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ABSTRACT
Objective  This study aimed to investigate the 
prevalence and clinical characteristics of monogenic 
disease in paediatric patients with a predominant 
respiratory phenotype.
Methods  Exome sequencing was performed in a 
cohort of 971 children with a predominant respiratory 
phenotype and suspected genetic aetiology. A total of 
140 positive cases were divided into subgroups based 
on recruitment age and the primary biological system(s) 
involved.
Results  There were 140 (14.4%) patients with a 
positive molecular diagnosis, and their primary clinical 
manifestations were respiratory distress (12.9%, 18 
of 140), respiratory failure (12.9%, 18 of 140) and 
recurrent/persistent lower respiratory infections (66.4%, 
93 of 140). Primary immunodeficiency (49.3%), 
multisystem malformations/syndromes (17.9%), and 
genetic lung disease (16.4%) were the three most 
common genetic causes in the cohort, and they varied 
among the age subgroups. A total of 72 (51.4%) 
patients had changes in medical management strategies 
after genetic diagnosis, and the rate in those with 
genetic lung disease (82.6%, 19 of 23) was far higher 
than that in patients with genetic disease with lung 
involvement (45.3%, 53 of 117) (p=0.001).
Conclusion  Our findings demonstrate that exome 
sequencing is a valuable diagnostic tool for monogenic 
diseases in children with a predominant respiratory 
phenotype, and the genetic spectrum varies with age. 
Taken together, genetic diagnoses provide invaluable 
clinical and prognostic information that may also 
facilitate the development of precision medicine for 
paediatric patients.

INTRODUCTION
Respiratory diseases in children are the most 
common reason for hospitalisation. They are asso-
ciated with high morbidity and mortality world-
wide, and adversely impact childhood quality 
of life, education and physical activity. With the 
improvements in molecular diagnostic techniques, 
there has been an increased recognition of the 
importance of genetic testing in paediatric respira-
tory diseases. However, the current awareness of 
the issue is mainly restricted to genetic lung disease 
(GLD), including alveolar capillary dysplasia with 
misalignment of pulmonary veins, surfactant metab-
olism dysfunction (SMD), pulmonary alveolar 
proteinosis, hereditary haemorrhagic telangiectasia, 
cystic fibrosis (CF) and primary ciliary dyskinesia 
(PCD).1 An excellent example is CF, which has been 

the focus of long-standing research efforts that have 
led to significant progress in diagnosis and treat-
ment during the past few decades.2

In addition, respiratory management of genetic 
disease with lung involvement (GDL) has received 
relatively little attention, especially the respiratory 
management after receiving molecular diagnosis, 
because the focus has been directed on primary 
disease in most cases. GDLs include system-related 
genetic disorders, such as primary immunodefi-
ciency, neuromuscular diseases, inherited metabolic 
diseases (IMDs) and connective tissue diseases; 
among them, the early non-specific and overlap-
ping respiratory phenotypes pose enormous chal-
lenge for physicians.

Therefore, a large-scale investigation on mono-
genic diseases in children with a predominant 
respiratory phenotype is needed to enhance the 
knowledge about clinical characteristics, geno-
type, management, and outcome of these diseases 
and improve patient care and prognosis. In the 
present study, we analysed 140 patients (14.4%) 
who received a molecular diagnosis in our cohort 
of 971 patients with suspected genetic causes of 
respiratory manifestations. The objectives of the 
study were to: (1) investigate the prevalence of 

What is already known on this topic?

	► Continuous progress has been made towards 
our understanding of genetic lung disease 
and genetic disease with lung involvement, 
especially the former, with substantial efforts 
and resources devoted to the research.

	► The application of the next-generation 
sequencing in cohort studies in paediatric 
respirology is relatively rare, and little is known 
about its value for diagnosis and clinical 
management of paediatric patients with a 
predominant respiratory phenotype.

What this study adds?

	► Genetic disorder spectrum of monogenic 
disease in paediatric patients with a 
predominant respiratory phenotype varies with 
age.

	► Genetic diagnoses provide invaluable clinical 
and prognostic information that may also 
facilitate the development of precision medicine 
for paediatric patients.
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monogenic diseases in children with a predominant respiratory 
phenotype; (2) reveal genotype–phenotype correlations and (3) 
determine the value of genetic diagnoses for the development of 
precision medicine for children.

MATERIALS AND METHODS
Participants
Patients who were undiagnosed following routine clinical proce-
dure and were suspected to have genetic disorders between 
1 January 2015 and 31 December 2019 in the Children’s 
Hospital of Fudan University were enrolled if they had one of 
the following respiratory phenotypes: (1) respiratory distress 
after birth; (2) dyspnoea, progressive respiratory failure and/or 
oxygen dependence; and (3) recurrent/persistent lower respi-
ratory infections (RLRIs/PLRIs). A detailed study protocol is 
described in the online supplemental methods. Informed consent 
was obtained from the parents of patients who were recruited in 
the present study.

Exome sequencing and data analysis
Details of sequencing and alignment processing are described in 
the online supplemental methods. The bioinformatics analysis 
pipeline that we adopted had been previously reported.3 Rare 
sequence variants (minor allele frequency ≤1%) affecting genes 
known to cause Mendelian disorders after the above screening 
were classified in accordance with the American College of 
Medical Genetics and Genomics guidelines.4

Statistical analysis
Differences in subject characteristics were determined using the 
Χ2 or Fisher’s exact test when comparing three age groups, and 
via Mann-Whitney U test when comparing two patient groups 
(SPSS V.26.0). The significance level was set at a p value of 0.05.

RESULTS
Demographic and clinical characteristics of the patients
In the entire cohort of 971 patients, a total of 140 (14.4%) 
patients received a positive molecular diagnosis and were 
included for further analysis (online supplemental figure S1). 
There were 98 (70%) boys and 42 (30%) girls, with a mean age 
at enrolment of 3.6 years (range: 0 days–17.8 years). The main 
respiratory manifestations at inclusion were respiratory distress 
(n=18, 12.9%), respiratory failure (n=18, 12.9%), and RLRI/
PLRI (n=93, 66.4%), with the mean onset age shown in table 1. 

Patients were grouped based on enrolment age, and basic infor-
mation and prevalent phenotype in each group are shown in 
table 1 and online supplemental results.

Spectrum of genetic disorders
There were 173 pathogenic/likely pathogenic variants spanning 
54 genes in the 140 patients diagnosed with genetic disorders. 
The proportion of the different inheritance modalities was seen 
in online supplemental table S1. The origins of variants in 103 of 
the diagnosed patients are listed in online supplemental table S2, 
whereas this information was unavailable for the remaining 37 
diagnosed patients because the DNA samples from their parents 
were not obtained.

Genetic disorders were classified into six categories according 
to the primary system(s) involved in the disease aetiology, 
primarily determined by 54 phenotype-related genes that were 
diagnosed, as follows: GLD, primary immunodeficiency (PID), 
multisystem malformations/syndromes (MM/S), IMD, neuro-
muscular disease and connective tissue disease. The latter five 
were collectively referred to as GDL. GLD included 23 patients 
(16.4%), and GDL comprised 117 patients (83.6%). Compari-
sons of the clinical and demographic characteristics between the 
two groups are shown in table 2. PID (49.3%, 69 of 140), MM/S 
(17.9%, 25 of 140) and GLD (16.4%, 23 of 140) were identified 
as the three most common genetic causes. The main cause of age 
subgroups is seen in figure 1.

The distribution of the causative genes identified in the GLD 
group, GDL group and age grouping source is shown in figure 2. 
SMDs caused by SFTPC and ABCA3 mutations and PCD by six 
pathogenic genes (DNAAF3, DNAH5, CCDC103, CCDC114, 
CCDC40 and DNAH11) were the most frequent genetic disor-
ders in the GLD group. For the GDL group, PID was the most 
common genetic disorder, in which the most enriched genes were 
BTK, CYBB, IL2RG and STAT3, followed by MM/S, where the 
most commonly mutated genes were CHD7, FBN1, COL2A1 
and PTPN11. Additionally, a genotype–phenotype relationship 
and age distribution of genetic disorders are shown in detail in 
online supplemental figure S2.

GLD and GDL exhibit different clinical outcomes and medical 
management
Notably, 51.4% (72 of 140) of the patients had changes in clin-
ical management after precise diagnosis in the following four 
areas5: (1) redirection of care (12.1%, 17 of 140), including 

Table 1  Characteristics of 140 genetic-positive patients in the study among subgroups

Categories of diseases
Total
(n=140)

Neonates
(n=31)

Infants
(n=38)

Children
(n=71)

Sex, male 98 (70%) 19 (61.3%) 30 (78.9%) 49 (69%)

Respiratory symptom onset age, median (range) 7 months (0–7.7 years) 0 (0–1 day) 2.3 months (0–7.5 months) 1 year (0–7.7 years)

Enrolment age, median (range) 3.6 years (0–17.8 years) 10.5 days (0–26 days) 5.5 months (38 days–1 year) 6.8 years (1–17.8 years)

Principal respiratory phenotype

 � Respiratory distress, no (%) 18 (12.9) 17 (54.8) 1 (2.6) 0

 � Respiratory failure, no (%) 18 (12.9) 14 (45.2) 3 (7.9) 1 (1.4)

 � RLRI/PLRI, no (%) 93 (66.4) 0 30 (78.9) 63 (88.7)

 � Other (interstitial lung disease, oxygen dependency, 
exercise intolerance)

11 (7.8%) 0 4 (10.6%) 7 (9.9%)

Method

 � Panel, no (%) 48 (34.3) 29 (93.5) 8 (21.1) 11 (15.5)

 � WES, no (%) 92 (65.7) 2 (6.5) 30 (78.9) 60 (84.5)

PLRI, persistent lower respiratory infection; RLRI, recurrent lower respiratory infection; WES, whole-exome sequencing.
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adopting palliative care and termination of treatment; (2) initi-
ation of new subspecialist care (13.6%, 19 of 140), including 
specialist care and other specific phenotypic monitoring; (3) 
changes in medication or diet (24.3%, 34 of 140); and/or (4) 
major procedures (7.9%, 11 of 140), including umbilical cord–
blood stem cell transplantation and hematopoietic stem cell 
transplantation. The most common medical impact of molecular 
diagnosis was in improving ongoing management by changing 
treatment or diet (24.3%) and the initiation of new subspecialist 
care (13.6%) (figure 3). Following genetic diagnosis, significantly 
more patients with GLD had a change in medical management 

compared with those with GDL (19 vs 53, 82.6% vs 45.3%, 
p=0.001) (table 2).

Among patients with GLD, five of seven patients with SMD 
(P003, P36–38, P86) harbouring SFTPC mutations received 
long-term hydroxychloroquine treatment with informed consent 
for off-label drug use; three of them responded well at follow-up 
visits, showing catch-up of growth and withdrawal of oxygen 
supply; however, one patient died of disease exacerbation within 
1 month after hydroxychloroquine treatment and the others did 
not respond to the treatment.6 In contrast, the other two patients 
eventually died of refractory respiratory distress syndrome (RDS) 

Table 2  Comparison of clinical severity and medical management impact of molecular diagnosis between patients diagnosed with genetic lung 
disease and genetic disease with lung involvement

Characteristics Total patients (n=140) Genetic lung disease (n=23) Genetic disease with lung involvement (n=117) P value*

Respiratory symptom onset age (boys) 7 months 5 months 7.3 months 0.682

Enrolment age (boys) 3.6 years 4.9 years 3.4 years 0.355

Molecular diagnostic age 3.8 years 5.1 years 3.5 years 0.426

ICU hospitalisation, no (%) 53 (37.9) 8 (34.8) 45 (38.5) 0.739

Invasive respiratory support, no (%) 34 (24.3) 5 (21.7) 29 (24.8) 0.755

Family history, no (%) 22 (15.7) 1 (4.3) 21 (17.9) 0.185

Management changes, no (%)† 72 (51.4) 19 (82.6) 53 (45.3) 0.001

Otherwise actionable medical measures, no (%)‡ 38 (27.1) 3 (13) 35 (29.9) NA

Deceased, no (%)§ 47 (33.6) 6 (26.1) 41 (35) 0.406

*Pearson’s Χ2 test, Fisher’s exact test or Mann-Whitney U test, when applicable.
†Indicates redirection of care, initiation of new subspecialist care, changes in medication or diet, major procedures and diagnosis-explained death.
‡Indicates patients who have not yet received management change but might do so in theory after molecular diagnosis.
§Death in hospitalisation or within 1 month from discharge.
ICU, intensive care unit; NA, not applicable.

Figure 1  Distribution of disease spectrum among neonate, infant and children groups. (A) Distribution of disease spectrum of all 140 molecular-
positive patients; (B) disease spectrum of neonate group; (C) disease spectrum of infant group; (D) disease spectrum of children group.
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and critical illness without hydroxychloroquine treatment. Simi-
larly, a pair of full-term twins (P001–002) died of progressive 
aggravation of RDS, which may have been due to homozygous 
ABCA3 mutations that were revealed following subsequent gene 
sequencing. Nine patients with PCD with mucociliary clearance 
disorders and three patients with CF with chloride channel 
dysfunction enabled new specialised nursing practices, including 
airway clearance through daily chest physiotherapy, coordi-
nated inhaled hyperosmolar agents, and prompt and aggressive 
administration of inhaled tobramycin (300 mg nebulised two 
times per day); the latter was implemented for a 28-day period 
upon the first evidence of Pseudomonas aeruginosa growth, per 
a protocol that had been previously described.7 Furthermore, 
long-term oral administration of azithromycin was performed to 
protect patients (P084, P076) from respiratory infection and to 
ameliorate the decline in lung function.8 During follow-up visits 
for more than 6 months, there was no disease progression on 
imaging, and initial indications of improved lung function were 
revealed (data not shown).

As for the GDL in 53 patients, the primary impacts on 
medical management following molecular diagnosis included 
changes in medication and/or diet, especially for patients 
with PID. In contrast to patients with loss-of-function muta-
tions in STAT1 and STAT3 sequences who received supportive 
therapy (eg, intravenous immunoglobulin) and antiviral/anti-
mycobacterial prophylaxis, three patients harbouring STAT3 
gain-of-function mutations with multisystem autoimmunity 
symptoms had interferon-gamma treatment and supportive 
therapy with long-term antifungal treatment.9 Two patients with 

activated phosphatidylinositol 3-kinase δ syndrome 1 (PIK3CD, 
P115–116) received rapamycin (Akt-mTOR signalling inhib-
itor) treatment, whereas two patients with STING-associated 
vasculopathy (TMEM173, P068 and P140) were subjected to 
ruxolitinib (JAK1/2 inhibitor) or tofacitinib (JAK1/3 inhibitor) 
treatment on an off-label basis.10 11 It is also crucial to monitor 
the emergence of severe phenotypes, such as prevention and 
monitoring of joint damage and ocular lesions of type-II collag-
enopathies (COL2A1, P030–31), multisystem comorbidity 
including kidney and eye lesions, and cancer risk of Rubinstein-
Taybi syndrome (CREBBP, P072).12–14 Fortunately, 7 of the 11 
patients (10 patients with PID and 1 patient with IMD) who had 
received transplantation achieved near-complete remission; four 
patients died of transplant-related complications, and additional 
two patients with SBDS and CYBB mutations were waiting for 
transplantation.

Moreover, for the additional 27.1% (38 of 140) patients, 
actionable medical measures could have been administered if 
an earlier molecular diagnosis or longer follow-up had been 
achieved (online supplemental table S2). We regretfully report 
that 33.6% (47 of 140) of patients died despite positive response 
to treatments, due to critical conditions/deterioration or the 
guardian choosing to give up treatment; 14 of them died before 
receiving molecular diagnoses that could have accounted for 
their deaths (table 2). It is also noteworthy that prenatal diag-
noses of amniocentesis were ongoing in two families based on 
the probands’ genetic findings (P052 and P065).

Figure 2  Causative gene distribution among genetic lung disease and genetic disease with lung involvement. (A) Causative gene distribution 
of genetic lung disease; (B) causative gene distribution of genetic disease with lung involvement. ACDMPV, alveolar capillary dysplasia with 
misalignment of pulmonary veins; CCHS, congenital central hypoventilation syndrome.
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DISCUSSION
The present study represents the first comprehensive survey on 
the genetic spectrum of monogenic diseases with predominant 
respiratory involvement. Our data revealed differences in spectra 
of genetic disorders, clinical features and precise treatments/
prognoses across age. Previous studies have provided detailed 
analyses on a variety of diseases, especially neurological pheno-
types, such as intellectual disability, developmental delay and 
epilepsy.3 15–17 Additionally, some studies have investigated the 
overall genetic diagnostic rates in specialised wards or key labo-
ratories.5 18–21 To the best of our knowledge, the median diag-
nostic yield of genome and exome sequencing of previous studies 
was approximately 33.2%, as determined by aggregate analyses, 
which highlights the clinical value of genetic sequencing as a 
diagnostic tool for paediatric patients.22 The overall diagnostic 
yield ranged from 8.4% to 68.3% in previous next-generation 
sequencing (NGS) research reports.23–27 In particular, a previous 
study showed a 13% diagnostic rate in the neonatal intensive 
care unit (NICU); the study also found that respiratory dysfunc-
tion was one of the phenotypes with the lowest molecular diag-
nostic rate in a comparative analysis of phenotypes in children.28 
Our present study had similar results, with a 14.4% diagnostic 
rate.

Patients with MM/S accounted for 45.2% of patients in the 
neonatal group, significantly more compared with the infant 
and children groups (p<0.05). Unfortunately, 64.3% of patients 
with MM/S in the neonatal group ultimately died prior to the 
completion of the study. In a previous study that explored 
genetic causes of death in NICUs, MM/S was identified as the 

leading genetic cause of death.29 However, in our study, apart 
from MM/S, we found that neuromuscular disease and IMD also 
represented high death rate categories, of which the IMD was 
without obvious visual clues to genetic conditions. Early gene 
detection in these patients with non-specific clinical manifesta-
tions is crucial for establishing precise diagnoses and predicting 
prognoses.

Our data showed that four patients presenting refractory 
RDS as newborns, caused by ABCA3 and SFTPC mutations, had 
poor prognoses, and exogenous surfactants or systemic steroids 
were ineffective in treating them; these phenomena are consis-
tent with those reported in the previous studies.30–32 Five of six 
infants/children with interstitial lung disease caused by SFTPC 
mutations received hydroxychloroquine treatments; three of 
them exhibited significant improvements in oxygen demand 
and chest CT.6 33 Since the prognosis of SMD varies greatly with 
phenotype and age as well as the effect of different gene muta-
tions on protein function, it is important that SMD is precisely 
diagnosed as early as possible. It is especially important for 
neonates suffering from severe dyspnoea immediately after birth 
and in those with persistent or recurrent episodes in the absence 
of obvious systemic inflammatory condition. Notably, only three 
patients received the diagnosis of CF in our cohort, while it is by 
far the most common monogenic cause of respiratory disease in 
the white population. The low incidence of CF in Chinese chil-
dren may explain our finding of very few patients with CF; of 
course, a possibility of missed detection due to lack of neonatal 
screening for CF also remains.

Figure 3  Impact of genetic diagnosis on medical management between patients with genetic lung disease and genetic disease with lung 
involvement.
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Certain entities of GDL, including PID, IMD and MM/S, 
which underlie typical respiratory phenotypes such as recurrent 
respiratory infections, have been highlighted in general paedi-
atric practice.34 35 Furthermore, in the present study, 70 patients 
(63.9%) received the diagnosis of PID in the infant and chil-
dren groups, which is much higher percentage compared with 
the results from previous studies.36–38 This discrepancy may be 
related to our role as a national tertiary referral chest centre.

Molecular diagnoses are of great importance for improving 
clinical management and family care strategies. However, they 
had a proportionally larger effect on GLD than on GDL (82.6% 
vs 45.3%, p=0.001). Moreover, 74% of patients with GLD 
obtained changes in medical care and medication; in contrast, 
only 24% of patients with GDL had changes in medical care 
and medication. On the one hand, in addition to specific treat-
ment, pulmonologists have a greater focus on the respiratory 
management, which was most responsible for this difference; 
this includes regular airway clearance by combinations of phys-
iotherapy and exercise, aggressive respiratory infection preven-
tion, routine monitoring of pulmonary function, and periodical 
imaging, most of which have achieved substantial gains in disease 
stability and improvement in patients with certain monogenic 
disease.8 39 However, the focus from other clinicians on the 
airway management is far from sufficient compared with that 
on the origin of primary disease because the airway as the widest 
portal provides the most extensive exposure to the outside envi-
ronment and contributes to exacerbation of the primary diseases 
to a certain extent. On the other hand, patient attitudes and 
compliance to respiratory management depend on their physi-
cians. Thus, positive management of airway is of paramount 
importance until effective treatments for respiratory impairment 
emerge.

To the best of our knowledge, the present report represents the 
first large-scale NGS study to investigate the genetic spectrum and 
diagnostic yield, as well as the impact on clinical management of 
monogenic diseases in children with a predominant respiratory 
phenotype. Since the application of NGS is relatively underused 
in paediatric respirology, our present study further clarifies the 
importance of NGS in this field. Our findings demonstrated that 
more than 50% of NGS-diagnosed patients experience changes 
in their ongoing clinical management, and even more patients 
may benefit from such NGS diagnoses in terms of improving 
clinical management in the future.

CONCLUSIONS
Taken together, our findings demonstrated that the spectra of 
monogenic diseases in children with a predominant respiratory 
phenotype varied with age. Furthermore, half of the patients 
experienced a change in management following genetic diag-
nosis; there was a difference in change in clinical management 
and prognostic prediction between GLD and GDL. For such 
patients, precise diagnosis plays a crucial role in the formulation 
of treatment strategies and prognostic evaluations.
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