including occupational, environmental, dietary, 
and medical.

CoCl2 is a hypoxia-mimetic agent commonly used  to 
simulate the typical hypoxic environment of cancer 
cells. Therefore, it is also often used to study the role of 
hypoxia in cancer development [64, 65]. Studies have 
indicated that CoCl2 can promote EMT by stabilizing 
HIF-1α (a key hypoxia marker) in various cancer cell 
lines. For example, stabilization of HIF-1α was observed 
in human pancreatic carcinoma (MiaPaCa2) and esopha-
geal squamous cell carcinoma (TE-1 and EC-1) cell lines 
treated with CoCl2, and it was shown that the hypoxic 
environment in these cell lines promoted EMT via the 
activation of Notch1-STAT3 signaling pathway, down-
regulation of E-cadherin, and increased expression of 
N-cadherin and SNAI1 [66, 67]. In human hepatocellular 
carcinoma HepG2 cell line, HIF-1α increased the level of 
COX-2 protein and induced EMT process to cope with 
hypoxic environment, leading to increased invasiveness 
and metastasis of the cancer cells [68].

Similarly, human lung cancer cell lines (A549 and PC9) 
treated with 100 µM CoCl2 for 24–48 h exhibited EMT 
phenotypes such as increased invasion and migration, 
and these cell lines also showed increased expressions 
of Netrin-1 and vimentin, activated PI3K/AKT pathway, 
and downregulation of E-cadherin [69]. In breast can-
cer, Chu et  al. showed that expressions of vimentin and 
matrix metalloproteinases (MMP2 and MMP9) were sig-
nificantly increased due to hypoxia in ductal carcinoma 
(MDA-MB-231) and mammary tumor (MCF7) cell lines 
treated with CoCl2 [70]. The expression of CA IX, a novel 
prognostic marker protein for breast cancer, was also 
upregulated in these breast cancer cell lines and closely 
related to tumor cell migration and invasion [70]. In 
another study, it was indicated that long-term treatment 
of CoCl2 could increase the number of polyploid giant 
cancer cells, and these cells could asymmetrically divide 
into more aggressive daughter cells in breast cancer [71]. 
Additionally, Lester et al. showed that expression of urok-
inase-type plasminogen activator receptor (uPAR) was 
induced by hypoxia in the breast cancer MDA-MB-231 
cells. The overexpression of uPAR activated uPAR-
dependent cell signaling and promoted EMT in the can-
cer cells, and this process could be reversed by silencing 
the expression of uPAR or by blocking the uPAR-acti-
vated cell signaling factors [72]. Furthermore, Thongchot 
et  al. indicated that the HIF-1α expression in and cell 
migration of cholangiocarcinoma cell lines (M139 and 
M214) with CoCl2-stimulated hypoxia conditions could 
be suppressed by treating the cells with chloroquine [73].

Besides cancer cell lines, evidence is also clear that 
CoCl2 can induce EMT in various types of normal 
human cells [74, 75]. For instance, Kong et  al. showed 
that human LO2 hepatocytes treated with 100 μM for 24 
or 72 h underwent EMT, and this process could be inhib-
ited by curcumin treatment via TGF-β/Smad signaling 
interference [74]. In another study, human lens epithe-
lium cell line (SRA01/04) treated with 150 μM CoCl2 for 
48 h exhibited EMT properties such as decreased expres-
sion of E-cadherin, increased expressions of HIF-1α and 
Notch1, activation of SNAI1, and enhanced cell migra-
tion [75].

Chromium
Cr is an element naturally present in the earth’s crust 
with several oxidation states, and the two more common 
ones are Cr (III) and Cr (VI) [76]. The oxidation state of 
Cr dictates the health hazard of Cr exposure: Cr (III) is 
non-toxic and good for nutrition and health whereas Cr 
(VI) is extremely toxic and has been classified as a group 
I carcinogen by the IARC and USEPA [3]. In general, 
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humans are exposed to Cr (VI) through the ingestion of 
contaminated food/water and occupational inhalation 
[77, 78]—it is estimated that more than 300,000 workers 
are exposed to Cr (VI) and Cr-containing compounds in 
the workplace each year [79].

Exposure to Cr (VI) may induce health problems, 
including damage to the sperm and male reproductive 
system, anemia, and higher risk of cancers [1]. It was dis-
covered that the Cr (VI) concentrations in the serum of 
prostate cancer patients were much higher than those 
of benign prostatic hyperplasia patients [80]. Further 
in vitro and in vivo studies revealed that exposure to low 
doses of Cr (VI) might affect prostate cancer progression 
by inducing EMT [80]. The EMT-inducing ability of Cr 
(VI) is not only observed in cancer cells but also in nor-
mal human cell lines. For instance, it was indicated that 
suppressed E-cadherin levels, increased vimentin levels, 
and EMT phenotypes (e.g., fibroblastoid morphology) 
were associated with acute and chronic K2Cr2O7 expo-
sures in the BEAS-2B cells [81]. In another study, Li et al. 
found that K2Cr2O7 could increase the levels of mesen-
chymal protein and stem cell markers in renal epithelial 
cells [82].

Nickel
Ni, as the 2nd most abundant element in the Earth’s inner 
core, is widely distributed in the environment, air, water, 
and soil [3]. Ni is used in a broad variety of metallurgi-
cal processes and as a catalyst in the chemical and food 
industry [83]. Humans are exposed to Ni mainly through 
Ni-contaminated water and food, which can cause a vari-
ety of health hazards. Depending on the dose and dura-
tion of exposure, Ni can cause cardiovascular diseases, 
lung fibrosis, and cancer of the respiratory tract [84, 85].

The relationships between Ni exposure and lung 
tumorigenesis have been assessed by several research-
ers. Wu et  al. showed that treatment of NiCl2 could 
induce fibronectin and promote TGF-β-induced EMT 
by decreasing the level of TAB2 via upregulation of miR-
4417, in both normal (BEAS-2B) and cancerous (A549) 
human lung cell lines [86]. Similarly, in another study 
by Jose et  al., EMT was induced in the BEAS-2B cells 
chronically exposed to 100 μM NiCl2 for 6 weeks, and the 
persistent gene expression changes in the Ni-treated cells 
were examined [87]. They found that upregulation of 
ZEB1 was required for Ni-induced EMT, and the expres-
sion of ZEB1 was persistently activated by Ni-induced 
epigenetic alterations (e.g., decreased H3K27me3 levels) 
but not by hypoxia [87].

Copper
As an essential metal, Cu plays key roles in many physi-
ological functions, such as oxidation resistance, energy 
metabolism, neuronal function, and tissue integrity [88]. 
However, there is also evidence indicating that excessive 
Cu will induce angiogenesis because Cu can directly or 
indirectly regulate numerous angiogenesis-related factors 
[89]. In addition, recent studies have suggested that Cu 
could be carcinogenic, and Cu exposure may be associ-
ated with breast, lung, brain, colon, and prostate cancers 
[90].

In general, exposure to CuCl2 can lead to transactiva-
tion of EMT marker genes by increasing the activity of 
HIF-1α [91, 92]. Guo et  al. showed that CuSO4 could 
induce EMT via activation of TGF-β1/Smad and MAPKs 
pathways in the lung of CuSO4-treated mice, resulting 
in pulmonary fibrosis [93]. On the other hand, Li et  al. 
showed that the removal of Cu through the silencing of 
Ctr1 (a transmembrane protein responsible for cellular 
Cu uptake) could inhibit CoCl2-induced EMT via HIF-1α 
de-stabilization, along with SNAI1 and TWIST down-
regulation [90]. Therefore, it has been suggested that Cu 
chelators have the potential to be established as antican-
cer drugs worthy of clinical consideration.

Although most studies have indicated that exposure 
to high doses of Cu is a cancer risk, some studies have 
suggested the opposite effects of Cu in cancer. Specifi-
cally, it was revealed that disulfiram (DSF), an aldehyde 
dehydrogenase inhibitor with anticancer activity [94], 
displayed improved anti-angiogenic activity in a Cu-
dependent manner [95]. Further study on this mat-
ter showed that DSF combined with Cu could suppress 
hepatic carcinoma metastasis and EMT by repressing 
NF-κB and TGF-β1 signaling pathways [96]. Overall, the 
above results indicate that the effects of Cu seem to be 
promiscuous as Cu exhibits carcinogenic and antitumor 
properties.

Risk and opportunity
The numbers and levels of heavy metals in the liv-
ing environment have risen dramatically over the years 
owing to a series of human activities, including techno-
logical advancement, urbanization, rapid industrializa-
tion, and  unsafe agricultural practices [97]. As a result, 
exposure to heavy metals has become a serious global 
health problem as these elements can accumulate in the 
body and cause various human diseases, including can-
cers [98–100]. Currently, humans are mainly exposed to 
toxicologically relevant metals through several sources, 
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including diet, polluted air, occupational inhalation, and 
cigarette smoking.

It is learned that in recent years, the occurrences of 
heavy metal-contaminated food (e.g., Cd rice) due to 
water/land pollution have increased significantly on 
a global scale. Thus, in order to reduce the risk of toxic 
metals, more systematic research on food, workplace, 
and environmental safety is required. Meanwhile, there 
are several methods that may help us reduce our expo-
sure to heavy metals, and the most critical one is that we 
control and, if possible, eliminate the pollution sources. 
From an agricultural and industrial aspect, it is important 
that we rationalize the usage of fertilizers and pesticides 
and strictly prohibit the discharge of industrial wastes. 
From a government aspect, relevant departments shall 
formulate and improve the workplace and environmen-
tal regulations and standards, strengthen supervision, 
and raise public awareness of environmental protection. 
From a personal daily life aspect, we can use a drinking 
water filtration system to filter heavy metals, take precau-
tions at work, and avoid going to or living in highly pol-
luted areas.

The cytotoxicity and carcinogenicity of heavy metals 
are complex, and recent studies have demonstrated that 
some of these metals can induce EMT in both normal 
and cancerous cells, leading to increased cancer risk (as 

shown in Fig.  2). However, as elaborated in this review, 
the dual role of certain heavy metals in cancer has also 
been observed—these heavy metals (e.g., AS, Cd, and Cu) 
exhibit anticancer properties, suggesting the opportunity 
for them to be applied in cancer therapy.

Conclusions
In recent years, knowledge in the field of EMT has con-
tinued to expand. Even though the contribution of metals 
and nutrients in human cancer has been well recognized 
for many years, it is now becoming clear that certain met-
als are able to impact the process of EMT. In this review, 
we provide a deeper and more comprehensive picture of 
the effects of six toxicologically relevant metals (AS, Cd, 
Co, Cr, Ni, and Cu) in EMT. We also show that most of 
the time, heavy metals act more likely as demons by pro-
moting EMT, while sometimes they could act more likely 
as angels by inhibiting EMT (summarized in Table  2). 
Overall, the toxicity of heavy metals is expected to be 
decided by the dose, route, and chemical species of expo-
sure, together with the nutritional status, gender, age, 
and genetics of exposed individuals. In conclusion, this 
review reminds the public that we should avoid or reduce 
the chance of exposure to toxic heavy metals in our daily 
lives as exposure to these metals may promote EMT and 
induce malignant transformation of cells.

Fig. 2  Health risks associated with the six heavy metals reviewed in this article. Chronic exposure to these metals could promote EMT and the 
development of cancers in the lung, breast, liver, kidney, bladder, and prostate
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