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ABSTRACT

Long-range regulation by distal enhancers plays crit-
ical roles in cell-type specific transcriptional pro-
grams. Computational predictions of genome-wide
enhancer–promoter interactions are still challenging
due to limited accuracy and the lack of knowledge on
the molecular mechanisms. Based on recent biolog-
ical investigations, the protein–protein interactions
(PPIs) between transcription factors (TFs) have been
found to participate in the regulation of chromatin
loops. Therefore, we developed a novel predictive
model for cell-type specific enhancer–promoter inter-
actions by leveraging the information of TF PPI signa-
tures. Evaluated by a series of rigorous performance
comparisons, the new model achieves superior per-
formance over other methods. The model also iden-
tifies specific TF PPIs that may mediate long-range
regulatory interactions, revealing new mechanistic
understandings of enhancer regulation. The priori-
tized TF PPIs are associated with genes in distinct
biological pathways, and the predicted enhancer–
promoter interactions are strongly enriched with
cis-eQTLs. Most interestingly, the model discovers
enhancer-mediated trans-regulatory links between
TFs and genes, which are significantly enriched
with trans-eQTLs. The new predictive model, along
with the genome-wide analyses, provides a plat-
form to systematically delineate the complex inter-
play among TFs, enhancers and genes in long-range
regulation. The novel predictions also lead to mecha-
nistic interpretations of eQTLs to decode the genetic
associations with gene expression.

INTRODUCTION

Cell-type specific transcriptional regulation plays impor-
tant roles in differentiation and development (1–13). In
addition to proximal regulatory elements, e.g. promoters,
which are located around transcriptional start sites (TSS)
of genes, distal enhancers provide complex and precise
controls on gene expression through long-range regulation
(14,15). Based on recent genome-wide enhancer annota-
tions from ENCODE and Roadmap Epigenomics projects
(16,17), hundreds of thousands of putative enhancers across
the whole human genome have been identified, especially
in non-coding regions, highlighting the biological impacts
of enhancer regulation. Although a series of computational
algorithms have been developed to predict the genomic lo-
cations of cell-type specific enhancers (18,19), it remains
challenging to identify the specific target genes regulated
by enhancers in different cell-types or tissues. Unlike pro-
moters, enhancers are usually located far away from their
target genes along the genome (20) and the nearest genes
may not be regulated by a proximal enhancer (21). In three-
dimensional (3D) space, an enhancer and its target genes are
placed close to each other through long-range chromatin in-
teractions, i.e. enhancer–promoter interactions (22).

The discoveries of tissue-specific long-range enhancer
regulation have the potential to enable novel insights in a
wide range of different biological studies. As one of the
canonical examples, long-range regulation by distal en-
hancers play pivotal roles in controlling the tissue and
condition-specific expression of the mouse β-globin (Hbb)
gene expression (1,5,6). As another well-known example,
the expression of the Shh gene in mouse limb bud is pre-
cisely regulated by a distal enhancer located 850 kb away,
which is critical for the proper limb development (7–9,23).
In addition to normal tissue development, the annotation
of long-range enhancer regulation has also facilitated the
interpretation of genetic variants underlying complex dis-
eases. A non-coding genetic variant associated with obe-
sity is located in an intron of the FTO gene but regulates
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the IRX3 and IRX5 genes that are located >400 kb away
(2,10,24). Similar examples of long-range interactions link-
ing disease-associated genetic variants to distal genes have
also been found in studies of autoimmune diseases (3,4,11–
13).

Given the functional importance of long-range enhancer
regulation, experimental techniques have been developed to
identify chromatin interactions linking distal enhancers to
promoters of their target genes. Based on the pioneering
chromosome conformation capture (3C) technology (25),
along with its derivatives of 4C and 5C (26,27), the genome-
wide version, i.e. Hi-C (28), has been applied to several
human cell-types and tissues (16,29,30). Furthermore, the
promoter-enriched genome conformation assay, Capture
Hi-C (31), improves the resolution and cell-type specificity
of the identified chromatin interactions for gene promot-
ers (32). On the other hand, the method of chromatin in-
teraction analysis with paired-end-tag sequencing (ChIA-
PET) (33) was developed to capture long-range chromatin
interactions associated with a protein of interest, such as
a specific transcription factor (TF), with high-resolution
and cell-type specificity (34). These cutting-edge technolo-
gies have generated large-scale chromatin contact maps for
a number of cell-types or tissues in the human genome and
other model species (16,29,30,34).

Although experimental techniques have substantially ex-
panded the catalog of annotations for long-range chromatin
interactions, there are several limitations that hinder in-
depth analysis on cell-type specific enhancer–promoter in-
teractions. First, the resolution of interacting genomic an-
chors profiled by Hi-C and Capture Hi-C is relatively low
(∼5–10 kb genomic fragments) (29,31), which makes it dif-
ficult to pinpoint the specific enhancers involved in long-
range regulation. Second, while Capture Hi-C and ChIA-
PET experiments can discover cell-type or tissue-specific en-
hancer regulation, data generated by Hi-C experiments have
been found to be largely invariant across different cell-types
or tissues (35). Third, the background noise levels of Hi-C
and Capture Hi-C datasets are high, leading to many false
positive discoveries (36). Fourth, due to the dependency on
specific protein antibodies, such as CTCF or RNA Pol II
(34), each ChIA-PET experiment can only profile a sub-
set of long-range interactions, resulting in large numbers of
false negative interactions that are not identified (37).

Because of these limitations, computational models are
needed to predict cell-type specific long-range enhancer reg-
ulation, based on integration of multi-omics signatures, e.g.
genomics, transcriptomics, and epigenomics. Large-scale
multi-omics data resources collected by the ENCODE and
Roadmap Epigenomics projects contain the multi-view in-
formation of gene regulation (16), including gene expres-
sion, transcription factor binding and histone modifica-
tions. They can help to overcome the limitations of experi-
mental techniques because they are cell-type or tissue spe-
cific (38), provide high-resolution signal landscape along
the genome (39,40), have high signal-to-noise ratio (40),
and cover the genomic binding sites for diverse transcrip-
tion factors (16). The existing computational models of
long-range enhancer–promoter interaction prediction can
be grouped into two classes. For the first class, i.e. supervised
algorithms, 3D chromatin interactions profiled by experi-

mental techniques are used as labels for enhancer–promoter
pairs. The commonly used features include: (i) cell-type
specific gene expression based on RNA-seq data; (ii) en-
hancer activity based on specific epigenetic signals, such
as H3K4me1, H3K27ac or DNase hypersensitivity; (iii) ge-
nomic separation distance between enhancers and gene pro-
moters and (iv) correlations between gene expression and
enhancer activity. Supervised methods incorporating some
or all of these features include RIPPLE (41), FOCS (42),
EAGLE (43) and JEME (44). As one of the most recently
developed supervised methods, JEME (44) employs a com-
bined approach of regression and random forest to predict
long-range regulatory links between enhancers and genes.
But it requires multi-omics datasets from a large panel of
diverse cell-types and tissues as inputs, which is usually not
available for users. The other two top-performing meth-
ods are IM-PET (45) and TargetFinder (46). These two al-
gorithms not only integrate the features described above
but also leverage additional features of transcription fac-
tor binding in promoters, enhancers, or genomic windows
between enhancers and promoters. With respect to ma-
chine learning techniques, IM-PET employs a random for-
est model, and TargetFinder implements a boosting tree ap-
proach. For the second class, i.e. unsupervised algorithms,
every enhancer–promoter pair is assigned with a score and
then ranked based on the scores. Top-ranking enhancer–
promoter pairs are predicted to interact with each other.
The scores are generally based on genomic separation dis-
tance and co-activity patterns, e.g. correlations, between en-
hancers and genes (47–49). Based on a systematic perfor-
mance evaluation analysis (50), supervised methods overall
demonstrate better performance than unsupervised meth-
ods, but many of the supervised methods suffer from over-
fitting issues due to high model complexity (50) or exces-
sively high-dimensional features that are often shared across
training and testing sets (51). Furthermore, existing meth-
ods provide limited mechanistic insights on how specific
long-range chromatin interactions are established to link
distal enhancers with promoters of target genes (52).

Interestingly, as shown by recent experimental studies
(2,53–58), in addition to the binding of individual TFs
on enhancers or promoters, the protein–protein interac-
tions (PPIs) between TFs have been found to participate
in the process of long-range chromatin interaction for-
mation and thus, mediate distal enhancer to the proxim-
ity of target gene promoters (Figure 1A–D). For exam-
ple, the PPI between the enhancer-binding and promoter-
binding YY1s (i.e. YY1 dimerization) has been found to
mediate enhancer–promoter contacts (59). The ChIA-PET
data from mESCs suggests that the YY1–YY1 interactions
largely participate in the connections between active en-
hancers and gene promoters (59). In a chromatin struc-
ture engineering study, based on a CRISPR-dCas9 sys-
tem, two proteins (PYL1 and ABL1) are fused to dCas9
and are guided to bind on different genomic locations (60).
Remarkably, the PYL1–ABL1 dimerization can establish
novel long-range chromatin interactions, highlighting the
mechanistic importance of PPIs in orchestrating chromatin
loops. In addition, a couple of genome-wide analyses have
also found that specific groups of transcription factors are
enriched in cell-type specific long-range chromatin interac-
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Figure 1. ProTECT infers long-range enhancer–promoter interactions based on TF PPI features. (A) The enhancer–promoter interactions are regulated by
PPIs between enhancer-binding TFs (brown) and promoter-binding TFs (blue), which link distal enhancers (orange) to the proximity of promoters (red)
in 3D chromatin structure. (B) Enrichment of TF–TF pairs in Hi-C interactions (y-axis) compared to background (x-axis). Points represent TF–TF pairs.
Frequency is calculated as the fraction of enhancer-gene pairs containing the specific TF–TF pairs. Fold-change (FC) is the ratio of the frequency in Hi-C
interactions over the frequency in background. TF–TF pairs are colored by the FC (red: FC > 2; orange: 1 < FC < 2; blue: FC < 1). (C) Enriched TF–TF
pairs are supported by PPIs. The fraction of pairs supported by PPIs are calculated for the set of enriched TF–TF pairs (red). As controls, the TF members
from the enriched TF–TF pairs are randomly paired (brown). Statistical test is done based on 1000 random repeats of controls (***P-value = 10–3). Error
bar represents sd. (D) Examples of Hi-C interactions linking enhancers (orange) and promoters (red) showing enhancer-binding CTCF ChIP-seq peaks
and promoter-binding RUNX3 ChIP-seq peaks in GM12878 cells. (E) The workflow of ProTECT algorithm. A balanced training dataset is generated with
confounding factors controlled. A feature matrix summarizing cell-type specific TF PPI features, activity-based features (enhancer activity, gene expression,
enhancer-gene activity correlation), and genomic distances is then constructed. A novel hierarchical network community detection-based approach is
applied for feature dimension reduction. Based on the reduced feature matrix, a random forest model is trained, and rigorous genomic-bin split cross-
validations are used for performance evaluations and comparisons. Using the trained predictive model, genome-wide high-confidence enhancer–promoter
interactions are predicted based on stringent permutation statistical tests.
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tions (61–63). Within each group, some TF members can
interact with each other and form protein complexes. As a
representative example, a group of CTCF, RAD21, SMC3
and ZNF143 is found to be enriched in chromatin inter-
actions (61), consistent with the chromatin loop extrusion
model that CTCF and cohesin can interact with each other
and regulate chromatin loops (64,65).

These observations strongly support the mechanistic hy-
pothesis that specific TF PPIs, except intratypic dimeriza-
tions where TFs can only co-bind locally to DNA instead
of across long-range distances, may mediate long-range en-
hancer regulation. Therefore, incorporation of TF PPIs as
a new set of features into a machine learning model is ex-
pected to improve the accuracy of long-range enhancer–
promoter interaction predictions. Moreover, the prioritized
TF PPIs from the predictive model can further indicate the
important transcription factors that facilitate long-range
enhancer regulation, leading to novel understandings of en-
hancer biology. However, unlike basic enrichment analy-
sis of candidate TF–TF pairs that are over-represented in
enhancer–promoter interactions (61–63), building a predic-
tive model based on TF PPI features is computationally
challenging. First, the number of candidate TF PPIs is large
(∼200 000). By filtering the features using cell-type specific
TF expression, there are still large amounts of potential TF
PPI features. Take the human GM12878 cell-line as an ex-
ample, by only considering TFs that are expressed (17), the
number of PPIs between expressed TFs is ∼1900. The ex-
cessively high-dimensional TF PPI features easily render
predictive models with high overfitting risks. Second, in-
dividual TF PPIs are not independent features because of
(i) co-binding TF modules along the 1D genome (16)) and
(ii) protein complexes consisting of multiple interacting TFs
(66,67). Both challenges require advanced feature dimen-
sion reduction approaches to efficiently handle the non-
linear dependencies in features. In addition, as highlighted
by recent benchmark studies (50,51), rigorous settings of
cross-validation need to be designed for unbiased perfor-
mance evaluation and interpretation.

In this study, we developed a new predictive model, Pro-
TECT, to infer long-range enhancer–promoter interactions
with substantially improved accuracy. A unique novelty of
the model is designing a graph-based dimension reduction
algorithm, which can efficiently incorporate combinatorial
TF PPI features into the model and, in the meantime, con-
trol the overfitting risks. By setting rigorous genomic bin-
split cross-validations and controlling various confounding
factors, we systematically demonstrated the superior perfor-
mance of our model compared to existing algorithms. Fur-
thermore, we analyzed the relative importance of TF PPI
features in different cell-types and prioritized the key TF
PPIs that may participate in the regulation of long-range
enhancer–promoter interactions, leading to new mechanis-
tic insights on enhancer regulation. Accordingly, we fur-
ther classified genes into specific subsets, where enhancer-
gene interactions are predicted to be mediated by differ-
ent TF PPIs. Interestingly, genes in different subsets are en-
riched with distinct biological pathways, suggesting the spe-
cific functional impacts of TF PPIs. Genome-wide imple-
mentation of ProTECT in human GM12878 and K562 cell-
lines results in 134 792 long-range enhancer–promoter in-

teractions, which are significantly enriched with cis-eQTLs.
In addition, by analyzing enhancer–promoter interactions
mediated by different TF PPIs, we were able to assign spe-
cific TFs as upstream trans-factors to downstream target
genes through distal enhancers. Strikingly, the prioritized
TF–gene pairs are significantly supported by trans-eQTLs,
leading to new mechanistic interpretations of trans-genetic
effects propagated through the combined regulatory path-
ways of TF bindings, TF PPIs and long-range chromatin
interactions.

MATERIALS AND METHODS

To predict cell-type specific long-range enhancer–promoter
interactions and obtain understandings of the under-
lying mechanisms, we have developed a new algorithm
ProTECT (i.e. PROtein-protein interactions of Tran-
scription factors predicting Enhancer Contacts with
Target genes). In addition to cell-type specific multi-
omics data, ProTECT (https://github.com/wangjr03/PPI-
based prediction enh gene links) further integrates the
information of PPIs between transcription factors as
new features, because TF PPIs have been found to be
functionally associated with the regulation of chromatin
loops (1–5,10,12,13,23). The major steps of ProTECT are
summarized in Figure 1E. By creating balanced training
sets with confounding factors systematically controlled,
ProTECT is trained on cell-type specific chromatin in-
teractions linking distal enhancers and gene promoters.
The high-dimensional TF PPI features are hierarchically
grouped into feature modules based on a novel graph-
based dimension reduction approach. This approach can
simultaneously control the overfitting risk and also reveal
the cooperative complexes of TF interactions. Our model
demonstrated substantially improved accuracy based on
a series of rigorous performance evaluations. Along with
genome-wide enhancer–promoter interaction predictions,
ProTECT also identifies the key TF PPIs involved in
chromatin interaction mediation and prioritizes specific
gene sets whose expressions are regulated by distinct TF
PPIs.

Chromatin contact maps and multi-omics datasets

ProTECT can take different types of chromatin contact
maps as input data (Figure 1E), such as Hi-C (29), Cap-
ture Hi-C (30) and ChIA-PET (33). In this study, we used
the significant high-resolution Hi-C interactions from hu-
man GM12878 and K562 (GEO: GSE63525) (29) to train
models for the two cell-lines separately. Enhancer-promoter
pairs are labeled as positive samples if overlapping with Hi-
C interactions, or are labeled as negative samples otherwise.

Enhancer coordinates are based on Roadmap and EN-
CODE enhancer annotations (16,17). Cell-type specific
enhancer activities in GM12878 and K562 cell-lines are
quantified using the cell-type specific DNase-seq signals
(17). Other enhancer-associated histone marks, such as
H3K27ac or H3K4me1 ChIP-seq data, can also be used
to represent enhancer activities and have been found to
produce similar predictions in our testing (see Results).
Promoters of genes are defined as ±1 kb around tran-
scriptional start sites (TSS), based on gene annotations

https://github.com/wangjr03/PPI-based_prediction_enh_gene_links
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from GENCODE v17 (68). Cell-type specific gene expres-
sions are measured by RPKM values of RNA-seq dataset
from Roadmap Epigenomics project (17). Correlation coef-
ficients are calculated for enhancer-gene pairs across diverse
cell-types (16,17) based on the same set of RNA-seq data for
genes and DNase-seq data for enhancers.

The ChIP-seq datasets of transcription factor (TF) bind-
ings in GM12878 and K562 are collected from ENCODE
separately (16). For each TF, if multiple datasets exist, one
ChIP-seq dataset is selected based on data quality eval-
uations (Supplementary Methods). In total, 129 TFs in
GM12878 and 270 TFs in K562 cell-lines are included in
the analysis (Supplementary Figure S1A). The significant
narrow peaks identified by MACS2 (69) are used to label
whether a TF binds to a specific genomic location (Fig-
ure 1E). Detailed information of all datasets (i.e. TF ChIP-
seq, epigenomic signals, transcriptomic data and chromatin
contact maps) are summarized in Supplementary Table S1.

The protein–protein interaction dataset is collected from
the STRING database v11 (67). To remove low-quality
PPIs, only PPIs with confidence scores greater than 100
in the ‘Experiments’ category are included into the analy-
sis. Multiple PPI confidence score thresholds (e.g. 200 and
300) are also tested, which produce similar predictive per-
formance (see Results). The high-quality PPIs are then sum-
marized into a matrix and represented as a PPI network,
where every node corresponds to a protein and every edge
corresponds to a protein–protein interaction. To account
for the intratypic dimerizations of TFs from the Nuclear
Receptor (NR), bHLH and bZIP families, these PPI edges
are removed from the PPI network (70) (Supplementary Ta-
ble S2), because they can only bind locally as dimers. The
nodes are further classified into two types: (i) TF protein
nodes and (ii) non-TF protein nodes. For edges connect-
ing two TF nodes, i.e. TF–TF PPIs, if both TFs are ex-
pressed in the specific cell-type, then the TF–TF PPI is con-
sidered as active. Therefore, cell-type specificity is assigned
for every TF–TF PPI. non-TF protein nodes are maintained
in the PPI network because they are useful to identify in-
direct TF–TF interactions mediated by non-TF proteins,
leading to the discovery of TF PPI modules in subsequent
steps.

Generation of the training dataset and the matrix of features

In a specific cell-type, enhancer–promoter pairs that over-
lap with significant Hi-C interactions (29), i.e. the enhancer
of the pair overlaps with one of the Hi-C interaction an-
chors and the promoter overlaps with the other anchor,
are labeled as positive samples of enhancer–promoter in-
teractions. As reported by previous studies (35,71,72), the
data quality of Hi-C interactions whose anchors are lo-
cated in different topologically associated domains (TADs)
are substantially reduced. Therefore, we remove cross-TAD
interactions from the analysis, and only use intra-TAD
enhancer–promoter interactions, i.e. the interacting en-
hancer and promoter are located in the same TAD, to train
the model.

To avoid biased model training and inflated performance
evaluations, we generate a balanced negative set of train-
ing samples by randomly selecting the same number of

enhancer–promoter pairs that do not overlap with Hi-C
interactions. In addition, as pointed out by recent bench-
mark studies (50), predictions of enhancer–promoter in-
teractions can be substantially biased due to uncontrolled
confounding factors. Thus, in the process of generating the
balanced random set of negative samples, we strictly con-
trol three key confounding factors that have been found
to influence the model (Figure 1E): (i) the negative sam-
ples of enhancer–promoter pairs should be intra-TAD pairs
(Supplementary Figure S1B); (ii) the genomic separation
distances between the enhancers and promoters follow the
same distance distribution of the positive training set. Un-
controlled genomic distances have been found to substan-
tially dominate the models and result in simple short-range
predictions, leading to inflated performance (50,51). Us-
ing the positive training set of enhancer–promoter pairs,
we group them into different genomic distance bins. For
each distance bin (bin-size = 50 kb), we sample the same
number of negative enhancer–promoter pairs as observed
from the positive set. Therefore, the genomic distance is
controlled and the final predictions will not be driven by
genomic distances alone (Supplementary Figure S1C, 1D).
(iii) The negative enhancer–promoter pairs are sampled for
genes which are actively transcribed (Supplementary Fig-
ure S1E, F). As demonstrated by previous studies (73), the
false negative rates of Hi-C datasets are substantially lower
in actively transcribed genomic regions, i.e. more enhancer–
promoter interactions can be mapped by Hi-C in active re-
gions compared to repressive genomic regions. To account
for this intrinsic bias of Hi-C data, we restrict the sampling
of negative enhancer–promoter pairs only from genes whose
cell-type specific expression is nonzero (RPKM > 0). By
controlling these three key sets of confounding factors, we
thus construct the rigorous balanced training dataset for
robust model training and performance evaluation. In to-
tal, the balanced training dataset contains 5348 enhancer–
promoter pairs in GM12878 and 8650 enhancer–promoter
pairs in K562.

Based on the cell-type specific multi-omics datasets, the
matrix of features are then constructed for enhancer–
promoter pairs in the training dataset (Figure 1E). There
are three types of features incorporated into the model: (i)
activity-based features; (ii) genomic distance and (iii) TF
PPI features. Activity-based features include (i) cell-type
specific enhancer activity measured by DNase-seq signals
as described above (17); (ii) cell-type specific gene expres-
sion measured by RNA-seq (17) and (iii) the activity cor-
relations between enhancers and their paired genes calcu-
lated from diverse cell-types profiled in the ENCODE and
Roadmap Epigenomics projects (16,17). All these activity-
based features are differentially distributed across positive
and negative training sets, suggesting they are informative
to make predictions (Supplementary Figure S2A–C). For
each enhancer-gene pair, the genomic distance is calculated
as the distance between the center of the enhancer and the
gene’s TSS. Although they have been controlled in the posi-
tive and negative training sets based on genomic bins, there
might be residue distance bias within bins. Therefore, the
inclusion of genomic distances into the feature matrix cap-
tures the residue effects of genomic distances, leading to ro-
bust feature prioritization in subsequent analyses.
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TF PPIs are the most important set of features for the
model because of both the mechanistic relationship with
long-range regulation (58,59,74) and their significant en-
richment in enhancer–promoter interactions (Figure 1B, C
and Supplementary Figure S2D). In each specific cell-type
(i.e. GM12878 or K562 cells), all TFs with available ChIP-
seq datasets are collected as described above and compared
with the PPI database (67). From the pool of all candidate
pairs, the TF–TF pairs that are capable of forming direct
PPIs are considered as TF PPIs. Considering the differences
of binding sites in enhancers or promoters, each TF PPI
pair is allocated with two directional features. For example,
TFa–TFb represents the PPI between enhancer-binding TFa
and promoter-binding TFb, while TFb–TFa represents the
PPI between enhancer-binding TFb and promoter-binding
TFa. Thus, a set of directional TF PPI features is gener-
ated. Because the features are generated only for TFs with
cell-type specific ChIP-seq signals, PPIs between TFs that
are not active in the specific cell-type do not participate
in the predictions. Enhancer-promoter pairs are scanned
for TF binding peaks in enhancers and promoters. For
each enhancer–promoter pair, if TFa binds to the enhancer
and TFb binds to the promoter, then the directional PPI
feature TFa–TFb is labeled as 1. Therefore, a matrix of
TF PPI features is constructed for all enhancer–promoter
pairs. Combining with the activity-based features and ge-
nomic distances, the full matrix of features is then built
(Figure 1E).

Hierarchical TF community detection on the PPI network

Due to the large number of TF PPI features, dimension
reduction is fundamentally important for the construction
of robust predictive models. Without dimension reduction,
there are 1888 TF PPI features in GM12878 and 7066 TF
PPI features in K562 cells. Although a number of TF PPIs
are enriched in enhancer–promoter interactions (Figure 1B
and C), direct incorporation of these TF PPI features makes
the model to be over-complicated, leading to poor general-
ization of predictions. To illustrate the significant overfitting
issues of direct incorporation of high-dimensional TF PPI
features, a basic random forest model is used to test the per-
formance in GM12878 (29). The features include the activ-
ity correlations between enhancers and genes, genomic dis-
tances and 1888 active TF PPI features. Although the reg-
ular 5-fold cross-validation shows an AUC of 0.89, a rigor-
ous genomic-bin split cross-validation (see subsequent sec-
tions on cross-validation) shows the unbiased AUC as 0.55,
suggesting strong overfitting problems without advanced
feature dimension reductions (Supplementary Figure S3).
Thus, a novel predictive model is needed for predicting long-
range enhancer–promoter interactions based on PPI fea-
tures among transcription factors.

To address the over-fitting problem, we substantially re-
duce the feature dimensions by hierarchically grouping in-
dividual TF PPIs into TF PPI modules based on the topol-
ogy of the PPI network, while maintaining the predictabil-
ity of the model (Figure 1E). TF PPI modules represent
densely connected groups of TFs in the PPI network, and
they are hierarchically organized where smaller PPI mod-

ules merge together to form larger modules (Supplemen-
tary Figure S4). Biologically, using TF PPI modules as
features is consistent with the regulatory mechanisms of
long-range chromatin loops, because multiple TFs usu-
ally interact with each other as protein complexes. Empir-
ically, the biological relevance of TF PPI modules is also
supported by the data. As can be seen in Supplementary
Figure S5, similar to individual TF–TF pairs, a specific
subset of TF modules are strongly enriched in enhancer–
promoter Hi-C interactions and are strongly supported
by PPI connections (P-value = 1.39 × 10–2, permutation
test).

TF PPI modules are computationally identified from the
PPI network (67) using a random-walk based network-
community detection approach. The PPI network, includ-
ing non-TF protein nodes, is modeled as an undirected
weighted graph, where the weights on edges are the ‘Ex-
periment’ PPI scores from the STRING database (67).
Define W as the adjacency matrix of the PPI network,
and define the diagonal degree matrix D as Dii = ∑

j
Wi j .

Hence, based on the stochastic model of random-walks on
graphs (75), the 1-step transition probability from node i
to node j is Wi j

Dii
, and the p-step transition matrix Transp

can be calculated as Transp = (D−1 ∗ W)P. Based on the
p-step transition matrix, the pairwise distance matrix be-
tween TFs (denoted as R) can be further calculated as: R =
diag(G)t ∗ 1 + 1t ∗ diag(G) − 2G, where G = Transp ∗
Transp

t. Each entry in the matrix R quantifies the dis-
tance between a pair of TFs based on the PPI network
structure. Hierarchical clustering is then applied to the pair-
wise distance matrix R to identify hierarchical PPI mod-
ules of TFs (Figure 1E). ‘wald’ method is used in the hi-
erarchical clustering as suggested by previous studies of
network-community detections (76). By testing multiple
values (Supplementary Figure S4A and 4B), p is set to be
20 in order to balance the detection of both local (i.e. small-
size) and global (i.e. large-size) modules (Supplementary
Methods).

In the constructed hierarchical clustering tree, the leaf
nodes are individual TF PPIs. By applying the bottom-up
merging strategy on the tree, individual TF PPIs are first
grouped into small-size PPI modules, i.e. S-modules, with
the maximum size of Smax. S-modules represent densely
connected TFs in the PPI network, corresponding to can-
didate protein complexes. S-modules are further merged to
form large-size PPI modules, i.e. L-modules, with the max-
imum size of Lmax. L-modules represent larger PPI net-
work components that cover multiple densely connected
S-modules. Biologically, L-modules represent candidate
groups of highly interacting protein complexes. The max-
imum sizes for S-modules (Smax) and L-modules (Lmax)
are selected based on the modularity score of the cluster-
ing (77) (Supplementary Figure S4, Supplementary Meth-
ods). The modularity score Q is defined as Q = 1

2m ∗∑
i j

(Wi j − ki kj

2m ) ∗ δ(ci , c j ) where W is the adjacency matrix,

ki is the degree of node i , m is the total number of edges
in the PPI network (m = 1

2

∑
i

ki ), and ci is the member-
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ship assignment to modules for node i . Modularity scores
are extensively calculated for different choices of maximum
module sizes (Supplementary Figure S4C and D), because
the choice of specific maximum module sizes automatically
determines the total number of modules and results in the fi-
nal module membership assignments. The optimal size of S-
modules is selected as the one yielding the maximum modu-
larity score, which guarantees that the generated S-modules
represent densely connected TF groups. The optimal size of
L-modules is selected as the one corresponding to the elbow
point of modularity score curves, leading to the delineation
of large-scale PPI components without significant loss of
modularity. Compared to Markov Cluster Algorithm, the
PPI modules from our approach demonstrate higher modu-
larity scores and larger module sizes (Supplementary Figure
S6), which is desired for feature dimension reductions. Us-
ing this procedure, a two-layer hierarchical modular struc-
ture is finally built and each individual TF PPI is assigned
with the memberships belonging to a specific S-module and
a specific L-module.

Based on the TF PPI module assignments, individual
TF PPI features (i.e. direct TF–TF PPIs) are merged into
module-level PPI features, and, therefore, the feature matrix
of TF PPIs are restructured accordingly (Figure 1E). There
are two types of module-level PPI features: (i) intra-module
features, which include all S-modules and L-modules. The
intra-module features cover PPIs between TFs within the
same modules. (ii) inter-module features, which include in-
ter S-module features and inter L-module features. The
inter-module features cover PPIs linking TFs from two dif-
ferent modules. Given a pair of S-modules, e.g. S-module a
and S-module b, if there exists a TF member from S-module
a that has PPI with a TF member from S-module b, then the
pair of S-modules a and b is included into the feature matrix
as one inter S-module PPI feature. The inter L-module PPI
features are defined in the same way by checking PPIs of
TF members from two L-modules. Each inter-module fea-
ture is further split into two directional features, depend-
ing on the binding sites of TF members in enhancers and
promoters. Using this approach, the PPI features are sub-
stantially reduced. For example, the 1,888 individual TF
PPI features are reduced to only 78 module-level PPI fea-
tures in GM12878 and the 7066 individual TF PPI features
are reduced to only 238 module-level PPI features in K562
cells.

The training set of enhancer–promoter pairs are then
scanned for module-level PPI features. For each specific
enhancer–promoter pair, based on the counts of individual
TF PPI features calculated in the previous step, the counts
of module-level PPI features are generated depending on the
module memberships of TFs (Figure 1E). For each module-
level PPI feature, if multiple TF PPI features are found for
an enhancer–promoter pair, the maximum count is used for
the module-level feature. Although the number of features
is substantially reduced after using module-level PPIs, the
specific PPI information is still maintained in this proce-
dure, as shown in Supplementary Figure S5. It suggests that
the module-based dimension reduction does not cause the
loss of information, while substantially reducing the risk of
over-fitting.

Predictive model of long-range enhancer–promoter interac-
tions

Random forest model is used to predict cell-type specific
long-range enhancer–promoter interactions based on the
feature matrix constructed above, after module-based di-
mension reduction (Figure 1E). Random forest model is
selected due to its superior performance of handling non-
linear feature dependency and its capability of prioritizing
the key set of important features for subsequent biological
interpretations. As a free model parameter, the number of
decision trees in the model is extensively tested with differ-
ent values, and the accuracy of predictions is found to be
robust (Supplementary Figure S7).

Additionally, to quantitatively demonstrate the contribu-
tions from TF PPIs, we train random forest models based
on two versions of input features: (i) the model is trained
using only activity-based features and genomic distances;
and (ii) the full set of features including module-level TF
PPI features. The Area Under Curve (AUC) values of cross-
validations are calculated for the two versions. The in-
creased AUC from version 2 is the quantitative measure-
ment of the additional information contributed from TF
PPIs that is not encoded in activity-based or genomic dis-
tance features.

Feature selection

In the random forest model, the backward feature elimi-
nation approach is used to select useful module-level TF
PPI features, where the features with the minimum impor-
tance are recursively eliminated from the model. Further-
more, the statistical significance of the directions of TF PPI
features are evaluated. As described in the previous section,
every module-level PPI feature is split into a pair of two di-
rectional features, based on the binding sites of TFs in en-
hancers or promoters. For example, the feature module a–
module b represents the PPI between an enhancer-binding
TF member from module a and a promoter-binding TF
member from module b. Reversely, the feature module b –
module a represents the PPI between an enhancer-binding
TF member from module b and a promoter-binding TF
member from module a. Based on the statistical evaluation
of the feature directions, insignificant directional features
are merged into un-directional features. This feature merg-
ing procedure not only reduces the number of features but
also reveals the biological roles of TF bindings in the con-
text of different binding orientations.

The determination of whether a pair of directional TF
PPI features to be merged into an un-directional fea-
ture is a model selection problem. While Akaike Infor-
mation Criterion (AIC) has been a widely used met-
ric for parametric models, it can not be applied to ran-
dom forest models, which are non-parametric. Instead, we
use the Generalized Degrees of Freedom (GDF) method
to calculate a relaxed AIC (78) for the random forest
model. GDF is a metric to evaluate the degrees of free-
dom for Bernoulli distributed data, e.g. the binary labels
for enhancer–promoter interactions. And it is defined as
G DF ≈ ∑

i
(̂yi

′ − ŷi )/(y′
i − yi ), where yi is the observed
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label for data point i , y′
i is the perturbed label by invert-

ing yi , i.e. yi
′ = 1 − yi , ŷi is the predicted label from the

model using the unperturbed yi , and ŷi
′ is the predicted la-

bel from the model using the perturbed yi
′. As suggested by

previous studies (78), to calculate GDF, 20% samples are
simultaneously perturbed. The relaxed AIC of random for-
est models are then estimated as AIC = −2lm + 2G DF +
G DF(G DF + 1)/(N − G DF − 1), where N represents the
total number of data points and lm represents the goodness-
of-fit of the random forest model. As suggested by previous
analyses (78), lm is calculated as the averaged R2 value from
5-fold cross-validations.

For each pair of directional TF PPI features, the relaxed
AIC metrics are calculated before and after they are merged
into an un-directional feature. If a smaller AIC is observed
by merging the two directional features, the model with
the merged un-directional feature is then selected, because
the reduced AIC suggests the directions of the pair are not
statistically important. This procedure is conducted for all
pairs of directional TF PPI features, and a final random for-
est model with the selected features is built. In GM12878
cells, the number of module-level TF PPI features is reduced
to 53 from 78. In K562 cells, the number is reduced to 139
from 238. This feature selection process further boosts the
generalizability of our model and improves the biological
interpretations of the learned TF PPI features (i.e. direc-
tional or un-directional).

Cross-validation and performance comparison

To evaluate the performance of our model, i.e. area un-
der curve (AUC), we designed a stringent strategy of 5-
fold cross-validation. As highlighted by previous studies
(50,51), multiple factors have been found to substantially
inflate the performance evaluations and cause overfitting
problems. First, the confounding factors (i.e. TAD domain
structures, genomic distances between enhancers and pro-
moters, and gene expression levels) need to be controlled.
Otherwise, the performance will be biased and dominated
by confounding factors. We addressed this issue in the
step of data generation as described in previous sections.
Negative samples are randomly generated with the con-
founding factors controlled to have the same distributions
as seen from the positive samples. Second, inflated cross-
validation AUC can be found due to the spatially proxi-
mal enhancer–promoter pairs across the training and test-
ing datasets (50,51). Because TF binding profiles are highly
correlated among enhancers and promoters in neighboring
genomic regions, proximal enhancer–promoter interactions
that are allocated in the testing set will substantially inflate
the accuracy. Therefore, random splits of samples based on
typical cross-validation may suffer from the dependency of
spatially proximal samples allocated in both training and
testing sets, as has been noted in previous studies (50,51). To
address this issue, we developed a genomic bin-split cross-
validation approach (Figure 1E). In this approach, the hu-
man genome is first divided into consecutive 1Mb bins. In
each of the 5-fold cross-validation steps, 80% of the genomic
bins are selected as training bins. And the balanced and con-
founding factor controlled samples of enhancer–promoter
pairs from the training bins are used to train the random

forest model. The remaining 20% bins are selected as testing
bins, and the samples of enhancer–promoter pairs from the
testing bins are used to test the model. Using this genomic
bin-split cross-validation method, the dependency between
training and testing samples are broken and the model per-
formance can be rigorously quantified.

The performance of our model, ProTECT, is compared
with two most recent supervised methods that also leverage
TF information: IM-PET (45) and TargetFinder (46). In ad-
dition to activity-based features and genomic distances, IM-
PET and TargetFinder also includes the TF binding fea-
tures in enhancers and promoters, while TargetFinder fur-
ther incorporates TF binding information in the genomic
windows between enhancers and promoters. By comparing
with these two algorithms, we can further demonstrate the
improved accuracy is obtained purely from the unique fea-
tures of our model, i.e. the PPIs between TFs.

The stand-alone package of IM-PET (https://github.
com/tanlabcode/IM-PET) is applied to the same dataset.
Since IM-PET automatically makes predictions for all
enhancer-gene pairs with distances <2 Mb, only the
enhancer-gene pairs overlapping with the dataset are used
for performance evaluation, leading to a fair comparison
for IM-PET. The TargetFinder software (https://github.
com/shwhalen/targetfinder) is also implemented to the
same training and testing dataset. The same set of TF ChIP-
seq peaks are used to generate the window related features
for TargetFinder. 5-fold cross-validation with the same ge-
nomic bin-split strategy is applied to remove the potential
issues of inflated performance evaluations.

In addition, to quantitatively demonstrate that the im-
proved accuracy of ProTECT is indeed contributed by TF
PPI features, we randomly permute the PPIs between TFs,
with the degree of each TF in the PPI network unchanged.
Furthermore, for every TF, the specific binding sites in en-
hancers and promoters are also maintained. Therefore, only
the TF PPI features are shuffled across enhancer–promoter
pairs. The same model training and evaluation procedure
are then applied on the permuted dataset. The resulting
AUC is then compared to the model trained on the orig-
inal dataset. This comparison provides direct evidence on
the contributions of TF PPIs to chromatin interaction reg-
ulation.

Genome-wide prediction of long-range enhancer–promoter
interactions

The trained ProTECT algorithm is applied to all enhancer–
promoter pairs with genomic distances <2 Mb across the
whole human genome to make genome-wide predictions of
cell-type specific enhancer–promoter interactions (Figure
1E). The features for each candidate enhancer–promoter
pair are generated in the same way as described in previous
sections. By applying the trained random forest classifier,
every candidate enhancer–promoter pair is assigned with a
predicted score of interacting with each other. To derive un-
biased estimates of the statistical significance for the scores,
i.e. P-values, a null distribution of the scores is generated
by permuting the feature matrix across enhancer–promoter
pairs. This permutation approach effectively maintains the
overall abundances of different features in the shuffled

https://github.com/tanlabcode/IM-PET
https://github.com/shwhalen/targetfinder


Nucleic Acids Research, 2021, Vol. 49, No. 18 10355

dataset. Based on the null distribution, the P-value for each
enhancer–promoter pair is then calculated.

Unlike the phase of model training, where the genomic
distances are controlled in order to learn specific TF PPI sig-
natures, the phase of genome-wide predictions requires the
incorporation of genomic distance information. As shown
by chromatin contact maps, e.g. Hi-C datasets, enhancer–
promoter pairs with shorter genomic separation distances
have higher probability to interact and the probabilities de-
cay as the distances increase (Supplementary Figure S1C).
To statistically incorporate the genomic distances based on
this prior knowledge, we use the pFDR algorithm (79) to
transform P-values into distance-aware q-values. In pFDR,
the distribution of distances between Hi-C linked enhancers
and promoters is treated as prior probabilities of interac-
tions for enhancer–promoter pairs. Based on Hi-C data,
ProTECT divides the range of distances into consecutive
20 kb bins, and the prior probability of interactions for each
distance bin is calculated as:

πi = 5% ∗ (number of signi f icant Hi − C in bini )/
(number of signi f icant Hi − C in bin1) , where πi
is the prior probability for distance-bin i . The prior
probability for bin 1 (i.e. the shortest distance bin)
is set to be the default 0.05. The pFDR under rejec-
tion region [0, γ ] in distance-bin i is then calculated as
pF DR(γ ) = πi Pr (P ≤ γ |H = 0)/Pr (P ≤ γ ) =
πiγ /Pr (P ≤ γ ), where P represents the P-value for each
enhancer–promoter interaction. P follows the uniform
distribution under the null hypothesis, i.e. H = 0, so that
Pr (P ≤ γ |H = 0) = γ . Pr (P ≤ γ ) can be estimated

by P̂r (P ≤ γ ) = (
N∑

j = 1
δ(Pj ≤ γ ))/N, where Pj is the

P-value for the enhancer–promoter interaction j , N repre-
sents the total number of P-values, and δ(x) equals to 1 if
x is true and equals to 0 otherwise. Therefore, the q-values
can be calculated as Q(P) = in fγ>P(πiγ /P̂r (P ≤ γ )),
which combines the information from both the distance-
aware prior probabilities (πi ) and the P-values from the
random forest model (P). Based on the q-value threshold
of 0.05, the final genome-wide predictions of significant
enhancer–promoter interactions are obtained.

Feature interpretation for mechanistic insights

Using the trained random forest model of ProTECT, we
evaluate and rank the importance of features, i.e. the
module-level PPI features in the model. The top-ranking
module-level PPIs are considered as important features,
which represent putative protein complexes that may reg-
ulate chromatin interactions. Furthermore, in order to ob-
tain detailed mechanistic understandings of important PPIs
between specific TFs, we decode the module-level PPI fea-
ture importance into TF-level PPI feature importance. For
each prioritized module-level PPI feature, we decompose it
into individual TF–TF PPI features, i.e. specific PPIs be-
tween an individual enhancer-binding TF and an individ-
ual promoter-binding TF. Then the genome-wide predic-
tions of enhancer–promoter interactions are scanned, and
the fractions of predictions that contain the specific TF-
level PPI features are calculated. The fractions scanned
from genome-wide predictions are highly correlated with

the fractions calculated from the Hi-C training samples in
model training, and are more robust, given the larger pool
of genome-wide enhancer–promoter pairs (see Results). Us-
ing the fractions, the top-ranking TF-level PPI features are
thus identified for each important module-level PPI fea-
ture. The prioritized features, both module-level and TF-
level, shed light on new biological insights on long-range
enhancer regulation.

Pathway enrichment analysis for genes regulated by specific
TF PPIs

To investigate whether chromatin interactions mediated by
different TF PPIs may participate in distinct biological
pathways, we classify genes based on the specific TF PPI
features involved in their interactions with enhancers. For
each top-ranking module-level PPI feature, we first iden-
tify the top five TF-level PPI features using the method de-
scribed above. Then, we scan the genome-wide predictions
of enhancer–promoter interactions and collect the subset of
interactions that contain at least one of the top five TF-level
PPI features. Finally, the subset of interactions are ranked
by their q-values, and the top 1000 genes regulated by these
interactions are selected. In this way, the prioritized sub-
set of genes represent strong targets of long-range enhancer
regulation mediated by the important TF PPIs. Gene On-
tology enrichment analyses are performed on different gene
sets using DAVID (80) to check whether they are enriched
with specific biological pathways.

cis-eQTL enrichment analysis for predicted long-range
enhancer–promoter interactions

As the orthogonal information to validate the accuracy
of genome-wide predictions made by ProTECT, cis-eQTL
datasets from the matched human tissues and cell-types
are compared with the predicted enhancer–promoter in-
teractions. Because our genome-wide predictions are made
in human GM12878 and K562 cells, we selected four
eQTL datasets (81–84) which were profiled from either
whole blood tissues or lymphoblastoid cells. A predicted
enhancer–promoter interaction is considered to be sup-
ported by a cis-eQTL (i.e. a significantly associated SNP-
gene pair), if the enhancer contains the SNP and the pro-
moter matches with the gene. For each eQTL dataset, the
fraction of predicted enhancer–promoter interactions that
are supported by cis-eQTLs is calculated, and is compared
to two versions of negative controls. The first version of neg-
ative control is based on random pairing enhancers with
promoters that are within 2 Mb distances. The second ver-
sion of negative control further requires the genomic dis-
tances of random enhancer–promoter pairs follow the same
distribution from our predicted enhancer–promoter inter-
actions. Therefore, the second version is a more stringent
control. For each version, 1000 random samples are gen-
erated. And the statistical significance, i.e. P-values, of the
observed overlapping fractions from our predictions is cal-
culated as the portion of random samples showing a higher
overlapping fraction than the real observed one.

In addition to cis-eQTLs, we also use cis-hQTLs, i.e. his-
tone QTLs, to evaluate the accuracy of our predictions. The
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hQTL dataset was also profiled from the human GM12878
cells (85). Similarly, a predicted enhancer–promoter inter-
action is considered to be supported by a cis-hQTL (i.e. a
significantly associated SNP-histone pair), if the enhancer
contains the SNP and the promoter overlaps with the hi-
stone modification peak. The overlapping fraction is also
compared with the two versions of negative controls to jus-
tify the enrichment of cis-hQTLs in support of our predic-
tions.

cis-eQTL enrichment around TF binding sites

For cis-eQTLs that overlap with predicted enhancer–
promoter interactions, the genomic locations of the SNPs
from cis-eQTLs are further compared with TF binding sites
within enhancers. Here, the TF binding sites are defined as
the ChIP-seq peak summits. For each enhancer included in
this analysis, the TFs involved in important PPI features
prioritized from the previous steps are selected. The ge-
nomic distances between the SNPs and the binding sites of
these TFs are calculated. To statistically test whether the
SNPs are closer to these important PPI-related TFs, two
versions of random controls are generated. The first ver-
sion is generated by randomly sampling binding sites of any
TFs within the same set of enhancers. And the second ver-
sion is generated by randomly sampling binding sites of TFs
that are members of bottom-ranking PPI features, based on
feature importance calculations from the previous sections.
For each version of negative controls, P-values are calcu-
lated using Kolmogorov–Smirnov tests by comparing the
cumulative distributions of distances.

trans-eQTL enrichment analysis for enhancer-mediated TF–
gene pairs

Compared to cis-eQTLs, trans-eQTLs can provide addi-
tional evidence to support the functional associations be-
tween the prioritized TFs and specific genes, where the TF’s
PPIs are predicted to mediate enhancer–promoter interac-
tions of the target genes. For enhancer-binding TFs that are
members of the important PPI features, we first collect the
predicted enhancer–promoter interactions mediated by the
corresponding PPI features. Genes regulated by these pre-
dicted interactions are thus considered as the downstream
target genes of the specific enhancer-binding TFs. We de-
fine this relationship as enhancer-mediated TF–gene pairs.
To exclude the possibility of promoter-mediated effects, we
remove the genes whose promoters are also bound by the
specific TF.

Using the trans-eQTLs from the published database (86),
we identify a subset of trans-eQTLs whose SNPs are lo-
cated within TF’s gene bodies (plus –10 kb from TSS) and
target genes are covered in our input dataset. For this spe-
cific subset of trans-eQTLs, the SNPs are likely to disrupt
the transcription of the TF genes, which in turn affects the
TF’s regulation on the downstream target gene’s expression
(Supplementary Methods).

Hypergeometric test is used to statistically test whether
the enhancer-mediated TF–gene pairs significantly overlap
with the subset of trans-eQTLs described above. A TF–gene
pair is considered to overlap with a trans-eQTL if the SNP is

located within the TF’s gene body and the gene is the same
as the trans-eQTL’s target gene. As comparisons, two ver-
sions of controls are generated based on the same set of TFs
and enhancers. The first version uses the nearest genes to the
enhancers as target genes, instead of using ProTECT’s pre-
dictions. The second version randomly selects genes within
2 Mb distances as target genes. In each version, the same
number of enhancer–promoter interactions are generated as
seen from the foreground for each sample, and totally 1000
random samples are created, along with the hypergeometric
P-values.

RESULTS

Long-range enhancer–promoter interaction prediction based
on PPIs among TFs

As discovered by recent experimental studies (4–6,8–
13,58,59), the protein–protein interactions between spe-
cific transcription factors have been found to participate
in the regulation of long-range chromatin loops, where the
TFs bind to enhancers and promoters respectively (Fig-
ure 1A). The PPIs between the enhancer-binding TFs and
promoter-binding TFs facilitate the 3D proximity of en-
hancers and the target gene’s promoters. By analyzing the
Hi-C interactions between enhancers and promoters in hu-
man GM12878 cells, a specific set of TF–TF pairs are
found to be enriched in enhancer–promoter interactions
(Figure 1B), compared to their frequencies in distance-
controlled random enhancer–promoter pairs. Interestingly,
these TF–TF pairs are also enriched with known PPIs (Fig-
ure 1C, P-value = 10–3), suggesting that the TFs within each
pair can establish interactions at the protein level. Figure
1D shows two examples, where both enhancer–promoter
Hi-C interactions contain enhancer-binding CTCF peaks
and promoter-binding RUNX3 peaks. And the physical
interaction between RUNX3 and CTCF is validated by
the PPI database STRING (67), suggesting the RUNX3-
CTCF interaction as a putative mechanism linking the en-
hancers with specific promoters. These observed enrich-
ments strongly indicate the functional importance of TF
PPIs in long-range chromatin loops and the possibility
of predicting cell-type specific enhancer–promoter interac-
tions using TF PPI features.

Due to the large number of TF PPI features, i.e. PPIs
between enhancer-binding TFs and promoter-binding TFs,
basic predictive models significantly suffer from overfitting
problems, as shown in Supplementary Figure S3. Therefore,
to efficiently leverage the information of TF PPIs from the
high-dimensional feature space and overcome the overfit-
ting risks, we developed a new machine learning classifier,
ProTECT, to predict cell-type specific long-range enhancer–
promoter interactions (Figure 1E). Detailed algorithmic de-
signs have been described in Materials and Methods. Over-
all, there are four main steps to achieve the final predictions:
(i) generation of the balanced Hi-C based training dataset,
along with cell-type specific TF PPI features; (ii) dimension
reduction of features based on hierarchical network com-
munity detection; (iii) predictive model construction using
random forest and (iv) Genome-wide predictions of cell-
type specific enhancer–promoter interactions.
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As a new predictive model, here we highlight a series of
key novelties of ProTECT (see Materials and Methods for
details). First, a rigorous method of controlling confound-
ing factors, such as TAD domains, genomic separation dis-
tances and gene expression levels, is designed in the steps
of data and feature generations. This method efficiently re-
moves the impacts of confounding factors, which are funda-
mentally important to control as discussed by recent bench-
mark analyses (50,51). Second, the graph-based dimension
reduction approach not only addresses the potential risk of
overfitting but also facilitates the prioritization of function-
ally important TF PPIs and TF complexes. Third, a gen-
eralized degree of freedom (GDF) technique (78) is incor-
porated to improve feature selections, leading to new bio-
logical understandings of specific TFs. Fourth, a stringent
genomic bin-split cross-validation strategy is developed for
unbiased and robust performance evaluation. This strin-
gent strategy thoroughly breaks the dependency between
the training and testing datasets and avoids the inflated per-
formance estimations that have been commonly found in
existing methods (50,51). Fifth, a genomic distance-aware
pFDR procedure (79) is implemented to identify statisti-
cally significant enhancer–promoter interactions along the
whole human genome.

We trained ProTECT using the high-resolution Hi-C
datasets from the human GM12878 and K562 cell-lines
separately (29). The balanced and confounding factor-
controlled training dataset contains 5,348 long-range
enhancer–promoter interactions in GM12878 and 8650 in-
teractions in K562 cells. The trained classifiers were fur-
ther applied to make genome-wide cell-type specific pre-
dictions of enhancer–promoter interactions. As shown in
subsequent sections, the ProTECT algorithm not only im-
proves the prediction accuracy substantially, but also re-
veals novel mechanistic insights on the functional roles of
TF PPIs in the regulation of long-range chromatin loops.
The prioritized TFs and their specific PPIs provide a new
platform to understand the complex interplay among TFs,
enhancers and genes, and remarkably, open a new avenue
to systematically interpret both cis- and trans-eQTLs in hu-
man genetics analyses.

Boosted performance based on features of TF PPIs

Using the genomic bin-split cross-validation strategy (see
Materials and Methods), we rigorously tested the accu-
racy of ProTECT and compared with the other two su-
pervised methods, i.e. IM-PET(45) and TargetFinder (46).
In both GM12878 and K562 cell-lines, ProTECT achieves
the highest performance (Figure 2A and B): AUC = 0.82
in GM12878 and AUC = 0.78 in K562 cells. And the ac-
curacy of ProTECT is robust with respect to the number
of trees used in the random forest models (Supplementary
Figure S7). As comparison, TargetFinder is ranked as the
second algorithm with AUC values below 0.74, while the
AUC metrics of IM-PET is around 0.6. As a baseline com-
parison, a random forest model using only activity correla-
tions between enhancers and genes, without using TF PPI
features, shows AUC values around 0.57. Because we sys-
tematically controlled confounding factors in the training
dataset, the AUC estimates are not dominated or biased by

those factors, especially the genomic separation distances.
Therefore, these comparisons strongly support that the Pro-
TECT model substantially boosts the prediction accuracy
over existing algorithms.

In addition to the overall AUC metrics, to demon-
strate that ProTECT has better capabilities of pinpointing
true enhancer–promoter interactions in top-ranking predic-
tions, we calculated the cumulative odds ratio (OR) of true
positives along the ranked list of predictions. As shown in
Figure 2C and 2D, ProTECT achieves much higher OR
curves than other algorithms, especially in the zone of top-
ranking predictions. Because top-ranking predictions are
the main de novo discoveries used for experimental studies
in practice, this observation further exemplifies the superior
precision of ProTECT.

Moreover, we further evaluated the robustness of Pro-
TECT’s superior performance with respect to different set-
tings of input features and data. As shown in Supplemen-
tary Figure S8, by setting different confidence score cut-
offs on PPIs to be included as input features (i.e. 100,
200 and 300), ProTECT robustly achieves the highest ac-
curacy (AUC > 0.78) compared to other methods. In ad-
dition, using different epigenetic signals to represent cell-
type specific enhancer activity levels, such as DNase-seq,
H3K27ac and H3K4me1, ProTECT demonstrates highly
similar accuracy, with DNase-seq and H3K27ac based ver-
sions slightly better than the H3K4me1 based version (Sup-
plementary Figure S8). Furthermore, we also tested the
performance on imbalanced dataset, where the ratio of
positive-to-negative samples is 0.1, as suggested by previ-
ous studies (45,46). ProTECT consistently shows the best
ROC and Precision-Recall curves (Supplementary Figure
S9). To obtain orthogonal evidence on ProTECT’s accu-
racy, we also used a diverse panel of Hi-ChIP (21,87,88)
and ChIA-PET (16) datasets from the matched cell-types
as gold-standards for enhancer–promoter interactions. Re-
markably, ProTECT maintains the highest accuracy across
all comparisons based on different gold-standard datasets
(Supplementary Figure S10 and 11). Across the five Hi-
ChIP evaluations, ProTECT achieves AUC >0.78, while
TargetFinder and IM-PET only show AUC <0.66. Using
ChIP-PET datasets as gold-standards, ProTECT achieves
AUC >0.84 while other methods demonstrate AUC <0.76.
These tests systematically support the robustness of Pro-
TECT’s performance advantages.

Figure 2E shows one example predicted by ProTECT
in human GM12878 cells. The distal enhancer is located
99.4 kb from the predicted target gene’s promoter, and this
long-range prediction is supported by a cell-type specific
Hi-C interaction (29). Based on the trained random for-
est model, this enhancer–promoter interaction is mediated
by the PPI between the enhancer-binding CTCF and the
promoter-binding RUNX3 (Figure 2E). Interestingly, the
correlation between the enhancer’s activity and the target
gene’s expression across different cell-types is only 0.28,
which strongly suggests the importance of incorporating
TF PPI features in predicting enhancer–promoter inter-
actions. A similar example from K562 is shown in Fig-
ure 2F, where the distal enhancer is located 46kb from
the predicted target gene’s promoter, and is also supported
by a cell-type specific Hi-C interaction (Figure 2F). This
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Figure 2. Performance comparison in GM12878 and K562 cells. ProTECT, TargetFinder, and IM-PET are applied on the same input datasets and are
evaluated based on the averaged performance of 5-fold genomic-bin split cross-validation. As a baseline comparison, a random forest model using only
enhancer-gene activity correlations is also included in the analysis. (A, B) ROC curves in GM12878 (A) and K562 (B). (C, D) The enrichment of Hi-C
interactions in top-ranking predictions. Cumulative odds ratios of true positives (y-axis), i.e. overlapping Hi-C interactions, are calculated across the ranked
lists of predictions where predictions with stronger scores are ranked at the top (x-axis), in GM12878 (C) and K562 (D). (E, F) Examples of enhancer–
promoter interactions predicted by ProTECT (pink paired lines) in GM12878 (E) and K562 (F). In each example, the highlighted enhancer (orange) is
predicted to interact with the highlighted promoter (red) by ProTECT. Both predictions are supported by cell-type specific Hi-C interactions (black paired
lines). The prioritized TF PPIs mediating the interactions are CTCF-RUNX3 (E) and CTCF-ELF1 (F) respectively, both of which are top-ranking PPI
features from the random forest model.
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enhancer–promoter interaction, which only shows an activ-
ity correlation of 0.261, is successfully predicted based on
the PPI between enhancer-binding CTCF and promoter-
binding ELF1. Overall, these results demonstrate that TF
PPI features can improve the delineation of specific in-
teracting enhancer–promoter pairs from neighboring non-
interacting pairs, beyond the information of activity-related
features. In addition, specific hypotheses of the mechanisms
mediating chromatin interactions, i.e. the functional TF
PPIs linking enhancers and promoters, are derived from the
model simultaneously.

To further justify that the superior performance of Pro-
TECT is indeed due to the information from TF PPI fea-
tures, we randomly shuffled the TF–TF connections in the
PPI network (Figure 3A). Therefore, the specific TF bind-
ing sites in enhancers and promoters are strictly maintained
(see Materials and Methods), while the PPI features across
enhancer–promoter pairs are randomized. This shuffling
strategy also controls the degree of PPI partners for each
TF, i.e. the number of protein neighbors in the PPI network.
By training the ProTECT model on the shuffled data, we
found that the accuracy is substantially reduced. The AUC
based on PPI-shuffled data is only 0.68, while the original
AUC of ProTECT is 0.82 in human GM12878 cells (Figure
3B). Similar decrease of performance is also observed in hu-
man K562 cells (Figure 3B). The striking differences of pre-
diction accuracy suggest that the performance improvement
of ProTECT is mainly induced by TF PPI features, instead
of TF binding information, consistent with previous biolog-
ical studies of the functional roles of PPIs in chromatin loop
regulation (64).

To evaluate the model’s dependence on the cell-type
specificity of TF bindings, we swapped the TF ChIP-seq
data across GM12878 and K562, and run ProTECT based
on the swapped data. As expected, the prediction accuracy
decreased in both cell-types (Supplementary Figure S12A
and B), suggesting the necessity of using TF datasets from
the matched cell-types. Interestingly, ProTECT still main-
tains the highest prediction accuracy when other algorithms
are also trained on the swapped TF data, suggesting rea-
sonable generalizability of ProTECT. In addition, to test
the model’s dependence on the number of TFs included
as features, we obtained the intersection subset of TFs
whose ChIP-seq are available in both GM12878 and K562,
and trained ProTECT based on features derived from this
subset. The cell-type specific predictions in GM12878 and
K562 demonstrate similar accuracy (AUC = 0.74 and 0.70,
Supplementary Figure S12C), suggesting additional TFs
are needed in each cell-type beyond the intersection subset.

Genome-wide prediction of long-range enhancer–promoter
interactions

The trained random forest model is then applied to the
genome-wide dataset in GM12878 and K562 cell-lines sep-
arately to predict novel enhancer–promoter interactions
(Supplementary Figure S13A–D). All enhancer–promoter
pairs within 2Mb distance windows are included into
genome-wide predictions (see Materials and Methods), as
suggested by observations from experimental Hi-C datasets
(29). For each enhancer–promoter pair, a P-value from

the permutation test is generated, which is further used
to derive a q-value based on the pFDR approach (79)
(see Materials and Methods). Using the q-value thresh-
old of 0.05, there are totally 60 016 significant enhancer–
promoter interactions predicted in GM12878, and 80 591
significant enhancer–promoter interactions predicted in
K562 (Figure 4A). The median separation genomic dis-
tance between linked enhancers and promoters is 243 kb
in GM12878 (Supplementary Figure S13E), consistent with
enhancer’s function of long-range regulation. In the pre-
dicted GM12878 enhancer–promoter network, >37% of
enhancers regulate multiple genes (Supplementary Figure
S13F), whose accuracy is consistent with the overall per-
formance (Supplementary Figure S14) and 24% of these
multi-gene enhancer links are supported by experimental
chromatin interactions. On average, every gene is regulated
by 6.9 enhancers (Supplementary Figure S13G), suggest-
ing combinations of multiple enhancers are recruited for
precise transcriptional regulation. Similar patterns are also
observed in the predicted K562 enhancer–promoter net-
work (Supplementary Figure S13H–J). Furthermore, the
predicted enhancer–promoter interactions are highly cell-
type specific. By comparing the predictions in GM12878
and K562, only 5815 (∼4.2%) enhancer–promoter interac-
tions are shared by the two cell-types (Figure 4A). Com-
pared to the recent activity-by-contact (ABC) model (89),
our genome-wide predictions demonstrate higher accuracy,
as quantified by both ROC and Precision-Recall curves, us-
ing Hi-ChIP data as gold-standards (Supplementary Figure
S15).

Important protein–protein interactions regulating chromatin
interactions

To gain insights of the underlying mechanisms of linking
distal enhancers to target gene’s promoters, we analyzed
the feature importance of module-level PPI features in-
ferred by the random forest model and further prioritize
the representative TF-level PPI features. We first identified
the top-ranking module-level PPI features, which represent
the protein complexes of interacting TFs involved in chro-
matin loops (Figure 4B and C). For example, in GM12878
cells, module(CTCF)-module(POLR2A) is ranked as the
top third feature (here the module-level features are named
by the most abundant TF-level PPIs linking the modules).
Interestingly, this is consistent with a recent experimen-
tal study (90), which also found that the enhancer-binding
CTCF interacts with the promoter-binding Pol II and par-
ticipates in the regulation of long-range chromatin loops. As
another interesting example, the module-level PPI feature
module(IKZF1)–module(RB1) is one of the top-ranking
features in K562, consistent with their critical functions
in leukemia cells and their impacts on chromatin structure
(91,92). Additional examples of the prioritized module-level
TF PPIs are visualized as PPI networks in Supplementary
Figure S16, showing the complex PPI connectivity between
TF modules binding to enhancers and promoters.

In order to characterize the key PPI features between in-
dividual TFs, instead of TF modules, we further decode
the module-level PPI features into ranked TF-level PPI
features (Figure 4D), based on their occurrences across
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genome-wide predictions of enhancer–promoter interac-
tions (see Materials and Methods). Genome-wide predic-
tions are used to calculate the abundance scores for TF
level PPIs because they provide a large pool of enhancer–
promoter links, and the abundance scores are found to be
highly correlated with the observations from Hi-C train-
ing samples (Supplementary Figure S17, Spearman correla-
tion = 0.95). For each module-level feature, the top 5 most
abundant PPI features between specific enhancer-binding
and promoter-binding TFs are identified. For example (Fig-
ure 4E), RELB-YY1 is predicted to be a key TF-level PPI
feature in long-range enhancer regulation. In support of this
new discovery, RELB has recently been found to promote
gene expression by interacting with YY1 (93). As another
example, SMC3-HDAC1 is one of the top-ranking features
in K562 (Figure 4F), consistent with the reported regula-
tory roles of HDAC1 on chromatin structure by interacting
with SMC3 (94). The discoveries of these key TFs and their
PPIs as candidate functional factors in chromatin loop for-
mation may lead to new biological hypotheses of enhancer
regulation for in-depth experimental investigations.

As a demonstration of the potential importance of TF
PPIs in linking distal enhancers to promoters, Figure 4G
shows the predicted long-range enhancer–promoter inter-
actions for the gene ISCU. There are totally 11 enhancers
predicted by ProTECT to interact with ISCU’s promoter,
and five of them are supported by experimental data of
chromatin interactions based on Hi-C or Capture Hi-C
(Figure 4G), indicating the high accuracy of the predictive

model. The inferred top-ranking feature is the PPI between
enhancer-binding RELB and promoter-binding YY1. Con-
sistent with this prediction, YY1 has a strong ChIP-seq
binding site at the promoter of ISCU, and almost all linked
enhancers have ChIP-seq signals of RELB binding. Impor-
tantly, four out of the five validated enhancers show the
strongest RELB ChIP-seq binding signals (Figure 4G), in-
dicating the shared mechanism of these enhancer–promoter
interactions for the gene ISCU. In this region, the longest in-
teraction predicted by ProTECT is from a distal enhancer
located >547 kb from ISCU’s promoter. Although not cap-
tured by chromatin contact map experiments, this specific
enhancer contains a sharp ChIP-seq peak of RELB bind-
ing (Figure 4G), suggesting this novel prediction as a strong
candidate of enhancer–promoter interactions. It also im-
plies the capability of ProTECT to discover long-range en-
hancer regulation that might be missed by experimental ap-
proaches.

To investigate whether the orientations of PPI features
between enhancer-binding and promoter-binding TFs have
impacts in chromatin interactions, we designed a system-
atic model selection strategy to test whether a pair of two
TF PPI features with opposite directions can be merged
into one un-directional PPI feature without reducing the
predictive accuracy (see Materials and Methods). Using
this approach, 32 pairs of directional PPI features in
GM12878 are merged into 16 un-directional features, sug-
gesting there is no statistical preference of binding sites
(i.e. enhancers versus promoters) between interacting TFs
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involved in these PPIs. For example, the features ATF2-
SMARCA5 and SMARCA5-ATF2 are merged into an un-
directional feature by the model, consistent with the ob-
servation that the two directional PPI features have sim-
ilar abundance in enhancer–promoter interactions (Sup-
plementary Figure S18A). A similar example involves the
merge of IKZF1-CREM and CREM-IKZF1 features (Sup-
plementary Figure S18A). In spite of these un-directional
PPI features, there are 37 features remaining to be direc-
tional in GM12878. For example, there is a significant pref-
erence of SMC3-MXI1 feature over the MXI1-SMC3 fea-
ture (fold-enrichment = 7.80, Supplementary Figure S18B).
This is an interesting observation considering the function
of SMC3 (a subunit of cohesin (95)) in chromatin struc-
tural maintenance, and the reported regulatory function
of MXI1 binding in promoter regions (96). Another ex-
ample corresponds to the preference of EP300-POL2R2A
over POL2R2A-EP300 (fold-enrichment = 9.19, Supple-
mentary Figure S18B), consistent with the well-known en-
hancer binding activities of EP300 (97) and the transcrip-
tional initiation function of POL2R2A (98). Similarly, 184
pairs of directional PPI features in K562 are merged into 92
un-directional features, while 47 PPI features remain to be
directional.

Genes regulated by different TF PPIs are enriched in distinct
pathways

To evaluate the downstream impacts of chromatin interac-
tions mediated by different TF PPIs, we focused on the top
5 module-level PPI features (Figure 4B and C). We identi-
fied the strongest enhancer–promoter interactions mediated
by each feature separately based on the ranked q-values of
predictions (see Materials and Methods). Genes that are
regulated by the top-ranking enhancer–promoter interac-
tions are therefore collected for pathway enrichment analy-
sis (Figure 4H). Overall, these prioritized genes are enriched
with immune-related or B-cell-related pathways (Supple-
mentary Figure S19A and B), which is expected since the
predictions are inferred from GM12878 and K562 cell-lines.
Strikingly, for each specific PPI feature, the gene sets are
strongly enriched with distinct groups of pathways (Sup-
plementary Figure S19A and B). Figure 4I shows the most
enriched pathways for each TF PPI feature discovered in
the GM12878 cell-line. Clearly, the enhancer–promoter in-
teractions mediated by different TF PPIs are enriched with
diverse biological processes. For example, the CTCF-YY1
feature is found to be associated with long-range regula-
tion of genes in the B cell receptor signaling pathway, while
the SMC3-POLR2A feature is associated with genes of the
innate immune response pathway (Figure 4I). To exclude
the potential bias caused by gene background, we carried
out pathway enrichment analysis based on two additional
gene backgrounds, respectively: (i) genes with the same
set of promoter-binding TFs and (ii) genes with the same
set of enhancer-binding TFs (Supplementary Figure S19C
and D). Based on these two rigorous gene backgrounds, the
majority (>67%) of enriched pathways are still discovered.
These differentially enriched pathways further highlight the
functional roles of TF PPIs in regulating gene expression
and maintaining the specific cellular states.

Predicted enhancer–promoter interactions are enriched with
cis-eQTLs

Because the predictive model is trained on Hi-C datasets,
we use cis-eQTLs as orthogonal evidence to quantitatively
evaluate the accuracy of the genome-wide predictions of
enhancer–promoter interactions. By comparing the predic-
tions with the SNP-gene pairs of significant eQTLs, we cal-
culated the overlapping enrichment scores (see Materials
and Methods). Using four eQTL datasets generated from
matched cell-types or tissues (e.g. whole blood tissues or
lymphoblastoid cell-lines) (81–84), the predicted enhancer–
promoter interactions in GM12878 cell-line show signifi-
cantly higher fractions overlapping with eQTLs, compared
to stringent distance-controlled random interactions and
other algorithms (P-value < 1.04 × 10–4, Figure 5A). Sim-
ilar, but relatively weaker, enrichment with eQTLs is found
for predictions in K562 cell-line (Supplementary Figure
S20A). In addition to cis-eQTLs, we compared our pre-
dictions in GM12878 with histone-QTLs from the same
cell-line (85) and also observed strong enrichment (P-
value = 3.27 × 10–5) compared to distance-controlled ran-
dom samples and other algorithms (Figure 5A). These ob-
servations not only support the high accuracy of genome-
wide predictions but also suggest the putative mechanisms
of cis-eQTLs mediated by chromatin interactions between
regulatory elements and target genes.

cis-eQTLs are enriched in binding sites of prioritized TFs

The prioritized TF PPI features by the ProTECT model
provides a new metric of delineating functionally impor-
tant TFs for enhancer regulation against general enhancer-
binding TFs, which is complicated due to the large array of
TFs binding to enhancers. For a typical enhancer, it con-
tains 10 different TF binding sites on average, based on
the counts of TF ChIP-seq peaks in GM12878 from the
ENCODE project (16). However, binding itself is not suf-
ficient to assign functional importance for TFs. As found
by previous studies, TFs binding in enhancer regions are
not equally important for the function of enhancers, with
many enhancer-binding TFs lacking evidence of regulatory
impacts on gene expression (99). This ambiguity hinders the
understanding of enhancer activation and downstream ef-
fects. We hypothesized the TFs involved with top prioritized
PPI features are more likely to be functional for enhancers.
We tested this hypothesis by checking the enrichment of cis-
eQTL SNPs within the binding sites of the prioritized TFs
in enhancers (Figure 5B, see Materials and Methods). The
cis-eQTLs are called in whole blood tissues from the GTEx
project (81). Interestingly, the SNPs of cis-eQTLs are lo-
cated significantly closer to the binding sites of prioritized
TFs in GM12878 (P-value = 4.17 × 10–18, Kolmogorov–
Smirnov test), compared to the binding sites of other adja-
cent enhancer-binding TFs (Figure 5C). To control the po-
tential bias caused by data availability, we also generated a
more stringent background only using TFs included in the
model but inferred with low feature importance (see Mate-
rials and Methods). Compared with this new background,
the prioritized TFs are still significantly enriched with cis-
eQTL SNPs (P-value = 3.02 × 10–4, Kolmogorov-Smirnov
test, Figure 5C). In the K562 cell-line, cis-eQTL SNPs are
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also closer to the binding sites of the prioritized TFs but
not statistically significant (Supplementary Figure S20B).
Overall, this analysis supports the stronger regulatory ef-
fects of prioritized TFs whose PPIs may mediate long-range
enhancer–promoter interactions. Additionally, the priori-
tized TF binding sites provide a new layer of information
to pinpoint regulatory SNPs at a higher resolution, by dis-
secting the ambiguity of numerous TF bindings within en-
hancers.

As a representative example, a distal enhancer lo-
cated > 589kb away is predicted by ProTECT to interact
with the promoter of the ADK gene in GM12878 (Figure
5D), which is supported by experimental Hi-C data (29).
This long-range interaction is also supported by a signifi-
cant eQTL, i.e. rs2488088-ADK (P-value = 3.29 × 10–19)
(81). The prioritized TF PPI feature for this interaction is
RUNX3-SMAD, where RUNX3 binds to the enhancer and
SMAD binds to the promoter. By zooming into the en-
hancer element, which is 1.2 kb long and contains binding
sites of five different TFs, the SNP rs2488088 is found to be
precisely located at the ChIP-seq peak summit of RUNX3
(Figure 5D), consistent with our prioritization of RUNX3
as the important TF for this enhancer. This observation also
implies the mechanistic interpretation of this non-coding
SNP, whose disruptive effect on the RUNX3 binding causes
the loss of RUNX3-SMAD mediated long-range interac-
tion to ADK.

trans-eQTLs are enriched in enhancer-mediated TF–gene
pairs

As one of the advantages of the ProTECT algorithm, both
cis-regulatory elements (i.e. enhancers) and trans-regulatory
factors (i.e. TFs) are jointly modeled in long-range chro-
matin interactions. In traditional studies of trans-regulation
of gene expression, analyses have been mainly limited to
promoter-binding TFs as candidate trans-regulatory fac-
tors (100,101). Based on the functional impacts of the
predicted important TF PPI features (Figure 4B-I) and
the observed enrichment of cis-eQTL SNPs in prioritized
enhancer-binding TFs (Figure 5B–D), we hypothesized that
there is an enhancer-mediated pathway of trans-regulation,
i.e. the enhancer-binding TFs associated with top-ranking
PPI features for long-range chromatin interactions are
trans-regulatory factors for the expression of distal target
genes (Figure 5E). To quantitatively validate this hypoth-
esis, we compared the enhancer-mediated TF–gene pairs
with significant trans-eQTLs (86), and the significance of
overlaps are statistically tested using Hypergeometric tests
(see Materials and Methods). Interestingly, the enhancer-
mediated TF–gene pairs are found to be strongly supported
by trans-eQTLs (P-value = 0.014, Figure 5F, Supplemen-
tary Figure S20C), suggesting that the SNPs of trans-eQTLs
are associated with target gene’s expression via the disrup-
tion of the TF gene’s activity (Figure 5E), although the
SNPs may be located far away from the target genes or even
located in different chromosomes. The observed statistical
significance is also stronger than two versions of controls,
excluding the potential confounding effects of biased en-
hancer activity and genomic distances (Figure 5F, see Ma-
terials and Methods).

To obtain additional experimental evidence on the pre-
dicted enhancer-mediated TF–gene regulation, we lever-
aged a differential Hi-C interaction dataset in mouse pro-B
cells where 7810 weakened Hi-C interactions were identified
following PAX5 knock-out (102). The top-ranking PAX5
related PPI feature predicted by ProTECT is PAX5-CTCF,
consistent with their collaborative roles in B cells (103,104).
Based on our genome-wide predictions in GM12878, we
identified the subset of PAX5-CTCF mediated enhancer–
promoter interactions (see Materials and Methods), and
thus collected the enhancer-mediated target genes of PAX5.
To purify the subsequent analysis, genes whose promoters
are also bound by PAX5 are removed from the list. If PAX5
is a true trans-regulatory factor for these genes, the genes are
expected to be targeted by the weakened long-range interac-
tions following PAX5 knock-out. By mapping the genes to
their homology in the mouse genome (105), 6,744 enhancer-
mediated target genes of PAX5 are conserved. Strikingly,
these genes are found to significantly overlap with the genes
of weakened Hi-C interactions in PAX5-/- pro-B cells (102)
(hypergeometric P-value = 5.64 × 10–165, Figure 5G). To
control the potentially biased enhancer activity and TF
bindings, we generated two versions of controls. The first
version randomly selects genes as enhancer-mediated target
genes of PAX5. And the second version randomly chooses
target genes of other TFs. 1000 random samples are gen-
erated for each version and the same number of genes are
selected for each sample. Both versions of negative controls
show decreased overlap with genes of weakened Hi-C in-
teractions in PAX5–/– pro-B cells (P-value = 10–3), sup-
porting the predicted trans-regulatory links between PAX5
and target genes by ProTECT. Figure 5H shows one rep-
resentative example of PAX5-CTCF mediated long-range
enhancer–promoter interaction (∼600 kb), where the en-
hancer contains multiple PAX5 binding sites and the pro-
moter of the target gene, i.e. NOL6, contains a strong CTCF
binding site. Interestingly, NOL6 is linked with weakened
Hi-C interactions in PAX5–/– pro-B cells. These strong ex-
perimental validations, along with the enrichment of trans-
eQTLs, suggest the biological validity of the predicted
enhancer-mediated TF–gene pairs, and provide a new regu-
latory mechanism to discover and interpret trans-regulatory
genetic variants.

DISCUSSION

In this study, we have developed a novel supervised
algorithm, ProTECT (https://github.com/wangjr03/PPI-
based prediction enh gene links), to predict long-range
enhancer–promoter interactions. By incorporating new fea-
tures of protein–protein interactions among transcription
factors, the algorithm achieves superior performance com-
pared to other methods, based on a rigorously designed
genomic bin-split cross-validation procedure. Considering
the overfitting risk of high-dimensional inter-dependent TF
PPI features, a novel network-community based dimension
reduction strategy is used to hierarchically organize TF
PPIs into module-level features. This approach efficiently
improves the generalizability of the predictive model to
make robust predictions based on complex TF PPI patterns,
while maintaining the detailed ranking of TF-level PPI

https://github.com/wangjr03/PPI-based_prediction_enh_gene_links
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features for specific mechanistic understandings of long-
range enhancer regulation. With the impacts of confound-
ing factors strictly controlled, the relative contributions of
different features are systematically evaluated, which shows
that TF PPIs contain substantially additional information
beyond activity-based features of enhancers and genes.

The genome-wide implementation of ProTECT in
GM12878 and K562 cell-lines generated 60 016 and 80 591
new predictions of significant enhancer–promoter interac-
tions, which will be useful resources of cell-type specific en-
hancer regulation for biologists. In addition, a set of priori-
tized TF PPIs, in both module-level and TF-level, are iden-
tified as the key PPIs mediating long-range chromatin loops.
Different TF PPIs are found to mediate enhancer regulation
for genes in distinct biological pathways, implying specific
functional roles of complex TF cooperation. The TF mem-
bers participating in these prioritized PPI features can be
used as candidate targets for knock-out to investigate the
changes of specific enhancer–promoter interactions, which
will expand the insights on the underlying mechanisms of
chromatin loop formation and long-range gene regulation.

To gain orthogonal evidence of the validity of genome-
wide predictions, cis- and trans-eQTLs are compared with
the predicted enhancer–promoter interactions in three
ways, each of which supports one aspect of the interplay
among TFs, enhancers and genes. First, the enrichment of
overlaps between cis-eQTLs and enhancer–promoter inter-
actions suggests the accuracy of predicted long-range cis-
regulation by distal enhancers. Second, the enrichment of
cis-eQTL SNPs located within the binding sites of priori-
tized TFs underscores the precise delineation of function-
ally important TFs for enhancer activities against other gen-
eral enhancer-binding TFs. Third, the enrichment of over-
laps between trans-eQTLs and enhancer-mediated TF–gene
pairs highlights the novel identification of trans-regulatory
pathways from upstream TFs to downstream genes via dis-
tal enhancers. The promising enrichment analyses further
indicate that the predictions from ProTECT can be used as a
platform to interpret cis- and trans-eQTLs, i.e. characterize
the non-coding SNP’s disruptive effects propagated through
long-range enhancer regulation on gene expression. There-
fore, combined with eQTL datasets, the ProTECT model
can also be a useful tool to generate testable hypotheses in
statistical genetics studies.

To control the model complexity, only direct PPIs be-
tween TFs are included as features, while indirect PPIs be-
tween TFs may also participate in the regulation of chro-
matin loops. For example, an enhancer-binding TF and a
promoter-binding TF may not be able to interact with each
other but they both can interact with a third protein. The
incorporation of module-level TF PPI features helps to cap-
ture the potential indirect PPIs to some degree, but does not
explicitly address this problem. Due to the large number of
indirect PPI features and the limited number of labeled sam-
ples for model training, more advanced designs of feature
selection will be needed to achieve a balance between pre-
dictive accuracy and model generalizability.

As a major novelty of the ProTECT model, the efficient
inclusion of TF PPIs as features not only improves the pre-
dictions but also reveals mechanistic insights on long-range
enhancer regulation. In the meantime, the algorithm re-

quires the availability of large panels of TF ChIP-seq data
for the specific cell-types under study, which may be a prac-
tical challenge for users. As one of the directions to extend
the ProTECT model, it is possible to leverage the combined
information of chromatin accessibility data, e.g. DNase-
seq or ATAC-seq data, and TF binding motif annotation
datasets as approximations for cell-type specific TF bind-
ings. Several recent studies have demonstrated the reason-
able accuracy of this approximation (16,17). Furthermore,
multiple imputation algorithms have been recently devel-
oped for ENCODE cell-types or tissues to impute cell-type
specific TF binding ChIP-seq signals (106,107). The im-
puted TF binding signals can be used as alternative in-
puts for the model to make cell-type specific predictions
of enhancer–promoter interactions, for cell-types lacking
ChIP-seq datasets. As an evaluation of this possibility, we
generated the imputed TF bindings by overlapping TF mo-
tifs with cell-type specific DNase-seq peaks, and then de-
rived TF PPI features based on the imputed data. Remark-
ably, applied on the imputation-based input features, Pro-
TECT is able to achieve high accuracy (Supplementary Fig-
ure S21). This evaluation strongly supports the wide appli-
cability of ProTECT on diverse cell-types even if TF ChIP-
seq data is not directly available.
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