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Dynamic gesture recognition 
based on 2D convolutional neural 
network and feature fusion
Jimin Yu1,3, Maowei Qin1,3 & Shangbo Zhou2,3*

Gesture recognition is one of the most popular techniques in the field of computer vision today. 
In recent years, many algorithms for gesture recognition have been proposed, but most of them 
do not have a good balance between recognition efficiency and accuracy. Therefore, proposing a 
dynamic gesture recognition algorithm that balances efficiency and accuracy is still a meaningful 
work. Currently, most of the commonly used dynamic gesture recognition algorithms are based on 
3D convolutional neural networks. Although 3D convolutional neural networks consider both spatial 
and temporal features, the networks are too complex, which is the main reason for the low efficiency 
of the algorithms. To improve this problem, we propose a recognition method based on a strategy 
combining 2D convolutional neural networks with feature fusion. The original keyframes and optical 
flow keyframes are used to represent spatial and temporal features respectively, which are then sent 
to the 2D convolutional neural network for feature fusion and final recognition. To ensure the quality 
of the extracted optical flow graph without increasing the complexity of the network, we use the 
fractional-order method to extract the optical flow graph, creatively combine fractional calculus and 
deep learning. Finally, we use Cambridge Hand Gesture dataset and Northwestern University Hand 
Gesture dataset to verify the effectiveness of our algorithm. The experimental results show that our 
algorithm has a high accuracy while ensuring low network complexity.

In addition to the use of language, human beings use gestures as an indispensable communication tool when 
communicating and conveying information. In the field of computer vision, gesture recognition is also one of the 
most important and topical problems and has been used in many fields, such as human–computer interaction1, 
virtual reality systems2,3, and sign language recognition4. Traditional gesture recognition requires the use of data 
gloves5 or other relevant external devices to collect the spatial position changes of the hand and arm joints to 
determine the real intention of the wearer. This traditional approach has high recognition accuracy, but is costly 
and poorly scalable and easy to use. In recent years, with the rapid development of computer vision, techniques 
to obtain accurate gesture recognition without the aid of external devices have been proposed one after another. 
Among the many gesture recognition methods, they can be divided into two categories: static gesture recogni-
tion and dynamic gesture recognition. Static gesture recognition methods have significant limitations6,7. It can 
only simply recognize a single shape of the hand, but cannot obtain its spatial and state variation. For example, 
it can recognize whether the hand is in a ‘held’ or ‘unfolded’ state, but not the process of change from ‘held’ to 
‘unfolded’. Dynamic gesture recognition considers the spatial and temporal information of the whole process 
and can recognize the change process of the target object, which has important research implications.

Before the rapid development of deep learning, research on dynamic gesture recognition mainly relied on 
manual extraction of features and then building sequence models for recognition. The accuracy of this approach 
was low and inefficient, so the commonly used methods now rely mainly on deep learning. As dynamic gesture 
data is generally presented in video form, it is difficult for 2D convolutional neural networks (CNNs) to extract 
sufficient feature information, which has prompted researchers to explore new directions. With Du Tran et al.8 
proposing the C3D network model, which solved the problem of retaining both temporal and spatial features, the 
dynamic gesture recognition problem was widely solved by deep learning methods. the C3D model was also the 
earliest 3D CNN model. However, the 3D CNN model is too complex, the training time is too long and the hard-
ware requirements are very high. These key issues still constrain the development of dynamic gesture recognition.

To improve the problem of large network model parameters and training difficulties, we propose a strategy 
based on dual-channel 2D CNN and feature fusion. First, the optical flow frames of the video data were extracted 
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using the fractional Horn and Schunck (HS) optical flow method9, and then five original key frames and optical 
flow key frames were extracted separately using an improved clustering algorithm and subjected to a horizontal 
stitching operation. Finally, the stitched original keyframe feature map is used to represent the spatial features 
in the video data, and the optical flow keyframe stitching map represents the temporal features in the video data. 
This method not only preserves the spatial and temporal features of the video, but it also greatly reduces the size 
of the dataset and improves the training efficiency. Most current algorithms on dynamic gesture recognition using 
2D CNN serialize the video datasets as a chart or a single image, which loses the information on the variation of 
key spatio-temporal features. Our proposed algorithm intuitively extracts the temporal and spatial information 
in the video datasets and fuses the two, making full use of the key features in the video datasets. Experimental 
results show that our proposed strategy is accurate and effective on the Cambridge Hand Gesture dataset10 and 
Northwestern University Hand Gesture dataset11. To summarize, the main contributions of this paper are:

•	 An improved the HS model is proposed with the fractional order method, in which fractional-order and 
deep learning are creatively combined;

•	 An improved clustering algorithm is proposed based on a tradition model, which can effectively extract the 
keyframes of complex actions;

•	 A strategy for network input is proposed to use the original keyframe mosaic image and the optical flow 
keyframe mosaic image instead of the video data, which effectively reduces the size of the data set and the 
difficulty of training.

Related work
One of the most popular technologies, gesture recognition has been in development for decades. During this 
time, gesture recognition has developed to an unprecedented level and various novel algorithms have been 
proposed. Here we present a relevant summary in two parts: algorithms that do not use deep learning and 
algorithms that do.

Gesture recognition without deep learning.  Wang et al.12 used the Hidden Markov Model algorithm 
for modeling and reconstructing the dynamic gesture trajectories. The global feature is represented by an invari-
ant curve moment, and the local feature is represented by a direction to represent the gesture trajectory for 
recognition. Oreifej et al.13 used the histogram method to replace the sequence model to represent the space and 
time information represented in the depth sequence to achieve the purpose of identification. Chen et al.14 used 
the hand segmentation algorithm to obtain the shape feature and time feature of the data set, used the Fourier 
descriptor method to extract the feature vector from it and used the hidden Markov chain for recognition. Rah-
man et al.15 used biorthogonal wavelet transform to preprocess the image and finally constructed a multi-class 
support vector machine for recognition. These forementioned methods already have a certain degree of accu-
racy, but the robustness is poor.

Gesture recognition with deep learning.  Cheng et al.16 combined sEMG feature images and convolu-
tional neural networks for gesture recognition, which effectively addressed the limitations of traditional machine 
learning in sEMG gesture recognition and combined with 1-dim convolutional kernel to extract deep abstract 
features to improve the recognition effect. Liao et al.17 analyzed the single multi-box detector (SSD) algorithm 
and compared the front-end networks. MobileNets was chosen as the front-end network and the MobileNets-
SSD network was improved. Effectively improves the problem of hand shading. Li et al.18 extracted the sEMG 
signals of forearm muscles based on human hand movements and used the root mean square, wavelength and 
nonlinear feature sample entropy in the time domain as the three feature values. Finally, high accuracy rate of 
hand motion recognition was successfully achieved by GRNN and SVM. Huang et al.19 improved the YOLO v3 
algorithm to determine whether a worker meets the criteria for wearing a helmet based on an empirical thresh-
old. There was a more significant improvement compared with the original YOLO v3 algorithm. huang et al.20 
designed a framework for semantic segmentation network of images with joint target detection. By adding paral-
lel operations of semantic segmentation branches to the target detection network, a multi-vision task combining 
object classification, detection and semantic segmentation is innovatively implemented. It effectively improves 
vision tasks in complex environments. Yang et  al.21 proposed a multistream residual network (MResLSTM) 
for dynamic hand action recognition. The network combines residual and convolutional short-term memory 
models into a unified framework and uses a strategy of clockwise grouped convolution and channel shuffling 
to reduce the number of network computations. The final result is a highly accurate recognition. Weng et al.22 
developed a cascaded two-level convolutional neural network model and proposed an Angle-Net model to finely 
estimate the grasping angle in response to the lack of accuracy of previous methods in pose detection. It effec-
tively improves the problem of multiple objects stacked and obscured by each other, which makes it difficult for 
the robot to recognize the target when grasping. Duan et al.23 constructed a weighted adaptive algorithm incor-
porating different features to optimize the RGB-D information processing. Finally, the feasibility and robust-
ness of the algorithm are verified by means of experiments. Liu et al.24 proposed a new end-to-end dual-stream 
structure called the fusion of space-time network. This network closely fuses spatial and temporal features to 
obtain rich spatio-temporal information and achieve accurate recognition results. Karpathy et al.25 proposed a 
multi-resolution CNN network that can be used to process large-scale data. Compared with the network using 
strong features, its performance has been significantly improved. Simonyan et al.26 constructed a dual-stream 
CNN model. The two-channel model is a spatial network trained on the original frame and a temporal network 
trained on the optical flow frame. Inspired by the dual-stream convolutional network, Wang et al.27 constructed 
a temporal segment network (TSN), which is a new video-based action recognition framework, which aims to 
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adopt a segment-based sampling and aggregation module Model the long-distance time structure. Molchanov 
et al.28 combined a high-resolution network (HRN) and low-resolution network (LRN) to construct a new CNN-
based classification network. The recognition result is obtained by the probabilistic fusion of the two branches. 
Gesture recognition with deep learning has great advantages in terms of stability and scalability and is the main-
stream method in the field of computer vision.

Proposed approach
Statement.  Confirming that all experiments were performed in accordance with relevant guidelines and 
regulations.

Network structure.  When performing dynamic gesture recognition, in order to enable 2D CNN to analyze 
the spatial and temporal information of video data at the same time, we propose a fusion strategy as shown in 
Fig. 1. Firstly, we extract the original frames of the video. Then the fractional HS optical flow method is used to 
extract the optical flow frames corresponding to the original frame. Finally, the proposed clustering algorithm is 
used to extract original frames and optical flow frames as the keyframes of the video and carry out the horizon-
tal splicing operation. For a video data, its spatial dimension feature will be represented by the spliced original 
keyframe image, and time dimension feature be represented by the optical flow keyframe image. We use the 
feature fusion of the two kind keyframe images to represent the feature of the video data, and send it to the 2D 
recognition network for recognition.

The structure of the recognition network is shown as in Fig. 2. The spatial feature extraction network and 
the temporal feature extraction network have the same structure, and both are composed of three Squeeze-and-
Excitation (SE) blocks. Since we have done a horizontal splicing operation on the keyframes, the length of the 
input picture is much greater than the width, so the convolutional layer of SE block 1_1 consists of 32 3× 7 
convolution kernels with a step size of 1. Enable the convolutional layer to extract more features in the lateral 
direction. To enable the extracted features to better, reflect the global information of the feature map, we have 
added the SE module to allow the network to perform feature recalibration. Through the SE module, the net-
work can selectively emphasize useful global features and suppress less useful features. The convolutional layer 
of SE block 1_2 is composed of 64 3× 5 convolution kernels with a step length of 1. The convolutional layer of 
SE block 1_3 consists of 128 3× 3 convolution kernels with a step size of 1. Finally, after two full connections, 
spatio-temporal feature fusion is performed and the fused features are input to the full connection layer to realize 
the classification of gesture actions. To reduce the possibility of network overfitting, a batch normalization layer 
and a dropout layer are added to the network.

The structure of the SE module29 in Fig. 2 is shown in Fig. 3.
As shown in Fig. 3, X is mapped to the feature map U through any given transformation, such as convolution. 

For the feature U, we first make a feature descriptor by a squeezing operation. Then an excitation operation is 
followed, which uses a simple self-gating mechanism, takes feature descriptors as input, and generates a set of 
modulation weights for each channel. Finally, these weights are applied to generate the output of the SE module. 
These outputs can be sent directly to the subsequent layers of the network. By the above operation steps, useful 
global features can be selectively extracted.

The specific structure of the SE block we constructed is shown in Fig. 4.
As shown in Fig. 4, we firstly use global average pooling as a Squeeze operation. Secondly, we use two fully 

connected layers to form a Bottleneck structure to model the correlation between channels. Thirdly, the sigmoid 
function is used to obtain the normalized weight between 0 and 1. Finally, a Scale operation is used to weigh the 
normalized weights to the features of each channel. The r in Fig. 4 is the reduction ratio, which is used to reduce 
the computational cost of the network. We take r = 8.

Figure 1.   Overview of the proposed feature fusion strategy.
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Fractional HS optical flow model.  Derivation process.  Optical flow is a two-dimensional velocity field 
generated by the movement of the target object. Through the analysis of the two-dimensional velocity field, 
information such as the speed and direction of the target object’s movement can be obtained. Since the meth-
ods of Horn and Schunck (HS)30 and Lucas and Kanade (LK)31 were proposed, the optical flow algorithm has 
developed rapidly on this basis. However, the performance of most methods is easily affected by image noise, 
illumination changes, irregular movement of the target object, etc., and it is difficult to completely extract the 
detailed features of the target object. Here we have improved the traditional HS algorithm, using fractional cal-
culus to replace the integer calculus in the HS algorithm. The use of fractional order to improve the optical flow 
algorithm is to ensure the light weight of the network structure and the accuracy of recognition, because using 
deep learning methods to extract the optical flow map increases the parameters of the network. The quality of the 
optical flow map extracted using the traditional optical flow algorithm is not good, which affects the recognition 
accuracy, so we use the fractional order method to improve the traditional method, thus extracting a high qual-
ity optical flow map without increasing the parameters of the network. Because fractional calculus has a higher 
degree of neighborhood pixel correlation and higher calculation accuracy, the extracted target object has more 
complete details. The model implementation process is as follows.

Assuming that the gray value of the pixel 
(

x, y
)

 in the image at time t is I
(

x, y, t
)

 . After a very short time �t , 
the gray value becomes I

(

x +�x, y +�y, t +�t
)

 . Since �t changes in a very short time, it is considered that 
the following equation holds:

Using Taylor expansion to expand the left side of formula (1), we get

According to formula (2), the constraint equation of optical flow can be obtained as:

(1)I(x +�x, y +�y, t +�t) = I(x, y, t)..

(2)I(x, y, t)+
∂I

∂x
dx +

∂I

∂y
dy +

∂I

∂t
dt = I(x, y, t).

(3)Ixu+ Iyv + It = 0,

Figure 2.   Recognition network structure.

Figure 3.   A squeeze-and-excitation module.
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where Ix =
∂I
∂x , Iy =

∂I
∂y , It =

∂I
∂t , u =

dx
dt , v =

dy
dt .

It can be seen from formula (3) that a constraint equation has two unknown parameters (u and v), but two 
unknowns cannot be solved according to one equation, so other constraint equations need to be introduced to 
solve for these two unknowns. Horn and Schunck30 proposed a global smoothing constraint, that is, the changes 
of u and v with the movement of pixels are slow, and the changes in the local area are not large, especially when 
the targets do not deform rigid motion, the space velocity of the local area the rate of change is 0. The global 
smoothing constraint equation is shown as below:

For all pixels, the sum of the optical flow constraint term and the velocity smoothing constraint term needs to 
be satisfied as a minimum, so the following minimization equation can be established:

where � ∈ R , � is the coefficient of the smoothing constraint term.
The improved fractional HS optical flow model is shown as below:

where α is the fractional order. When α=1 , formula (6) is same to formula (5).
In order to obtain the Euler–Lagrangian equation corresponding to formula (6), we assume that u∗(x, y) and 

v∗(x, y) are expected functions, so that for any test function η(x, y) and ϕ(x, y) ∈ C∞ , u and v are defined as

where ε ∈ R . Thus, for formula (7), their Riemann–Liouville fractional derivative with respect to x and y are

(4)ζ 2c =
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(7)
u(x, y) = u∗(x, y)+ εη(x, y)

v(x, y) = v∗(x, y)+ εϕ(x, y),

Figure 4.   SE block.
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Substituting formulas (7) and (8) into (6), we can get the following equation:

In order to find the extreme value of formula (9), differentiate it and set ε = 0 , we get

Putting ζ 2′(0) = 0 and the coefficients η and ϕ are arbitrary values, we get

The above derivation results are our improved model for extracting optical flow.

Comparison experiment.  To intuitively compare the effects of the optical flow extraction by the improved HS 
model with that by other models, we randomly select a video in the Northwestern University Hand Gesture 
dataset11, extract two frames of images in the video, and employ the traditional HS model and LK model as the 
compared models. The comparison result is shown as in Fig. 5.

It can be seen intuitively from Fig. 5 that the details of the optical flow diagram extracted by the HS model 
and the LK model are poorly processed. The optical flow diagram extracted by our model is relatively complete, 
and the extraction of details is also relatively complete, which illustrates the effectiveness of our model.

Key frame extraction.  Although video-type data has a strong ability to transmit information, there is too 
much redundant information. To reduce redundant information and make the transmission of information 
more efficient, it is necessary to process the video. The extraction of keyframes is one of the important means of 
processing video data. Because the keyframe extraction is to extract the representative frames in the video, which 
is consistent with the idea of clustering, the clustering algorithm can be applied to the extraction of keyframes. 
The algorithm fully considers the connection between frames and can describe the main content of the video 
specifically.

Traditional clustering algorithms require certain prior knowledge to determine the initial parameters. Most of 
the initial parameters need to be manually specified, and it is difficult to determine whether the initial parameters 
are optimal. To obtain effective keyframes, we have improved the traditional clustering algorithm. Because the 
hierarchical clustering algorithm does not need to specify the optimal initial parameters in advance, we first 
use the hierarchical clustering algorithm to get the initial clustering results. Then the initial clustering result is 

(8)
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Figure 5.   Comparison of optical flow diagrams. (a) traditional HS model, (b) traditional LK model, (c) our 
model.
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used as the input of the traditional clustering algorithm. At this time, the initial parameters of the traditional 
clustering algorithm can be specified by the initial clustering results.

To facilitate the experiment and reduce the amount of calculation, we use the HSV histogram method to 
reduce the dimensionality of the image data. First, the RGB color space is mapped to the HSV color space. Then 
the H component is divided into 12 parts, and the S and V components are divided into 5 equal parts. Finally, 
the minimum value at the corresponding index of the HSV histogram of the two frames is accumulated, and the 
value is between 0 and 1. The calculation formulas are as follows.

where f is the target frame, Cont is the contrast frame, and h is the similarity.
The specific process of the improved keyframe extraction algorithm is shown as in Algorithm 1.

The key frame extraction algorithm is proposed to make the motion trajectory of the extracted key frame 
sequences closer to the original motion trajectory, thus making it a better alternative to the video datasets for 
accurate dynamic gesture recognition. To visually compare our clustering algorithm with the traditional k-means 
clustering algorithm, we have chosen the “clockwise circle” and “cross” types for comparison. The experimental 
results are shown as in Figs. 6 and 7.

To further illustrate the advantages of our algorithm, we select the trajectory of a point on the hand (point 
“X” in Figs. 6 and 7) in the keyframe sequence to show the effect of the algorithm. The trajectories corresponding 
to Figs. 6 and 7 are shown as in Figs. 8 and 9, respectively.

As can be seen from Figs. 8 and 9, for both examples, the movement trajectories of the keyframes obtained 
by our proposed algorithm are easier to recognized.

Data augmentation.  In the training process of the network, data enhancement is one of the common 
methods to prevent overfitting. Commonly used data enhancement methods generally include translation, rota-
tion, flipping, and adding noise. For the proposed dynamic gesture recognition method, the feature map used is a 

(12)

SH (f ,Cont) =

12
∑
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min (H(i), Cont −H(i))

SS(f ,Cont) =

5
∑
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min
(
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continuous process from left to right, and operations such as rotation and flipping will change the characteristics 
of the image data. Therefore, we use the operations of shifting pictures, blurring pictures, and adding noise to 
achieve data enhancement, which expands the data set by 4 times and effectively reduces the possibility of over-
fitting. The effect of data enhancement is shown as in Fig. 10.

It can be seen from Fig. 10 that the image enhancement technology we used adds three new image data with-
out changing the characteristics of the image information, which improves the diversity of the datasets. Generated 
frames from the same frame are included in the same subset (training, validation, or testing).

Experiments and analysis
In this section, we will firstly introduce the two selected public datasets. Secondly, we will explain in detail how 
to use these two datasets to complete related experiments. Finally, we compare our network with other networks 
in terms of model parameters, training accuracy, and other aspects to objectively verify the pros and cons of 
our model.

Datasets.  To verify the effectiveness of the proposed method, we conducted related experiments on two 
public datasets (Cambridge Hand Gesture datasets10 and Northwestern University Hand Gesture datasets11).

Cambridge Hand Gesture datasets10 contain a total of 9 gesture categories, consisting of 3 gesture shapes (flat, 
expand, V-shaped) and 3 basic actions (left, right, contract). There are 100 sets of data for each category, and the 
data is saved in the form of video clips, with a total of 900 video clips.

Northwestern University Hand Gesture datasets11 include 10 gesture categories, namely: move right, move left, 
rotate up, rotate down, move downright, move right-down, clockwise circle, counterclockwise, “Z” and cross. In 
each category, 15 persons participated in the collection and made 7 gestures (fist, hand, hold, index, side hand, 
side index, and thumb). There are 105 videos in each category, and there are a total of 1050 videos in the data set.

Both of these two datasets have a certain degree of complexity and can comprehensively verify the pros and 
cons of the proposed model. 60% of the database is used as the training set, 20% as the validation set, and 20% 
as the test set. The distribution details of the datasets in the experiment are shown as in Table 1.

Experimental environment.  Our experimental environment is: GeForce GTX 1080 Ti GPU, 2.40GHz 
6-core CPU, Python 3.6, cuda 10.1, cuDNN 7.6, Tensorflow-GPU 2.3.0.

The specific structure of the proposed network is shown as in Fig. 2. During the training process, the initial 
learning rate is 0.001, the batch size is 2, and the number of iterations is 500. The optimizer selects Adam and 
sets the parameter β1 = 0.9,β2 = 0.999.

For the processing of the datasets, firstly, we use the improved optical flow method to extract optical flow 
frames from the two datasets. Then we use the proposed clustering algorithm to extract the keyframes of the 
original frames and the optical flow frames, and the image size of each frame is 640× 480 . Before the splicing 
operation, to ensure that the spliced image is not too large, the size of the keyframes is modified to 180× 180 . 
After completing the splicing operation, the Cambridge Hand Gesture datasets10 obtained 900 original feature 
maps and 900 optical flow feature maps, and the Northwestern University Hand Gesture datasets11 obtained 1050 
original feature maps and 1050 optical flow feature maps, respectively. Finally, the data is enhanced by blurring 
the image, adding noise, and shifting the image and the datasets are enlarged by 4 times. During training, 4320 
feature maps in the Cambridge Hand Gesture datasets10 are selected as the training set, 1440 feature maps as the 
validation set and 1440 feature maps as the testing set. We select 5040 feature maps in Northwestern University 
Hand Gesture datasets11 as the training set, 1680 feature maps as the validation set and 1680 feature maps as 
the testing set.

Experiment evaluation.  When analyzing the network performance, in order to determine how many key-
frames work best when extracted for training. We chose to use 3, 4, 5, 6, 7 keyframes for the comparative analy-
sis. The accuracy curves are shown as in Fig. 11.

As can be seen from Fig. 11, when the number of keyframes is 3 and 4, the accuracy obtained will be sig-
nificantly smaller than the other 3 cases. When the number of keyframes is 6 and 7, the accuracy is not much 
different from that when the number of keyframes is 5. So after comprehensive consideration, we choose the 
number of keyframes as 5 for the relevant experiments.

Figure 6.   Clockwise circle. (a) Traditional clustering algorithms, (b) our clustering algorithm.
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When designing the network structure, in order to determine how many SE blocks can be used for each 
branch to get better recognition. We chose to use 1, 2, 3, 4, 5 SE blocks respectively for the experiment, and the 
results are shown in Table 2.

From Table 2, it can be seen that when each branch is made up of 3 SE blocks, there is a great improve-
ment compared to 1 and 2. However, when each branch is composed of 4 and 5 SE blocks, the improvement in 
accuracy is not significant and increases the parameters of the network. Therefore, we use the structure of 3 SE 
blocks per branch.

To intuitively show the effectiveness of our method, we have compared it with some other methods using 
these two datasets, the comparison results are as shown in Tables 3 and 4.

It can be seen from Tables 3 and 4 that the accuracy of the proposed method is 97.6% on the Northwestern 
University datasets and 98.6% on the Cambridge datasets, both of which are better than other methods.

Furthermore, we compare the proposed model with the common used 3D model for dynamic gesture rec-
ognition in term of accuracy, parameters, and FLOPs. The comparison results on the Northwestern University 
Hand Gesture datasets are shown as in Table 5.

It can be obtained a conclusion from the results in Table 5 that our model has the smallest parameters and 
FLOPs while ensuring high accuracy. It shows that the recognition efficiency of our method is more efficient.

To compare the efficiency of the various algorithms more intuitively, we calculated the time taken by the 
model to classify a test sequence. The results are shown in Table 6. The time of our algorithm is 9.93 s on the 
Northwestern University gesture dataset and 4.02 s on the Cambridge gesture dataset, both of which are more 
significant improvements over previous algorithms. When conducting experiments we found that the feature 
extraction process and the size of the feature map have a large impact on the time required. Therefore, the 
keyframe extraction algorithm and the fusion rules of the feature maps can be given priority in the subsequent 
improvements.

To intuitively test the accuracy of each category recognition, we made a new 100 keyframe mosaics for each 
category of the Northwestern University data set and Cambridge Hand Gesture data set to make predictions. The 
confusion matrix of the prediction results is as Tables 7 and 8, where we note the ten categories of move right, 
move left, rotate up, rotate down, move down-right, move right-down, clockwise circle, counterclockwise circle, 
“Z” and cross with A, B, C, D, E, F, G, H, I, and J, respectively. Similarly, we denote the Cambridge gesture data-
sets “‘ flat and leftward ”, “flat and rightward”, “flat and contract”, “spread and leftward”, “spread and rightward”, 
“spread and contract”, “V-shape and leftward”, “V-shape and rightward” and “ V-shape and contract ” these nine 
categories are denoted by A, B, C, D, E, F, G, H, and I, respectively.

It can be seen from the recognition confusion matrix that most categories can achieve accurate prediction, 
but D and E (“rotate down” and “move down-right”) in Table 7 are easy to be confused. We compare the feature 
maps of these two categories and found that when represented by a keyframe mosaic map, the movement tra-
jectories of the two categories are similar, which is more likely to cause misrecognition. The comparison of the 
feature maps of these two categories is shown as in Fig. 12.

For improving this problem to get a better performance, to add feature maps of these two types of actions 
may be a good method to make the network can learn more detailed features.

Ablation study.  To verify the effectiveness of the fractional-order HS optical flow algorithm and the key 
frame extraction algorithm we used, we conducted ablation experiments to analyze the effect of the optical flow 
algorithm and the key frame extraction algorithm on the recognition accuracy. As shown in Tables 9 and 10.

To illustrate the effectiveness of the proposed spatial feature and temporal feature fusion strategy, we conduct 
ablation experiments to analyze the impact of the original keyframes and optical flow keyframes on the recogni-
tion accuracy, and the results are shown as in Table 11.

It can be seen from Table 11 that the proposed fusion strategy of the original keyframe and the optical flow 
keyframe can get over 10% than the training alone in accuracy. Indicating that the proposed fusion strategy can 
effectively improve the recognition accuracy.

To enable the network to selectively extract useful global features, we added the SE module to the network 
model. It can also be concluded from the results shown as in Table 11 that the final accuracy of the recognition 
network with the SE module is approximately 1.5% higher than that of the recognition network without the SE 
module.

Figure 7.   Cross. (a) Traditional clustering algorithms, (b) our clustering algorithm.
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Figure 8.   Clockwise circle movement trajectory. (a) Traditional clustering algorithms, (b) proposed clustering 
algorithm.

Figure 9.   Cross movement trajectory. (a) Traditional clustering algorithms, (b) proposed clustering algorithm.

Figure 10.   Data enhancement. From top to bottom: original image, blur operation, add noise, translation 
operation.
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Conclusion
For the problems of high network complexity, high computational difficulty, and slow training speed in the 
current dynamic gesture recognition field, we propose a dynamic gesture recognition method based on feature 
fusion and a 2D convolutional neural network. We use the fractional-order model to extract the optical flow 
frames of the video, and creatively incorporate the fractional-order into the neural network. Then extract the 
keyframes of the original frame and the optical flow frame, and replace the video with the keyframe mosaic, 
which greatly reduces the redundant information in the video data. With experimental verification results, the 
accuracy of the proposed method is 97.6% on the Northwestern University datasets and 98.6% on the Cambridge 

Table 1.   Specific information of the data set used in the experiment.

Dataset Categories Videos Training Validation Testing

Cambridge 9 900 540 180 180

Northwestern 10 1050 630 210 210

Figure 11.   Accuracy curve. (a) Northwestern University datasets, (b) Cambridge datasets.

Table 2.   Accuracy comparison of network structure. Significant values are in bold.

SE block

Top-1 accuracy

Northwestern Cambridge

One 83.87% 84.61%

Two 91.14% 92.49%

Three 97.64% 98.62%

Four 97.81% 98.74%

Five 97.83% 98.72%

Table 3.   Compares our method with state-of-the-art methods on the Northwestern University Hand Gesture 
datasets. Significant values are in bold.

Northwestern Methods Top-1 accuracy

Shen et al.11 Motion Divergence fields 95.8%

Liu et al.32 Genetic programming 96.1%

Tang et al.33 Key frames + Feature fusion 96.9%

Ours Key frames splicing + feature fusion 97.6%
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datasets, which surpasses other methods using the two datasets. In terms of network parameters, our network 
parameters are only 0.44 M, which is tens of times smaller compared to the commonly used 3D CNN model, 
and also the FLOPs are very much smaller. To further demonstrate the efficiency of our proposed algorithm, we 
compare the computation time for classifying a test sequence. The results show that our proposed algorithm has 
some improvement in the time required for recognition under the condition of the highest accuracy. To show 

Table 4.   Compares our method with state-of-the-art methods on the Cambridge datasets. Significant values 
are in bold.

Cambridge Methods Top-1 accuracy

Kim et al.10 Tensor canonical correlation analysis 82.4%

Liu et al.32 Genetic programming 85.5%

Lui et al.34 Tangent bundle 91.3%

Wong et al.35 Probabilistic latent semantic analysis 91.4%

Baraldi et al.36 Dense trajectories + hand segmentation 94.1%

Zhao et al.37 Information theoretic 96.2%

Tang et al.33 Key frames + feature fusion 98.2%

Ours Key frames splicing + feature fusion 98.6%

Table 5.   The performance of gesture recognition on the Northwestern University datasets. Significant values 
are in bold.

Model Top-1 accuracy Params (M) FLOPs (G)

C3D8 89.36% 63.74 38.59

P3D38 97.62% 24.98 8.15

I3D39 98.88% 12.36 27.82

Ours 97.64% 0.44 4.22

Table 6.   Computation time for classifying a test sequence.

Method

Time

Northwestern Cambridge

Zhao et al.37 11.78 s 5.34 s

Liu et al.32 13.32 s 6.45 s

Tang et al.33 10.89 s 4.31 s

Ours 9.93 s 4.02 s

Table 7.   Identification confusion matrix of the Northwestern University hand gesture dataset. Significant 
values are in bold.

A B C D E F G H I J

A 96 0 1 2 1 0 0 0 0 0

B 1 96 3 0 0 0 0 0 0 0

C 4 1 95 0 0 0 0 0 0 0

D 2 0 0 93 5 0 0 0 0 0

E 1 1 0 7 91 0 0 0 0 0

F 1 0 0 2 0 94 3 0 0 0

G 0 0 0 1 0 3 95 1 0 0

H 2 0 0 0 0 1 2 95 0 0

I 0 0 0 1 2 0 2 0 95 0

J 0 0 0 2 0 0 0 0 0 98
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the effectiveness of the proposed spatial feature and temporal feature fusion strategy, we conduct an ablation 
experiment to compare the accuracy of recognition with only spatial features and only temporal features. The 
results show that the accuracy of the proposed fusion strategy is higher than that of only spatial and temporal 
features on the Northwestern University datasets and the Cambridge datasets.

Table 8.   Identification confusion matrix of the Cambridge hand gesture dataset. Significant values are in bold.

A B C D E F G H I

A 97 0 1 1 0 0 1 0 0

B 1 96 0 0 2 0 0 1 0

C 0 0 96 0 0 2 0 1 1

D 3 1 0 92 0 0 3 0 1

E 0 2 0 0 96 0 0 2 0

F 1 0 2 0 0 94 0 0 3

G 2 1 1 1 0 0 95 0 0

H 0 0 0 0 4 1 2 93 0

I 0 0 1 0 0 4 0 0 95

Figure 12.   The sample frames of the confused gestures. (a) rotate down, (b) move downright.

Table 9.   Accuracy comparison of optical flow algorithm. Significant values are in bold.

Method

Top-1 accuracy

Northwestern Cambridge

HS algorithm 94.59% 95.03%

LK algorithm 96.11% 96.83%

Our algorithm 97.64% 98.62%

Table 10.   Accuracy comparison of keyframe algorithm. Significant values are in bold.

Method

Top-1 accuracy

Northwestern Cambridge

K-means algorithm 93.44% 94.81%

Our algorithm 97.64% 98.62%
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