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Abstract: The surface of pure polytetrafluoroethylene (PTFE) microfibers was modified with ZnO
and graphene (G), and the composite was studied using ATR-FTIR, XRD, and FESEM. FTIR results
showed that two significant bands appeared at 1556 cm−1 and 515 cm−1 as indications for CuO and
G interaction. The SEM results indicated that CuO and G were distributed uniformly on the surface of
the PTFE microfibers, confirming the production of the PTFE/CuO/G composite. Density functional
theory (DFT) calculations were performed on PTFE polymer nanocomposites containing various
metal oxides (MOs) such as MgO, Al2O3, SiO2, TiO2, Fe3O4, NiO, CuO, ZnO, and ZrO2 at the B3LYP
level using the LAN2DZ basis set. Total dipole moment (TDM) and HOMO/LUMO bandgap energy
∆E both show that the physical and electrical characteristics of PTFE with OCu change to 76.136 Debye
and 0.400 eV, respectively. PTFE/OCu was investigated to observe its interaction with graphene
quantum dots (GQDs). The results show that PTFE/OCu/GQD ZTRI surface conductivity improved
significantly. As a result, the TDM of PTFE/OCu/GQD ZTRI and the HOMO/LUMO bandgap
energy ∆E were 39.124 Debye and ∆E 0.206 eV, respectively. The new electrical characteristics of
PTFE/OCu/GQD ZTRI indicate that this surface is appropriate for electronic applications.

Keywords: PTFE microfibers; FTIR; XRD; FESEM; G; DFT; metal oxides

1. Introduction

PTFE, one of several synthetic polymeric matrices, has excellent corrosion resistance
and electrical properties, as well as high temperature resistance and cost-effectiveness [1,2].
Polymers of various forms, particularly fibers influenced by MOs, are frequently used to im-
prove polymer characteristics, resulting in low-cost, high-functioning nano-composites [3–6].
Because of the mechanical, physical, and chemical stability of PTFE, it may be utilized as
a substrate for the development of ZnO nanotubes, allowing for the effective production
of various sensors [7] and nanoscale photodetectors used for nano optics applications [8].
Furthermore, because of the unique properties of SiO2 nanoparticles, such as high hard-
ness, corrosion resistance, and superior electrical insulation, PTFE/SiO2 might be used in
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technological applications [9] and for vapor oil purification [10]. Moreover, by increasing
the SiO2 amount, the PTFE/SiO2 composite possesses good mechanical characteristics [11].
PTFE/SiO2/Epoxy composites provide a new hybrid composite with unique properties [12].
The PTFE/Al2O3 nanocomposite shows a high mechanical characteristic with increased
thermal conductivity and thermal stability [13,14]. Furthermore, the electrical charac-
teristics of the PANI/PTFE/GO composite have been observed to have increased in the
fabrication of electrochemical instruments [15]. Further, the corrosion resistance and insulat-
ing characteristics of PTFE/ZnO/SiO2 on glass have already been considerably enhanced,
and this technique provides a novel idea for building an insulator surface on glass that acts
as an anti-icing surface [16]. Additionally, there is a Teflon FEP derivative of PTFE that is
employed as a thermal control barrier for the Hubble Space Telescope (HST) [17–19]. In a
space environment in Low Earth orbit (LEO), Teflon FEP suffers from corrosion, exposing
the component in space to damage [20–22]. As a result, the improvement of Teflon and its
derivatives has become an important research topic for space applications [23–25]. Phys-
ical parameters determined using simulations, such as TDM, HOMO/LUMO band gap
energy (∆E), and MESP, are thought to be effective indicators of electronic properties and
the responsiveness of such explored interactions [26–28]. In addition, it was shown that
reactive systems have a high TDM when the energy band gap is minimal, and the charge
distribution as contour of the MESP can be compared with the corresponding active sites
along the base material [29–32].

In this work, we investigate the effect of ZnO and G on PTFE microfibers, which
are characterized to investigate changes in molecular structure, crystal structure, and
morphology. Moreover, in order to study the influence of MOs such as MgO, Al2O3, SiO2,
TiO2, Fe3O4, NiO, CuO, ZnO, and ZrO2 on PTFE electronic characteristics, it is required
to analyze the change in TDM, band gap, and MESP. The goal of this theoretical work is
to elucidate the influence of GQDs on the electronic characteristics of PTFE/MOs when
electronic parameters change.

2. Materials and Methods

PTFE 100% hermetic seal (20 mm × 19 mm × 0.25 mm density 0.3 g/cm3) was
from RICH, Italy. Copper sulphate pentahydrate (CuSO4·5H2O) was utilized to produce
CuO nanoparticles. Glacial acetic acid, dimethyl sulfoxide (DMSO) (LabScan Ltd., Unit,
Blackrock, Ireland) and sodium hydroxide (Fisher chemical, 97 percent, Suwanee, GA,
USA) were utilized as solvents. This experiment made use of deionized (DI) Milli-Q water.
All materials were utilized without additional purification.

2.1. CuO Nanoparticles Preparation Method

CuO nanoparticles were synthesized according to the usual precipitation procedure—1 M
sulphate pentahydrate (CuSO4·5H2O) in 100 mL glacial acetic acid with stirring for 2 h at
70 ◦C. After the solution was completely dissolved, 2 M of Sodium hydroxide was added
dropwise in 100 mL of DI water while stirring. The black precipitate was filtrated as well
as washed using DI water, then dried at 80 ◦C for 24 h and later calcined for 2 h at 500 ◦C.

2.2. Preparation of the PTFE/CuO/G Nanocomposite

To start the preparation process, Graphene was prepared in a laboratory following the
Hammer method, as indicated earlier in the literature under code (IFP-KKU-2020/10) [33].
PTFE was cut into microfibers to be used in the nanocomposite fabrication. 0.01 gm of
CuO combined with 0.02 g of G were dissolved using (100 mL) DMSO solution, and
then PTFE microfibers (70%) were mixed in the solution for 24 h with continuous stirring.
The composite fibers were then removed and dried in air.

2.3. Characterization Techniques

For the intermolecular investigation of pure and composite materials, an Attenuated
Total Reflection Fourier Transform Infrared (ATR-FTIR) spectrometer (Vertex 70, Bruker,
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Billerica, MA, USA) with a spectral range of 4000–400 cm−1 and a spectral resolution of
4 cm−1 was utilized. Furthermore, X-ray Diffraction (XRD) was used to determine the
crystal structure and phase composition of samples using a Malvern Panalytical Empyrean
3 diffractometer (Malvern, UK). Furthermore, Field-emission Scanning Electron Microscopy
(FESEM, Quattro S, Thermo Scientific, Waltham, MA, USA) was utilized to analyze the
morphology of the produced samples.

2.4. Calculation Details

The GAUSSIAN 09 software (Gaussian, Inc.: Wallingford, CT, USA) was used to design
model designs for four PTFE units and their interactions with MOs such as MgO, Al2O3,
SiO2, TiO2, Fe3O4, NiO, CuO, ZnO, and ZrO2 at the Molecular Spectroscopy and Modeling
Unit, National Research Centre, Egypt [34]. The HOMO/LUMO band gap energy, TDM,
and MESP as contour were calculated for model structures using DFT theory at the B3LYP
level with the LANL2DZ basis set [35–37].

3. Results
3.1. Characterization Result of the PTFE/CuO/G Composite
3.1.1. FTIR Result

FTIR spectra for pure PTFE, CuO, G and PTFE/CuO/G composite are illustrated in
Figure 1. The characteristic bands for pure PTFE microfibers are shown as only transmit-
tance bands of F2 stretching at 1204 cm−1, 1152 cm−1, and 635 cm−1, respectively [38].
Moreover, CuO nanoparticles spectra displays a prominent band at 598 cm−1, indicating
CuO generation [39]. The PTFE/CuO/G spectrum reveals the recognized bands of PTFE
microfibers and even a new band at 1556 cm−1, reflecting the C−C of G with lower intensity
in respect to a lower ratio and good distribution of the composite, and a CuO band which
moved to a lower wavenumber at 553 cm−1, confirming the composite creation of PTFE,
CuO, and G.

Figure 1. PTFE, CuO, G and PTFE/CuO/G transmittance ATR–FTIR spectra.

3.1.2. XRD Result

As shown in Figure 2, the XRD pattern of PTFE microfibers was observed at around
2θ = 18.02◦ and 31.60◦, relative to (100) and (110) diffraction plan [40]. In addition, the
XRD pattern of monoclinic crystal CuO nanoparticles appearing around 2θ = 32.50◦, 35.50◦,
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38.71◦, 48.79◦, 53.49◦, 58.19◦, 61.52◦, 66.08◦, 67.94◦, 72.36◦, and 75.11◦ which can be at-
tributed to the reflection planes of (110), (−111), (111), (−202), (020), (202), (−113), (−311),
(113), (311), and (−222), respectively [41]. Then, a characteristic diffraction peak of G was at
about 2θ = 25.12◦, which is related to the (002) reflection plan [42]. Finally, PTFE/CuO/G
composite diffraction peaks were seen at 2 = 18.16◦, 24.93◦, 31.79◦, 37.15◦ 41.49◦, and 72.89◦

in relation to the (100), (222), (110), (107), (108), and (311) reflection planes. The intensity of
the G peak was so small according to the interaction of CuO on the two G sheet surfaces,
indicating that the PTFE/CuO/G nanocomposite was formed with high purity. Particle size
calculation from X-ray diffraction and by considering the peak at degrees, average particle
size was estimated by using the Debye–Scherrer formula [xx]: D = 0.9λ/β cos θ (1), where
λ is the wavelength of the X-ray (0.15406 nm), β is FWHM (full width at half maximum), θ
is the diffraction angle, and ‘D’ is the particle size diameter; thus, D = 111 nm as particle
size. This would be more accurate in individual CuO because the composite would be
on a micro scale, invading the limits of equations and accuracy, as estimated from the
FESEM [43,44].

Figure 2. XRD diffraction pattern for PTFE, CuO, G, and PTFE/CuO/G nanocomposite.

3.1.3. SEM Result

Figure 3 shows an electron microscope image of the surface of PTFE microfibers,
CuO, G, and PTFE/CuO/G composite. For a pure PTFE image, the diameters of the PTFE
fibers were measured by using an image-analysis system consisting of an FESEM, a high-
resolution monitor, and image-analysis by image j® Program. The estimated diameter size
is 100 nm. The thickness size distribution curve is indicated in Figure 4. The distribution
curve indicates a narrow unimodal size distribution in the range from 20 to 220 nm with
an average size of 100 nm [45]. For CuO-Nps, similar to the above analysis, the average
particle size distribution was found to be in the range of (101–196 nm) with mean of 102 nm,
as indicated in Figure 4b, ensuring the estimated value obtained by FESEM. Small spherical
CuO nanoparticles with homogenous distribution were illustrated in the morphological
SEM image [46]. Moreover, the G SEM image illustrates agglomeration layers. As a result,
PTFE/CuO/G illustrates uniform distribution of the quantities of CuO and G on the PTFE
microfibers’ surface, which confirms the formation of the PTFE/CuO/G composite.

According to the experimental results of enhancing PTFE microfibers with CuO
and G, a theoretical analysis of PTFE with different Mos, including MgO, Al2O3, SiO2,
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TiO2, Fe3O4, NiO, CuO, ZnO, and ZrO2, might be performed to study the change in
electronic characteristics.

Figure 3. FESEM of (a) PTFE, (b) CuO, (c) G and (d) PTFE/CuO/G composite samples.

Figure 4. Histogram of the (a) fiber thickness and (b) CuO-NPs size distribution and curve of mean value.
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3.2. Designed Model Structures

Nanocomposites are of great interest currently for a wide range of applications.
The addition of nanofillers to polymer matrices improves their main properties, leading to
better electrical and optical mechanical functionality [47]. As a result, the model structure
assumes four monomers of PTFE interacting with a variety of MOs, including MgO, Al2O3,
SiO2, TiO2, Fe3O4, NiO, CuO, ZnO, and ZrO2. It is worth mentioning that for each metal
oxide MO, there are two modes of interaction between the MO and the PTFE—one from
the side of the metal atom and the other from the oxygen atom. Figures 5–7 presents the
PTFE; it first interacts with MgO and then Omg; this is repeated for all the studied MOs.

Figure 5. Cont.
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Figure 5. Optimized structure and HOMO/LUMO orbital distribution of PTFE interacting with differ-
ent MOs using DFT:B3LYP/LANL2DZ as (a) PTFE, (b) PTFE/MgO, (c) PTFE/Omg, (d) PTFE/Al2O3,
(e) PTFE/O3Al2, (f) PTFE/SiO2, (g) PTFE/TiO2, (h) PTFE/Fe3O4, (i) PTFE/NiO, (j) PTFE/ONi,
(k) PTFE/CuO, (l) PTFE/OCu, (m) PTFE/ZnO, (n) PTFE/OZn, (o) PTFE/ZrO2.
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Figure 6. MESP mapping of PTFE interacting with different MOs using DFT:B3LYP/LANL2DZ
as (a) PTFE, (b) PTFE/MgO, (c) PTFE/Omg, (d) PTFE/Al2O3, (e) PTFE/O3Al2, (f) PTFE/SiO2,
(g) PTFE/TiO2, (h) PTFE/Fe3O4, (i) PTFE/NiO, (j) PTFE/ONi, (k)PTFE/CuO, (l) PTFE/OCu,
(m) PTFE/ZnO, (n) PTFE/OZn, (o) PTFE/ZrO2.
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Figure 7. Model structure and calculated HOMO/LUMO orbital distribution and MESP mapping
of PTFE/OCu reinforced with GQDs DFT:B3LYP/LANL2DZ as (a) PTFE/OCu/GQD ATRI C60,
(b) PTFE/OCu/GQD AHEX C42, (c) PTFE/OCu/GQD ZTRI C46, (d) PTFE/OCu/GQD ZHEX C54.

To follow up the reactivity of the PTFE’s interaction with MOs and graphene, the
change in the HOMO/LUMO orbitals is mapped, followed by planning the MESP for those
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model structures. The values of the calculated HOMO/LUMO band gap energies and the
total dipole moment are also summarized in Tables 1 and 2.

Table 1. Calculated TDM (Debye) combined with ∆E (eV) for PTFE interactions with supposed MOs
(MgO, Al2O3, SiO2, TiO2, Fe3O4, NiO, CuO, ZnO, and ZrO2) using B3LYP/LANL2DZ.

Structure TDM (Debye) ∆E (eV)

PTFE 00.000 8.510

PTFE/MgO 30.100 1.466

PTFE/OMg 27.449 1.327

PTFE/Al2O3 22.477 1.102

PTFE/O3Al2 12.709 0.407

PTFE/OSiO 00.231 3.226

PTFE/OTiO 04.722 1.366

PTFE/Fe3O4 06.575 1.996

PTFE/NiO 19.260 0.579

PTFE/ONi 08.924 1.106

PTFE/CuO 20.532 0.506

PTFE/OCu 76.136 0.400

PTFE/ZnO 22.524 1.909

PTFE/OZn 19.137 2.317

PTFE/OZrO 07.526 0.938

Table 2. TDM (Debye) and ∆E (eV) of GQDs interaction with PTFE/OCu using B3LYP/LANL2DZ.

Structure TDM (Debye) ∆E (eV)

PTFE/OCu/GQD ATRI C60 20.421 0.480

PTFE/OCu/GQD AHEX C42 16.439 0.432

PTFE/OCu/GQD ZTRI C46 39.124 0.206

PTFE/OCu/GQD ZHEX C54 17.571 0.433

3.2.1. Interaction of PTFE with Different Metal Oxides
Distribution of HOMO/LUMO Orbitals

Four PTFE monomers were assumed to interact through the F atom, indicating that the
active side of PTFE interacts through the F atom with numerous Mos, including MgO, Al2O3,
SiO2, TiO2, Fe3O4, NiO, CuO, ZnO, and ZrO2. The distribution of HOMO/LUMO orbitals
changed because of the interaction of PTFE with MOs, as seen in Figure 5. The HOMO/LUMO
orbital dispersion is spread throughout the whole chain of the four PTFE monomers. When
MOs interacted with the PTFE surface, HOMO/LUMO orbitals delocalized all over MO atoms.
According to this, increasing TDM while lowering ∆E improved electrical characteristics, in
addition to structure stability and reactivity [48]. Table 1 presents TDM along with band gap
energy (∆E) computed for all designed interactions.

TDM were increased according to PTFE interactions with the proposed MOs (MgO,
OMg, Al2O3, O3Al2, SiO2, TiO2, Fe3O4, NiO, ONi, CuO, OCu, ZnO, OZn, and ZrO2 from
00.000 Debye to 30.100, 27.449, 22.477, 12.709, 00.231, 04.722, 06.575, 19.260, 08.924, 20.532,
76.136, 22.524, 19.137, and 07.526 Debye, respectively. Simultaneously, band gap energy
(∆E) also decreased according to PTFE interactions with proposed MOs from 8.510 eV to
1.466, 1.327, 1.102, 0.407, 3.226, 1.366, 1.996, 0.579, 1.106, 0.506, 0.400, 1.909, 2.317, and 0.938,
respectively. As a consequence, PTFE/OCu seemed to have the lowest band gap value,
signifying an improvement in electrical, responsiveness, and durability properties.
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Molecular Electrostatic Potential (MESP)

Figure 6 illustrates the MESP of PTFE and PTFE interactions with numerous MOs,
such MgO, Al2O3, SiO2, TiO2, Fe3O4, NiO, CuO, ZnO, and ZrO2. MESP is another
significant characteristic for understanding the electrical properties of chemical interac-
tions. MESP is significant because it may connect between changes in total charge and
the influence on physical and chemical characteristics for studied structures. The dis-
tribution of MESP on the molecule’s surface was illustrated by a map with the colors
Red > Orange > Yellow > Green > Blue, with the red color representing the greatest charge
zone, the blue color representing the lowest charge zone, and the green color representing
zero charge zone [49]. The F atom was revealed to be the active side of the low reactivity of
PTFE. The colour red intensified along the polymer chain’s up and down branches due to
the F atom, which is an indication for the PTFE active side. Because of the influence of MOs,
the red colour increased and relocated then around the oxygen atom of the MO, indicating
an improvement in PTFE reactivity. According to the MESP observations, PTFE’s electrical
properties increased, allowing it to be used in a wide range of applications.

GQDs Interaction with PTFE/OCu

According to earlier findings, the four GQD forms—ATRI, AHEX, ZTRI, and
ZHEX—should be examined with PTFE/OCu. Owing to the GQDs’ features of large
surface area and effective edge atoms, they have great interaction with the surrounding
molecules [50]. The most electronically improved active structure is PTFE/OCu, so
it was chosen to interact with the four GQDs forms, as illustrated in Figure 7. From
Table 2, TDM of PTFE/OCu changed from 76.136 Debye to 20.421, 16.439, 39.124 and 17.571
Debye, while the band gap decreased from 0.400 eV to 0.480, 0.432, 0.206 and 0.433 eV for
PTFE/OCu/GQD ATRI C60, PTFE/OCu/GQD AHEX C42, PTFE/OCu/GQD ZTRI C46,
and PTFE/OCu/GQD ZHEX C54, respectively. From all data, PTFE/OCu/GQD ZTRI
C46 is the most effective, stable, and novel in electrical properties and could be used in
nanoelectronic devices.

4. Conclusions

This work combined both experimental and DFT:B3LYP/LANL2DZ calculations to
gain better insight into the molecular structure of the studied polymer PTFE as well as its
graphene and Mos-modified structure.

Thus, the PTFE microfibers were reinforced with CuO and graphene G, then studied
with some characterization techniques such as FTIR, XRD, and SEM. The FTIR results
confirmed that the PTFE/CuO/G is formed as a composite structure, and the SEM image
showed the uniform distributed of nanoparticles on the PTFE microfibers’ surface.

DFT calculations as consulted to study PTFE interacted with various MOs. Throughout
the calculations, the HOMO/LUMO orbitals were mapped. It could be concluded that
MOs are responsible for reducing the HOMO/LUMO band gap by changing it from broad
to small band gap semiconductor.

The addition of various MOs to PTFE creates and controls a wide range of band gaps,
allowing for several applications, including as a solar cell, sensor, and capacitor.

Another important mapping throughout the calculations is the molecular electrostatic
potential map, which indicated an active site starting from the PTFE step by step during
the interaction with graphene as well as other MOs.

The structure is considered active as its calculated total dipole moment increased with
a decrease in its HOMO/LUMO band gap energy.

It could thus be concluded that CuO was the most effective MO to increase the
electronic characteristics of PTFE. Thus, it was chosen to interact with the four GQDs forms,
namely ATRI, AHEX, ZTRI, and ZHEX.

The results confirmed that, the PTFE/OCu/GQD ZTRI C46 composite increases PTFE’s
ability to perform in nanoelectronics devices, which are important in space applications.
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