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Abstract

Human mobility is crucial to understand the transmission pattern of COVID-19 on spatially

embedded geographic networks. This pattern seems unpredictable, and the propagation

appears unstoppable, resulting in over 350,000 death tolls in the U.S. by the end of 2020.

Here, we create the spatiotemporal inter-county mobility network using 10 TB (Terabytes)

trajectory data of 30 million smart devices in the U.S. in the first six months of 2020. We

investigate the bond percolation process by removing the weakly connected edges. As we

increase the threshold, the mobility network nodes become less interconnected and thus

experience surprisingly abrupt phase transitions. Despite the complex behaviors of the

mobility network, we devised a novel approach to identify a small, manageable set of recur-

rent critical bridges, connecting the giant component and the second-largest component.

These adaptive links, located across the United States, played a key role as valves connect-

ing components in divisions and regions during the pandemic. Beyond, our numerical

results unveil that network characteristics determine the critical thresholds and the bridge

locations. The findings provide new insights into managing and controlling the connectivity

of mobility networks during unprecedented disruptions. The work can also potentially offer

practical future infectious diseases both globally and locally.

Introduction

The ongoing pandemic continues to wreak havoc across the globe, and the U.S. has suffered

the highest impact among all countries with over 20 million infections 350,000 deaths [1, 2].

Despite the sustainable efforts in forecasting and containing the deadly virus, it has been chal-

lenging to predict COVID-19 spread. The epicenters and “hot spots” have shifted from Seattle

to NYC, to the southern parts of the country in a short few months [3, 4]. The unprecedented

and unforeseeable changes have caused significant challenges to stop the deadly virus and con-

tain its impact on the U.S. economy and society.

Historically, a large and diverse literature has examined the relationship between human

mobility and the diffusion of infectious disease, including SARS, seasonal influenza, and
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malaria [5–10]. The prior successes have inspired a number of studies examining how individ-

ual travel behaviors contribute to the spread of COVID-19 in the U.S., China, Italy, and other

countries [11–17]. These studies demonstrate that human mobility, to certain extent, can fore-

cast COVID-19’s transmission trends [4, 11, 12, 14, 18]. Thus, the understanding, modeling,

quantifying, and control of human mobility combined can potentially reduce the transmission

of COVID-19 [19–24].

Despite the importance of establishing a quantitative foundation for understanding human

mobility patterns, predicting it still faces at least two challenges. Firstly, human mobility is a

complex behavior with multi-scale dynamics. Although demonstrating some universal pat-

terns [25–32], human mobility varies significantly on the regional and community levels

owing to sociodemographic factors [33–35], economic inequality [33, 36, 37], geographical set-

tings [35], social interactions [38, 39], the availability of transportation infrastructures and

mobility options [40]. The complexity is particularly critical for COVID-19 has unprecedent-

edly changed human mobility. Social distancing and travel restrictions have changed travel

behaviors and might cause co-evolution between the mobility dynamics and COVID-19

spread [12, 41]. Secondly, data availability has constrained human mobility research. There is

a shortage of large-scale and longitudinal data sets with rich samples [19] for predicting the

spread of infectious diseases. The data is especially critical to track and capture the significant

and dynamical disruptions of human mobility during COVID-19 in the U.S.

In the realm of network research, percolation theories are critical for identifying hierarchi-

cal structures and determining any discontinuous phase transition inside complex systems.

There have been various studies using the percolation process in modeling real-world phe-

nomena such as traffic and routing networks [42, 43], the spread of infectious disease [44, 45]

and cascading dynamics [46, 47]. The bond percolation process has been commonly used in

the epidemic modeling field entails deleting links at various cut-off values in order to find the

critical threshold at which the network undergoes a structural shift such as break down of the

large network into smaller components [48]. Since the presence of a link implies infection,

such a threshold is closely tied to the emergence and disappearance of giant disease clusters. In

the context of epidemic modeling, utilization of percolation theory combined with real-world

mobility data can facilitate understanding the hierarchy of dynamic mobility networks and

thus unearth the structure transition patterns [45, 49].

We analyze anonymous mobility data from de-identified and opted-in smartphones across

the continental states’ area to estimate mobility networks. We thereby capture mobility

dynamics and assess the levels of changes in different regions during the first six months of

2020. We study the connectivity of daily mobility networks using percolation theory [50–52]

originated from statistical physics [42, 53–55]. Surprisingly, we observe abrupt and critical

phase transitions marked by large clusters disconnected from the giant components (G.C.s) of

mobility networks. Our analyses mainly focus on the topology of the mobility network to find

adaptive bridges that can lead to abrupt collapses of mobility networks. Our numerical method

enables us to uncover fundamental patterns of the complex mobility networks under the influ-

ence of significant perturbations and potentially provide novel strategies for managing human

mobility on the national level. Which could help to prevent further the spread and possible re-

surge of COVID-19 and future infectious diseases.

Results

Mobility data

We utilize six months of anonymized and privacy-enhanced human mobility data, from Janu-

ary 1 to June 30, 2020, in the continental U.S. to construct the daily flux network on the county
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level. The anonymized, de-identified data set provided by Cuebiq reports location in real-time

and is crowd-sourced from over 30 million devices opted-in to anonymous data sharing for

research purposes through a CCPA and GDPR compliant framework. We also record the total

detected devices within each county and compare the numbers with 2018 American Commu-

nity Survey (ACS) data for validation. On average, we witnessed over 15 million devices per

day. The Pearson correlation coefficient between the county population and the users is

approximately 0.95 from March through June, shown in S1 and S2 Figs in S1 File.

We find the median of the locations from each user’s daily movement trajectory (i.e., the

location of the medians of longitude and latitude) and compute the primarily located county

on each day (see Fig 1a). Thus, we establish a link between user Ui and county Cj if the user’s

median location is in county Cj. We then build a county-user bipartite network of all users and

counties for each day, as shown in Fig 1b. Finally, we map the inter-county mobility network

of the day k based on the county-user bipartite networks of the day k − 1 and day k. We create

a directed link from county i to county j if at least one user (traveler) was in county i on day

k − 1 and in county j on day k. The weight Wij is the number of travelers from county i to

county j, as shown in Fig 1c. For example, both travelers U0 and U3 were in county C1 on day 0

and in county C2 on day 1, so W12 = 2 and the connecting travelers are U0 and U3 in Fig 1c.

We also obtain the corresponding undirected network for each day (Fig 1d) with weight as the

sum of the numbers of travelers in both directions. In this work, we are interested in the

strongly connected component (SCC) of directed networks and giant component of the undi-

rected network. To eliminate random fluctuations, we average the networks from 7 consecu-

tive days (see S3 and S4 Figs in S1 File for details).

The spatiotemporal patterns of mobility network in the U.S

These daily inter-county mobility networks allow us to capture the day-to-day dynamics of

mobility patterns. Some changes in the networks reflect the influence of the breakout of

COVID-19 in the United States. Fig 2a shows the network structure in the week of Feb. 10,

and Fig 2b one in the week of Mar. 30. The connectivity, indicated by edge weight Wij, plum-

meted to a record low, with the second network exhibiting a much higher sparsity level.

Although we observe that the edge weights follow truncated power-law distributions both

before and after the national emergency declaration (Fig 2c), the distributions of travels have

changed significantly. Travels below 50 km have increased by almost 400% unweighted (Fig

2d) or 96.1% weighted by the numbers of travelers (Fig 2e) while long-distance travels (i.e.,

>1000 km) dropped to 39.2% unweighted (Fig 2d) or 35.2% weighted by the numbers of trav-

elers (Fig 2e). Overall, these results indicate that the fraction of inter-county trips decreases

while intra-county traffic increases significantly as the stay-home orders become effective.

The changes are quantified in two network metrics: the total influx at each node and the

sum of edge weights (i.e., the total number of travelers). To mitigate the variation by the days

of a week, we construct the baselines using the data from the first two months and compute

the average values for each day of the week. The changes are then calculated as the daily shift

(in percentage) against the baselines. Fig 2f–2h shows the normalized perturbation on human

travel behavior. However, the overall number of active devices experienced a small decrease

(less than 5%, see Fig 2f), the in-degree of the nodes experienced a 20% decrease after the dec-

laration of national emergency on March 13, 2020 (Fig 2g). The dive continued until the end

of March and early April, reaching a record of a 50% decline before recovering. The daily

number of inter-county travelers (i.e., total influx) also followed a similarly steep drop after

mid-March and reduced by approximately 60% (Fig 2h). While the drop lasted about two

weeks, the mobility recovery took about two months. We observe a steady increase from April
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Fig 1. Mobility network. a, one user’s trajectories in two consecutive days. We compute the median of the longitudinal records as the prime

location and geotag to the corresponding county. b, we iterate such process for all users and construct the bipartite graphs based on collective

mobility. c, by comparison of two consecutive days’ bipartite graphs, we aggregate the inter-county travel information to a weighted and directed

graph. The weights are the numbers of inter-county travelers. d, the undirected graph with weight as the sum between each pair of counties.

https://doi.org/10.1371/journal.pone.0258868.g001
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to the end of June as different regions in the U.S. started reopening. Inter-county mobility

measures have almost returned to their levels before the pandemic by the end of June (Fig 2h).

In summary, the metrics’ changes reflect that the mobility network experienced an abrupt per-

turbation after the national emergency declaration before recovering.

Connectivity of daily mobility networks

The observed perturbation in mobility networks largely aligns with our intuitive expectations:

the pandemic has caused forceful and yet relatively short-term changes in indegrees and total

flux. However, we still do not know whether the disruption has caused phase transition in the
mobility network or not. To answer these questions, we examine the connectivity mobility net-

works by employing percolation theory. We remove the links in our inter-county mobility net-

work if their weights are less than a given threshold q. When q = 0, all the counties are in the

same SCC, and the SCC decreases as we increase the threshold q. In Fig 3a, we take the aggre-

gated network from Feb. 10 to Feb. 17, 2020, as an example. Surprisingly, we observe an abrupt

phase transition when q is greater than a critical threshold qc. A large cluster of over 600 coun-

ties is disconnected from the largest SCC, as shown in Fig 3a. Consequently, the size of the sec-

ond strongly connected component (SSCC) suddenly reaches a peak at this critical point (red

Fig 2. Inter-county mobility patterns reflect social distancing and travel restrictions. a, weekly average flux from Feb. 10, to Feb. 17, 2020. b, weekly

average directed graph from Mar. 30, to Apr. 6, 2020. The mobility connections weakened after the National Emergency Declaration that took place on

Mar. 13, 2020. Also, both long-distance and short-distance travel (i.e., links) have reduced. c, the distributions of edge weights for the two weeks. Both

distributions follow the truncated power-law distributions with α = 1.93 for the one before and 1.75 for after, indicating that people’s movements have

been disrupted significantly even though the fundamental patterns remained the same. d, the spatial distances of the unweighted links of the two weeks.

The proportion of short-distance links increased from 0.4% to 2.1% while the middle range link’s proportion rose from 74.4% to 88.0%. In contrast, the

proportion of edges crossing long distances dropped significantly from 25.3% to 9.9%. e, spatial distances of the weighted links of the two weeks. The

proportion of short-distance travel increases significantly to 37.5% after the social distancing rules. The fractions of mid and long-distance travel

experienced about a 9.9% and 7.3% decrease, respectively. f-h, temporal changes of the inter-county mobility network. They are the daily percentage

change of the total number of devices in each node (i.e., county) (f), node in-degree (g), and total inter-county mobility flux (h). Red lines are the day of

the national emergency declaration. While the data only lost a small number of devices, the two measures both plummeted more than 50% within two

weeks before recovering.

https://doi.org/10.1371/journal.pone.0258868.g002
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line in Fig 3a). The abrupt changes echo the disconnection of mobility between the Midwest

and the South regions. Since qc measures the minimum flux needed to maintain the connec-

tion with the SCC of the mobility network, the clusters represent geographical regions consist-

ing of counties with substantial traveler flux (Fig 3b). In the percolation curve, we also observe

another notable size jump of SCC regularly occurs when the threshold is smaller than qc,
denoted as qc2 (orange line in Fig 3a). At q = qc2, both sizes of the SCC and SSCC experience

significant changes, coinciding with the division of human mobility between the West and

other regions (Fig 3c). We consistently observe similar percolation curves in the correspond-

ing undirected networks; Fig 3g–3i illustrate a similar hierarchy of sub-components with dif-

ferent numerical scales of the critical thresholds.

The results also reveal the critical transition in mobility networks under the influence of

COVID-19. In Fig 3d–3f and 3j–3l, we show the percolation of the directed network and corre-

sponding undirected, respectively, in the week of Mar. 23, 2020. Comparing to the values in

Fig 3. Percolation of mobility networks. a shows the sizes of the largest two components with the change of q in the week of Feb. 10 to Feb. 17, 2020.

There are two critical thresholds: qc at which SSCC experienced the largest size increase and qc2 at which the size of SSCC reached the second largest

peak. The networks at two thresholds are shown in b and c respectively. We show the top three sub-components, size-wise, which are in blue (largest),

purple (second-largest) and grey (fourth-largest) at both thresholds if they exist. d, e and f are the percolation directed networks in the week of Mar. 30

to Apr. 6, 2020. g-i demonstrate similar percolation patterns for the same week of data before National Emergency using undirected graphs where g

highlights the similar percolation phenomenon; The undirected graph results after the mobility perturbation are shown in j-l and we can observe that

across all scenarios at qc2, a large sub-component on the west coast states detached from the network while at qc at least three major sub-components are

separated. These large clusters are similar despite the decrease of the value of qc after Mid March.

https://doi.org/10.1371/journal.pone.0258868.g003
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the week of February, qc dropped from 53 to 30, and qc2 decreased from 30 to 18. The signifi-

cant decreases indicate that the mobility networks experienced strong perturbations; substan-

tial populations have limited their travels within their home counties to reduce their exposure

risks of COVID-19. Even though the geographical distributions of the clusters appear to be

similar (Fig 3e and 3f) with the patterns in February, they are divided into sub-components at

a lower threshold. By comparing the networks in Fig 3e, 3f, 3k and 3l, we observe analogous

community structures despite perturbations. The novel abrupt phase transition discovered in

the mobility network indicates that a small increase of flux threshold (i.e., mobility between

counties) can lead to catastrophic collapses in network connectivity. Furthermore, this novel

percolation is universal in the U.S. mobility network each day, and we show the results of

some other days in S3–S6 Figs in the S1 File. Thus, the critical transition needs to be monitored

more closely during crises since the mobility network becomes vulnerable during COVID-19

as the critical transition can happen at a significantly lower threshold of qc. It, therefore, raises

the critical questions: what the critical points are and where the critical links are located in the
network.

Temporal progression of percolation metrics

Next, we consider the effect of temporal property and explore the adaptation of the mobility

network. Fig 4 shows such adaption. At the beginning of 2020, human mobility remained sta-

ble, and the value of qc stayed around 53 for directed and 107 for undirected graphs until Mar.

8, 2020. In this period, the median edge weights of the GC also remain the highest around 217

and 108 for SSCC (Fig 4b). The size of the largest component was around 636 (Fig 4c).

In the three weeks after Mar. 8, 2020, COVID-19 forced the U.S. population to practice

social distancing and spend more time at home. The change is evident in Fig 4a as qc started to

decrease drastically following the national emergency declaration and the stay-at-home orders

from several states and many local jurisdictions. The critical threshold reached its lowest point,

30 for directed and 53 for undirected networks by the end of March. Since qc measures the

minimum threshold to reach percolation criticality, the mobility network became significantly

more vulnerable. The median values of the largest component weights dropped to 66 for

directed networks and 112 for undirected ones, both shedding approximately 50%. We observe

a similar pattern of decreases in the median edge weights (Fig 4b). The drop coincides with

our observation in Fig 2g and 2h. It is worth noting that the largest component size appears to

show opposite trends and fluctuate more than the other two variables despite experiencing

similar stages of changes. The sizes of the largest connected components remained high for

about two weeks, even after the number of domestic travelers started climbing on Mar. 31,

2020. During this time, the mobility is steadily increasing, while sub-components from the

previously largest component are prone to merge. We observe that both the GC and SSCC
sizes at qc increased from 636 to above 1,000 after the national emergency declaration (Fig 4c).

This increase is likely due to the reduction in critical threshold; many localized sub-compo-

nents are more prone to be integrated into the major clusters even with limited travels.

During the entire month of April, the mobility network stayed stable in a new phase after

two weeks of drastic changes. The value of qc stayed low and steady for about three weeks (Fig

4a) following a fast drop. This pattern is observed for the median edge weights (Fig 4b) as well.

The size of GC remained high yet also stable during this time (Fig 4c). Noticeably, the recovery

delays are different from the basic mobility metrics measured in Fig 2g and 2h. Both mobility

metrics immediately started to recover continuously after hitting the bottoms at the end of

March. In contrast, the percolation features suggest that the overall network stayed at the low

point for three more weeks before first experiencing a jump. The discrepancy again suggests
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that the recovery of the percolation criticality of human mobility follows a phase transition

process rather than continuous change. The phase transition offers a unique and crucial per-

spective on how to manage people’s movement during a pandemic. Despite the fact that

mobility changes on a continual basis, the complex networks produced by human mobility

have been found to undergo sudden phase transitions. This suggests that a subtle shift in

mobility could lead to wide-scale reconnections of human mobility networks, resulting in the

spread and resurgence of COVID-19 across broad geographies.

By the end of April, all three metrics started to recover (Fig 4a–4f). Both qc and median

edge weight recovered to about 85% of the original state by the end of June. Such recovery in

mobility concerns as large parts of the country are still in their early stages of reopening,

highlighting the challenges of curbing overall mobility in the long run. The resumption of

human mobility might also contribute to the resurge of COVID-19 cases in the country.

Recurrent critical bridges and their adaptations

The results so far demonstrate that the inter-county mobility network experienced abrupt

phase transitions and the thresholds almost returned to their pre-COVID level by the end of

June. Unlike the percolation of classic random or spatial networks, the percolation of inter-

Fig 4. The changes of the percolation metrics using a 7-day moving window to smooth out the weekend/weekday fluctuations. a and b, the changes

of qc with time and the median edge weights of the largest component which reflects the connection strength. c, the changes in the sizes of the largest

strongly connected component for undirected graphs. d,e and f show the directed graph’s scenario for qc, median edge weight and largest component

node size. Grey lines indicate the time series of the undirected graphs while blue ones are for directed graphs. The red vertical line highlights the time of

the national emergency declaration (March 1, 2020) while the blue and red horizontal lines indicate the mean value of each feature before and after the

declaration.

https://doi.org/10.1371/journal.pone.0258868.g004
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county mobility network exhibit a discontinuous, abrupt phase transition. In a continuous

change, a small fraction of link removal only leads to a slight size decrease of SCC. In contrast,

in an abrupt phase transition, a small fraction of link removal may cause a catastrophic col-

lapse of the network at the critical point. Due to the unpredictable structural changes, it is cru-

cial to identify these vital links and pinpoint their removals in the temporal network. We

propose a new method of identifying recurrent critical bridges that are critical links connecting

the mobility network clusters. These links function as corridors for mobility across different

geographies. Understanding their changes sheds new light on mobility perturbation under

external perturbations. Also, managing and controlling the flows of a few critical bridges can

be effective measures in containing COVID-19 spread and future infectious diseases.

Unlike its counterparts in static networks, finding the critical links in dynamic mobility net-

works is challenging. The network’s structure was affected by COVID-19 spread and local poli-

cies, and the perturbation evolved both temporally and spatially. We address this issue by

considering the network stricture at percolation criticality qc, which is the backbone of the

original network [53]. We define the critical links as the edges connecting the largest and sec-

ond-largest clusters when the values of q are just below qc2 and qc. These edges would be

removed once q reaches the thresholds. This method sometimes identifies links that only

appear occasionally owing to the inherent randomness of human mobility. The frequencies of

recurrences can be found in S7 Fig in the S1 File. Therefore, we use the frequency (i.e., the

recurrence rate) of each identified link to determine the overall significance of the links; a link

is only critical if it is identified for more than 10% of the days of the study period. Given the

concurrence of most links of both undirected and directed graphs, we report only the undi-

rected links. Eight recurrent connections are considered critical bridges (see S8 Fig, S1 and S2

Tables in S1 File). The recurrent critical bridges suggest that only a limited number of potential

bridges emerge between the sub-graphs despite the dynamical percolation nature of human

mobility.

We find that such recurrent critical links have adapted to the disease outbreak of COVID-

19. The emergence of new links is usually caused by the discrepancy of mobility patterns

between two sub-components. The surge of COVID-19 cases in one region often caused more

restriction and perturbation in its population’s mobility. The difference in mobility responses

between two subunits is likely to result in unbalanced changes and the emergence of a new

critical link. Fig 5a shows that prior to the COVID-19 outbreak (i.e., Stage 0), the U.S. mobility

network was segmented into three large components: (1) the West particularly centered

around the Pacific region, (2) the Midwest region, and (3) a large part of Eastern and Southern

regions. We also observe that three of the bridging links were located at or close to the border-

line of the components rather than the center. The only exception is the link connecting Mari-

copa County, Arizona, where the city of Phoenix is located, and Doña Ana County, New

Mexico.

In Stage 1, the critical bridges largely stayed the same, except that Georgia became less criti-

cal (Fig 5b). In this stage, The connectivity dropped almost universally across the country after

the national emergency declaration. The universal change reduced the connectivity within and

among the identified components in the network and yet did not change the topology and the

links.

In Stage 2, the critical bridges started to evolve due to the imbalanced perturbation in

mobility. A major change was that the above-mentioned third region separates from the South

Atlantic by two critical bridges (Fig 5c). One of the bridges shifted from within the Pennsylva-

nia State to the border between New York and Pennsylvania State, dividing the two states. The

other one emerged in Virginia State, separating the New England and Middle Atlantic from

the Lynchburg Metropolitan Statistical Area in Virginia. The high infection cases likely caused
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the change in the epicenters (e.g., NYC, Boston, etc.) in the coastal areas at the early stage of

COVID-19, which forced multiple levels of travel restrictions. Another critical link emerged in

Texas, which further separates the West Pacific and the West South Central regions.

The recurrent critical links remained largely the same in the New England, Mid-Atlantic,

and West Pacific divisions during the reopening stage (Stage 3, see Fig 5d) northeast mega-

region remaining as separated clusters. However, there were some structural changes in the

clusters. The most notable change is a new link connecting Iberville, LA, and Lafayette, LA,

separating the East South Central and the East South Atlantic divisions. Also, the link in Mis-

souri observed in Fig 5c reduced its criticality and connected the West South Central region to

the Midwest region. The change is likely to be caused by the shifting of hot spots of infections

during the reopening stage. At this time, the numbers of infection cases surged in the early

reopening southern states such as Louisiana, Georgia, and Florida while remained stable or

decreased in the Northeast and Mid-West regions. The previously identified links connecting

both California and Texas could also increase to COVID-19 infections. The East Coast region’s

critical links remain largely attributed to the fact that early hot spots, e.g., New York and Bos-

ton, took cautious steps and gave strict guidance to reopen.

Fig 5. Recurrent critical links detected at different stages. a, b, c, d, components and recurrent critical links before the national emergency

declaration (i.e., Stage 0), after the declaration from Mar. 13 to Mar. 27, 2020 (i.e., Stage 1), from Mar. 28 to Apr. 10, 2020 (i.e., Stage 2), and from Apr.

11 to Apr. 25, 2020 (i.e., Stage 3), respectively. The recurrent critical bridges in various periods are highlighted in red. These links are the edges of which

the weights are just below the threshold of qc or qc2. The removal of the edge between two nodes will disintegrate the functional components. The

critical links were located near the borderlines between various sub-components. The heat map shows the average daily new infection case per county

during the period on logarithmic scales.

https://doi.org/10.1371/journal.pone.0258868.g005
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Overall, these results suggest that there are only a small number of recurrent critical bridges

at each stage of the pandemic despite the unprecedented changes in mobility networks. They

emerge due to the heterogeneity in both infection rate and mobility response in large clusters.

The topological features to determine the critical transitions and adaptive

bridges

An important question can be raised regarding the recurrent critical bridges: are they the
results of the structures of human mobility networks or simply a byproduct of artificial processes
of any random networks? To answer the question, we explore the topological features that

determine the phase transitions and critical bridges in response to the propagation of COVID-

19. We randomize the original networks and simulate their percolation processes. Then we

adopted the same process as discussed before to identify new critical bridges in the random-

ized networks. Comparing the new bridges to the old ones allows us to validate that the critical

bridges emerge from the network structures and the mobility perturbation caused by COVID-

19 rather than random mechanisms [56]. Three randomization mechanisms were used to

compare to the original network (Fig 6a): (1) randomly shuffling weights on original links (Fig

6b); (2) randomly rewiring the destinations of directed links (Fig 6c); and (3) randomly rewir-

ing the origins of directed links (Fig 6d). The results show that the identified recurrent critical

Fig 6. Results from randomization and their comparison to the original mobility data. a A sub-network of the original mobility network with their

weights illustrated. The sub-network’s percolation process is shown in e and its largest components at qc are shown in i. We applied three types of

randomization to the original networks: randomly assigning weights with distribution unchanged (b), randomly shuffling the weights while each node’s

in-degree remain unchanged (c), and randomly shuffle the weights while each node’s out-degree remain unchanged (d). Examples of the percolation

processes of the three types are shown in f, g, and h respectively, and their largest components at qc are shown in j, k, and l.

https://doi.org/10.1371/journal.pone.0258868.g006
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links after randomization are completely inconsistent with the ones from original networks,

indicating that the emergence of the critical links is not coincidental.

The results show that changing the weight alone without altering the structure would

increase the qc from 107 to greater than 400, varying slighted in different randomizations (Fig

6). The change means it will take more than three times of the population to fragment the

mobility networks into subcomponents and thus limit and control mobility in the U.S. Alter-

ing the outdegrees and indegrees would cause similar changes to qc. Moreover, the phase tran-

sition observed in Fig 6a would become continuous changes in Fig 6c and Fig 6d. A phase

transition means a small sacrifice of mobility can prevent a large proportion of the network

from connecting; indeed, Fig 6a shows that by increasing our mobility threshold from 57 to

58, we can reduce the size of the largest connected component from 1436 to 731. Such effective

control strategies would not be possible in continuous changes.

We furthermore randomize the daily network 1,000 times and observe how the randomized

metrics shift as the daily mobility patterns change. Fig 7a refers to the shuffling demonstrated

in Fig 6b where we can see that prior to the emergency state, the critical threshold remained

lowest around 300. As the network perturbation takes place, the median of the critical thresh-

old starts climbing correspondingly and declines as the mobility networks recover during the

reopening stage. Also, Fig 7b captures the randomization result where the node in-degrees

unaltered and witnesses similar trends with overall larger values of thresholds present. These

results collectively suggest that in an arbitrary scenario, given the mobility perturbation, the

critical thresholds would increase due to the absence of population and spatial propinquity

effects. The increase suggests that in a random scenario, the abrupt changes of mobility net-

works could lead to a rise in the critical threshold. In this case, the perturbation increases the

connectivity of mobility networks instead of reducing it, as we observed in real data. We com-

pare Fig 4a and Fig 7 and find that COVID-19 changed the structure of the inter-county

mobility network so that the qc decreases after national emergency day, indicating that the net-

works become easier to breakdown. In contrast, the corresponding randomized networks

become more robust (larger qc) to link removal after the national emergency day.

Discussion

Our study aggregates the mobility network on the county level and does not consider move-

ment within counties. Hence, the identified links of this study play a critical role in human

travels, and possibly, the spread of COVID-19 between counties. Future research will focus on

the geographies with higher resolution and examine the effect of intra-county mobility. Also,

despite the unprecedented quantity and overall representativeness of our data sets (see S1 and

S2 Figs in S1 File), the data could have selection bias originated from sociodemographic char-

acteristics of the users, device types and functions, and usage behaviors. The high correlation

(r> 0.93) through the six months demonstrates that the data are instrumental on the county

level. Our results are valid for the large population of over 30 million users in this data set at a

minimum.

Our results suggest that the mobility network experienced substantial perturbations, evi-

denced by the great and unusual changes in network features. Several metrics have decreased

by over 50% even though the total population in our data only experienced a small decline.

Our analytic approach from percolation theory allows us to capture universal mobility patterns

even during perturbations. We reveal that the percolation criticality effect remains during the

courses of COVID-19 spread. At each stage of the COVID-19, the overall network’s critical

state is comprised of large components connected by recurrent critical links. The findings
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suggest that the established structures dominate the general patterns of the topology of mobil-

ity networks despite the heterogeneity of travel constraints between nodes.

The study uncovers some fundamental properties of human mobility when experiencing

significant perturbations. For the first time, we show that the inter-county mobility networks

exhibit surprisingly novel abrupt phase transitions. The structure of the network dominates

the behaviors of the networks when disrupted. Particularly, mobility networks became vulner-

able at the early stage of COVID-19, making the system more likely to reach the critical thresh-

old. The drop in travels between counties after the declaration of national emergency has

Fig 7. Temporal changes of randomized percolation metrics. a, the distribution of daily qc from 1,000 iterations of randomization that

preserve network’s weights. b, the distribution of daily qc from 1,000 iterations of randomization that preserve the indegrees of the network.

The black dots represent the daily median value and the shaded areas indicate the interquartile range (IQR).

https://doi.org/10.1371/journal.pone.0258868.g007
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reduced the strength of connections between nodes. The significant decrease of qc means the

network reaches its criticality more easily and is more prone to fragmentation.

The complex behavior of mobility networks prompts our search and identification for a

small, manageable set of recurrent critical bridges. Our analysis also shows that the emergence

and perseverance of the critical links are non-trivial, meaning they do not appear due to ran-

domness but are the product of the spatiotemporal patterns of human mobility. We confirm

their existence and importance by showing their recurrence in different stages (Fig 5). These

key links, located across the United States, played a key role as valves connecting components

in divisions and regions. Also, some bridges were more persistent than others during the six

months. The presence and lasting period correlate with mobility changes responding to stay-

at-home orders and social distancing practices. Lastly, we found that the recurrent critical

bridges do not appear randomly (Fig 5). Instead, they are mostly located at the edge of the

components with relatively low populations. The finding is somewhat counter-intuitive and

provides new insights into managing and controlling the connectivity of mobility-based

networks.

Although the focus of this study is mobility network perturbation caused by COVID-19,

the geographical distributions of the critical links highlighted their potential crucial roles in

managing human mobility and consequently control the spread of COVID-19 [57]. We

observe that the new emerging critical bridges appear to be at the border of the regions and

divisions designated by the Census Bureau and close to the components within which the

COVID-19 hot spots are located. Early identification, control, and even disconnections of

these recurrent critical links these links could dissolve the mobility networks into small com-

ponents and contain physical contacts within sub-components. Practices and policies focusing

on these links can limit disease diffusion locally and thus delay and even prevent cross-compo-

nent infections.

There are still some limitations in this study fostering some directions for further studies.

First, the aggregated GPS data may not include individuals without smartphones and could

overestimate those who have multiple devices. Moreover, our study focuses on the inter-

county mobility network only. The relation between local mobility dynamics and the spread of

COVID-19 also merits scrutiny and can be analyzed by more comprehensive and detailed

modeling of people’s movements locally. Such as map-matching trajectory to POIs with

modeling of temporal visitation patterns. Finally, the aggregation and compression of mobility

data presented in this study limits to only one county. An opportunity for future work is to for-

mulate methods that can capture the detailed spatiotemporal movements of each user.

Conclusion

Human activities, especially mobility-enabled social interactions, have become the “key deter-

minant of disease emergence” [58]. Our percolation-based approaches allow the identification

of critical thresholds for mobility networks. Thus, it provides new knowledge of the complex

networks under the influence of external disruptions. The method can also be utilized to

develop tools to forecast phase transition, i.e., both collapse and recovery, of mobility net-

works. Also, we show it is a powerful tool for fast and accurate identification of critical bridges

in highly dynamic mobility networks. These bridges help predict critical transmission paths on

different scales. They are useful in managing and control mobility during large-scale perturba-

tions caused by other types of natural disasters and extreme events.

PLOS ONE Mobility network in COVID-19

PLOS ONE | https://doi.org/10.1371/journal.pone.0258868 November 9, 2021 14 / 18

https://doi.org/10.1371/journal.pone.0258868


Supporting information

S1 File.

(PDF)

Author Contributions

Conceptualization: Jing Du, Jianxi Gao, Qi Wang.

Data curation: Hengfang Deng, Qi Wang.

Formal analysis: Hengfang Deng.

Funding acquisition: Jing Du, Jianxi Gao, Qi Wang.

Investigation: Hengfang Deng.

Methodology: Hengfang Deng, Qi Wang.

Supervision: Jianxi Gao, Qi Wang.

Validation: Hengfang Deng.

Visualization: Hengfang Deng.

Writing – original draft: Hengfang Deng.

Writing – review & editing: Hengfang Deng, Jing Du, Jianxi Gao, Qi Wang.

References
1. Milanlouei S, Menichetti G, Li Y, Loscalzo J, Willett WC, Barabási AL. A systematic comprehensive lon-

gitudinal evaluation of dietary factors associated with acute myocardial infarction and fatal coronary

heart disease. Nature communications. 2020; 11(1):1–14. https://doi.org/10.1038/s41467-020-19888-2

PMID: 33247093

2. Dong E, Du H, Gardner L. An interactive web-based dashboard to track COVID-19 in real time. The

Lancet infectious diseases. 2020; 20(5):533–534. https://doi.org/10.1016/S1473-3099(20)30120-1

PMID: 32087114

3. COVID TC, Stephanie B, Virginia B, Nancy C, Aaron C, Ryan G, et al. Geographic Differences in

COVID-19 Cases, Deaths, and Incidence-United States, February 12-April 7, 2020. MMWR Morbidity

and mortality weekly report. 2020; 69.

4. Chinazzi M, Davis JT, Ajelli M, Gioannini C, Litvinova M, Merler S, et al. The effect of travel restrictions

on the spread of the 2019 novel coronavirus (COVID-19) outbreak. Science. 2020; 368(6489):395–400.

https://doi.org/10.1126/science.aba9757 PMID: 32144116

5. Merler S, Ajelli M. The role of population heterogeneity and human mobility in the spread of pandemic

influenza. Proceedings of the Royal Society B: Biological Sciences. 2010; 277(1681):557–565. https://

doi.org/10.1098/rspb.2009.1605 PMID: 19864279

6. Belik V, Geisel T, Brockmann D. Natural human mobility patterns and spatial spread of infectious dis-

eases. Physical Review X. 2011; 1(1):011001. https://doi.org/10.1103/PhysRevX.1.011001

7. Bajardi P, Poletto C, Ramasco JJ, Tizzoni M, Colizza V, Vespignani A. Human mobility networks, travel

restrictions, and the global spread of 2009 H1N1 pandemic. PloS one. 2011; 6(1):e16591. https://doi.

org/10.1371/journal.pone.0016591 PMID: 21304943

8. Findlater A, Bogoch II. Human mobility and the global spread of infectious diseases: a focus on air

travel. Trends in parasitology. 2018; 34(9):772–783. https://doi.org/10.1016/j.pt.2018.07.004 PMID:

30049602

9. Wesolowski A, Eagle N, Tatem AJ, Smith DL, Noor AM, Snow RW, et al. Quantifying the impact of

human mobility on malaria. Science. 2012; 338(6104):267–270. https://doi.org/10.1126/science.

1223467 PMID: 23066082

10. Sirkeci I, Yucesahin MM. Coronavirus and Migration: Analysis of Human Mobility and the Spread of

COVID-19. Migration Letters. 2020; 17(2):379–398. https://doi.org/10.33182/ml.v17i2.935

PLOS ONE Mobility network in COVID-19

PLOS ONE | https://doi.org/10.1371/journal.pone.0258868 November 9, 2021 15 / 18

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0258868.s001
https://doi.org/10.1038/s41467-020-19888-2
http://www.ncbi.nlm.nih.gov/pubmed/33247093
https://doi.org/10.1016/S1473-3099(20)30120-1
http://www.ncbi.nlm.nih.gov/pubmed/32087114
https://doi.org/10.1126/science.aba9757
http://www.ncbi.nlm.nih.gov/pubmed/32144116
https://doi.org/10.1098/rspb.2009.1605
https://doi.org/10.1098/rspb.2009.1605
http://www.ncbi.nlm.nih.gov/pubmed/19864279
https://doi.org/10.1103/PhysRevX.1.011001
https://doi.org/10.1371/journal.pone.0016591
https://doi.org/10.1371/journal.pone.0016591
http://www.ncbi.nlm.nih.gov/pubmed/21304943
https://doi.org/10.1016/j.pt.2018.07.004
http://www.ncbi.nlm.nih.gov/pubmed/30049602
https://doi.org/10.1126/science.1223467
https://doi.org/10.1126/science.1223467
http://www.ncbi.nlm.nih.gov/pubmed/23066082
https://doi.org/10.33182/ml.v17i2.935
https://doi.org/10.1371/journal.pone.0258868


11. Jia JS, Lu X, Yuan Y, Xu G, Jia J, Christakis NA. Population flow drives spatio-temporal distribution of

COVID-19 in China. Nature. 2020; p. 1–5. PMID: 32349120

12. Badr HS, Du H, Marshall M, Dong E, Squire MM, Gardner LM. Association between mobility patterns

and COVID-19 transmission in the USA: a mathematical modelling study. The Lancet Infectious Dis-

eases. 2020;. https://doi.org/10.1016/S1473-3099(20)30553-3 PMID: 32621869

13. Gatto M, Bertuzzo E, Mari L, Miccoli S, Carraro L, Casagrandi R, et al. Spread and dynamics of the

COVID-19 epidemic in Italy: Effects of emergency containment measures. Proceedings of the National

Academy of Sciences. 2020; 117(19):10484–10491. https://doi.org/10.1073/pnas.2004978117 PMID:

32327608

14. Kraemer MU, Yang CH, Gutierrez B, Wu CH, Klein B, Pigott DM, et al. The effect of human mobility and

control measures on the COVID-19 epidemic in China. Science. 2020; 368(6490):493–497. https://doi.

org/10.1126/science.abb4218 PMID: 32213647

15. Hadjidemetriou GM, Sasidharan M, Kouyialis G, Parlikad AK. The impact of government measures and

human mobility trend on COVID-19 related deaths in the UK. Transportation research interdisciplinary

perspectives. 2020; 6:100167. https://doi.org/10.1016/j.trip.2020.100167 PMID: 34173458

16. Aleta A, Hu Q, Ye J, Ji P, Moreno Y. A data-driven assessment of early travel restrictions related to the

spreading of the novel COVID-19 within mainland China. Chaos, Solitons & Fractals. 2020;

139:110068. https://doi.org/10.1016/j.chaos.2020.110068 PMID: 32834615

17. Gross B, Zheng Z, Liu S, Chen X, Sela A, Li J, et al. Spatio-temporal propagation of COVID-19 pandem-

ics. EPL (Europhysics Letters). 2020; 131(5):58003. https://doi.org/10.1209/0295-5075/131/58003

18. Huang R, Liu M, Ding Y. Spatial-temporal distribution of COVID-19 in China and its prediction: A data-

driven modeling analysis. The Journal of Infection in Developing Countries. 2020; 14(03):246–253.

https://doi.org/10.3855/jidc.12585 PMID: 32235084

19. Buckee CO, Balsari S, Chan J, Crosas M, Dominici F, Gasser U, et al. Aggregated mobility data could

help fight COVID-19. Science (New York, NY). 2020; 368(6487):145. https://doi.org/10.1126/science.

abb8021 PMID: 32205458

20. Oliver N, Lepri B, Sterly H, Lambiotte R, Deletaille S, De Nadai M, et al. Mobile phone data for informing

public health actions across the COVID-19 pandemic life cycle; 2020.

21. Klein B, LaRock T, McCabe S, Torres L, Friedland L, Privitera F, et al. Reshaping a nation: Mobility,

commuting, and contact patterns during the COVID-19 outbreak. Northeastern University-Network Sci-

ence Institute Report. 2020;.

22. Aleta A, Martı́n-Corral D, y Piontti AP, Ajelli M, Litvinova M, Chinazzi M, et al. Modelling the impact of

testing, contact tracing and household quarantine on second waves of COVID-19. Nature Human

Behaviour. 2020; p. 1–8. https://doi.org/10.1038/s41562-020-0931-9 PMID: 32759985

23. Galeazzi A, Cinelli M, Bonaccorsi G, Pierri F, Schmidt AL, Scala A, et al. Human Mobility in Response

to COVID-19 in France, Italy and UK. arXiv preprint arXiv:200506341. 2020;.

24. Pepe E, Bajardi P, Gauvin L, Privitera F, Lake B, Cattuto C, et al. COVID-19 outbreak response, a data-

set to assess mobility changes in Italy following national lockdown. Scientific data. 2020; 7(1):1–7.

https://doi.org/10.1038/s41597-020-00575-2 PMID: 32641758

25. Eubank S, Guclu H, Kumar VA, Marathe MV, Srinivasan A, Toroczkai Z, et al. Modelling disease out-

breaks in realistic urban social networks. Nature. 2004; 429(6988):180–184. https://doi.org/10.1038/

nature02541 PMID: 15141212

26. Gonzalez MC, Hidalgo CA, Barabasi AL. Understanding individual human mobility patterns. nature.

2008; 453(7196):779–782. https://doi.org/10.1038/nature06958 PMID: 18528393

27. Song C, Qu Z, Blumm N, Barabási AL. Limits of predictability in human mobility. Science. 2010; 327

(5968):1018–1021. https://doi.org/10.1126/science.1177170 PMID: 20167789
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49. Li M, Liu RR, Lü L, Hu MB, Xu S, Zhang YC. Percolation on complex networks: Theory and application.

Physics Reports. 2021;. https://doi.org/10.1016/j.physrep.2020.12.003

50. Cohen R, Erez K, Ben-Avraham D, Havlin S. Resilience of the Internet to Random Breakdowns. Physi-

cal Review Letters. 2000; 85(21):4626–4628. https://doi.org/10.1103/PhysRevLett.85.4626 PMID:

11082612

51. Gao J, Buldyrev SV, Stanley HE, Havlin S. Networks formed from interdependent networks. Nature

physics. 2012; 8(1):40–48.

52. Gao J, Buldyrev SV, Havlin S, Stanley HE. Robustness of a network of networks. Physical Review Let-

ters. 2011; 107(19):195701. https://doi.org/10.1103/PhysRevLett.107.195701 PMID: 22181627

53. Cohen R, Ben-Avraham D, Havlin S. Percolation critical exponents in scale-free networks. Physical

Review E. 2002; 66(3):036113. https://doi.org/10.1103/PhysRevE.66.036113 PMID: 12366190

54. Zeng G, Gao J, Shekhtman L, Guo S, Lv W, Wu J, et al. Multiple metastable network states in urban

traffic. Proceedings of the National Academy of Sciences. 2020; 117(30):17528–17534. https://doi.org/

10.1073/pnas.1907493117 PMID: 32661171

PLOS ONE Mobility network in COVID-19

PLOS ONE | https://doi.org/10.1371/journal.pone.0258868 November 9, 2021 17 / 18

https://doi.org/10.1016/j.apgeog.2016.03.001
https://doi.org/10.1016/j.apgeog.2016.03.001
https://doi.org/10.1073/pnas.1802537115
https://doi.org/10.1073/pnas.1802537115
http://www.ncbi.nlm.nih.gov/pubmed/29987019
https://doi.org/10.1073/pnas.1811455115
https://doi.org/10.1073/pnas.1811455115
http://www.ncbi.nlm.nih.gov/pubmed/30373814
https://doi.org/10.1073/pnas.2009412117
http://www.ncbi.nlm.nih.gov/pubmed/32727905
https://doi.org/10.1371/journal.pone.0017680
http://www.ncbi.nlm.nih.gov/pubmed/21479206
https://doi.org/10.1073/pnas.1419185112
http://www.ncbi.nlm.nih.gov/pubmed/25552558
https://doi.org/10.1073/pnas.1801545116
https://doi.org/10.1073/pnas.1801545116
http://www.ncbi.nlm.nih.gov/pubmed/30591562
https://doi.org/10.1016/j.jtbi.2005.01.011
https://doi.org/10.1016/j.jtbi.2005.01.011
http://www.ncbi.nlm.nih.gov/pubmed/15862595
https://doi.org/10.1088/1361-6633/aa5398
https://doi.org/10.1088/1361-6633/aa5398
http://www.ncbi.nlm.nih.gov/pubmed/28176679
https://doi.org/10.1103/PhysRevE.75.056103
http://www.ncbi.nlm.nih.gov/pubmed/17677129
https://doi.org/10.1103/RevModPhys.87.925
https://doi.org/10.1016/j.physrep.2020.12.003
https://doi.org/10.1103/PhysRevLett.85.4626
http://www.ncbi.nlm.nih.gov/pubmed/11082612
https://doi.org/10.1103/PhysRevLett.107.195701
http://www.ncbi.nlm.nih.gov/pubmed/22181627
https://doi.org/10.1103/PhysRevE.66.036113
http://www.ncbi.nlm.nih.gov/pubmed/12366190
https://doi.org/10.1073/pnas.1907493117
https://doi.org/10.1073/pnas.1907493117
http://www.ncbi.nlm.nih.gov/pubmed/32661171
https://doi.org/10.1371/journal.pone.0258868


55. Callaway DS, Newman ME, Strogatz SH, Watts DJ. Network robustness and fragility: Percolation on

random graphs. Physical review letters. 2000; 85(25):5468. https://doi.org/10.1103/PhysRevLett.85.

5468 PMID: 11136023

56. Barabási AL. Network science. Cambridge university press; 2016.

57. Zhong L, Diagne M, Wang W, Gao J. Country distancing reveals the effectiveness of travel restrictions

during COVID-19. medRxiv. 2020;.

58. Morens DM, Fauci AS. Emerging pandemic diseases: How we got to COVID-19. Cell. 2020;. https://doi.

org/10.1016/j.cell.2020.08.021

PLOS ONE Mobility network in COVID-19

PLOS ONE | https://doi.org/10.1371/journal.pone.0258868 November 9, 2021 18 / 18

https://doi.org/10.1103/PhysRevLett.85.5468
https://doi.org/10.1103/PhysRevLett.85.5468
http://www.ncbi.nlm.nih.gov/pubmed/11136023
https://doi.org/10.1016/j.cell.2020.08.021
https://doi.org/10.1016/j.cell.2020.08.021
https://doi.org/10.1371/journal.pone.0258868

