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Microfluidic Analyte Transport to Nanorods for Photonic and
Electrochemical Sensing Applications
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Abstract: There has recently been a growing use of surface
bound nanorods within electrochemical and optical sensing
applications. Predictions of the microfluidic rate of analyte
transport to such nanorods (either individual or to an array)
remain important for sensor design and data analysis ; how-

ever, such predictions are difficult, as nanorod aspect ratios
can vary by several orders of magnitude. In this study,

through the use of numerical simulation, we propose an ex-
plicit analytical approach to predict the steady-state diffu-
sion-limited rate of mass transport to (individual) surface
bound nanorods of variable aspect ratio. We show that,
when compared to simulation, this approach provides accu-

rate estimations across a wide range of P8clet numbers.

Introduction

Over the past decade, advancements in nanofabrication tech-
niques have spawned a growing use of surface-bound nano-

particles for sensing purposes. Of these nanoparticles, gold
nanorods have received a significant amount of attention for

both optical[1] and electrochemical[2] applications, primarily due
to their high surface-area-to-volume ratio, biocompatibility,

and efficient mass transport characteristics. Although there

have been a number of sensors based on the use of a single
nanorod,[3] the majority of previous studies have used arrays of

nanorods.[4]

We recently demonstrated that analyte transport to an array

of NPs is dependent on the size and shape of the individual
NPs composing the array.[5] This dependency becomes espe-
cially relevant for nanorod-based sensors, as the aspect ratio of

individual nanorods (and thus rates of analyte interaction) can
have orders of magnitude variations across different applica-
tions. Accurate prediction of rates of transport can greatly aid
in both sensor design and optimization, as well as the analysis

of experimental data.[6] Although modern numerical simula-

tions can provide accurate predictions, they do so on a case-

by-case basis. In contrast, the availability of an analytical solu-

tion for such predictions holds more power.
Solutions for steady-state diffusion-limited rates of transport

have been found for a variety of surfaces pertinent to micro-
and nanoparticle-based sensors. Analytical solutions derived

from fundamentals often involve pure diffusive transport in in-
finite domains (void of convection) to simple shapes having

convenient symmetry, including embedded disks and strips,

hemispheres,[7] hemispheroids,[8] embedded rings,[9] ellip-
soids,[10] sphere caps,[11] and hemitoroids.[12] Prediction of trans-

port to more complicated shapes requires the use of numerical
methods, where several approaches (e.g. , finite difference,

volume, element) have been used to simulate transport to
(among others) embedded squares and bands,[13] cylinders,[14]

cones,[15] and heptodes.[16] Results from simulation are often

used to construct analytical approximations for rates of trans-
port.

In this study, through the aid of numerical simulation, we
propose a simple analytical approximation to predict the rate

of transport to a single nanorod in a microfluidic flow cell
having variable aspect ratio in both the vertical and horizontal

direction. We consider several nanorod forms, as well as their

derivatives, including nanocylinders and embedded nano-
bands, nanodisks, and nanosquares (Figure 1). We show that

our approximation provides accurate prediction of transport to
these shapes over a wide range of convective/diffusive condi-

tions. Results from this study can be readily combined with
the theory previously reported by Lynn and Homola[5] to pre-

dict steady-state rates of transport to arrays nanorods.

Motivation

Figure 1 shows a schematic of the problem and domain exam-

ined herein. We consider the transport of an analyte having
inlet concentration co and diffusivity D within a fluidic channel
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having width W and height H. Flow through the channel has
an average fluid velocity U and is considered to be laminar,

with a Reynolds number Re = UH/n, where n is the kinematic
viscosity of the fluid. A nanorod is situated on the floor of the

microchannel, whose height and length can be characterized

by two aspect ratios a and g, respectively. We consider two
similar shapes, one whose ends are rounded with a characteris-

tic radius a (nanorod) and one with square ends (square nano-
rod). As seen in Figure 1, both shapes have derivatives that are

commonly found within photonic and electrochemical applica-
tions, specifically, nanocylinders, nanobands, nanodisks, and

nanosquares. The surfaces of the NP in contact with the fluid

(characterized by a surface area A) are considered to be cata-
lytically active, whereas all other channel surfaces are inert.

We consider the diffusion-limited transport of analyte to a
nanorod surface, such that upon contact the analyte is instan-
taneously removed from the flow. Under such conditions the
rate of analyte transport can be described by _N : the average
rate of analyte interaction with the NP surface (molecules per

time). For electrochemical applications this interaction would
produce a current i such that i ¼ nF _N, where F is the Faraday
constant and n is the number of electrons exchanged. For
nanorods capturing analyte via an affinity interaction (via an
immobilized receptor), _N describes the rate of analyte capture
at the beginning of the assay.

The steady-state diffusion-limited rate of analyte interaction

to a nanorod (or likewise, to any closed selectively active sur-
face lying on an effective infinite planar support) can be de-
scribed by Equation (1):

_N
2

coD ¼ lo ð1Þ

where lo is a characteristic length dependent on the geometry
of the electrode. Relevant to this study, analytical solutions[7]

for transport to a nanodisk lead to lo = 4a, whereas numerical
simulations for transport to a nanosquare[13] have led to lo =

4.606a. These two values are valid for both diffusive transport
in an infinite medium as well as mixed transport within a mi-

crochannel having a sufficiently small levels of fluid convection.
The conditions for the latter can be described as Penp ! 1,

where Penp is the nanoparticle P8clet number, which can be
calculated using Equation (2):

Penp ¼ 6 lo=4Hð Þ2Pe ð2Þ

where Pe = UH/D is the channel P8clet number.

In this study, through the aid of computational simulation,

we propose a function f = f (a, g), such that the characteristic
length for all of the NP shapes shown in Figure 1 can be de-

scribed as lo = a·f. Knowledge of this parameter is important for
several reasons, as it can be used to predict _N [via Eq. (1)] for

situations of diffusion dominated transport (i.e. , Penp ! 1) and

as we shall show later, for situations where convection plays a
role.

Methods

We used the finite element package COMSOL to solve the Navier–
Stokes (momentum) and convection-diffusion equations to obtain
solutions for the velocity, pressure, and analyte concentration fields
within a microfluidic domain. These solutions were used to calcu-
late the rate of analyte transport to nanorods of varying shape and
under varying conditions. Unless otherwise noted, the results
herein concern transport to NPs having dimension of a = 25 nm
within a microchannel of dimension H = 100 mm; nevertheless, sim-
ilar results can be obtained using different dimensional values that
are properly scaled to one another. The computational domain
spanned the entire height of the channel (y-direction), and extend-
ed a distance of 150·lo in both the upstream and downstream di-
rections, as well as the same distance in the positive x-direction
(taking advantage of symmetry). This domain was found to be
large enough such that further increases in the domain size did
not change any solution outcome (Figure 2).

For the momentum equations, we imposed a fully developed ve-
locity profile at the domain inlet, a (pressure) outflow condition on
the domain outlet, symmetric boundary conditions on both side-
wall planes, and a no-slip condition on the top and bottom chan-
nel surfaces. For the convection-diffusion equations we imposed a
constant analyte concentration (co) at the domain inlet and a no-
flux condition along all other surfaces, where the concentration of
analyte along the active NP surface was set to zero (in accordance
with a diffusion-limited transport condition).

The mesh for each simulation was composed of tetrahedral ele-
ments, discretized linearly and quadratically for the momentum
and convection-diffusion equations, respectively. The characteristic
mesh size was variable within the domain, where the maximum
size along nanorod edges was a/500 (the upper edge for nanorods
with a>0), the maximum size in the volume immediate to (and
along the surface of) each nanorod was a/10, and the maximum
size in the far field regions was H/20. Mesh growth rates along and
near each nanorod were set to 1.4, whereas in other regions
growth rates were set to 1.1. Figure 2 shows a typical mesh along

Figure 1. Schematic of the catalytic nanorods used in this study. Each nano-
particle has a surface area A (in contact with the fluid), and sits on the floor
of a microchannel, far from the channel sidewalls.
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the surface of a nanorod, along with results from a mesh density
test for both nanodisks and nanosquares (a, g= 0). Additional
mesh density tests for other selected nanorod shapes yielded simi-
lar convergence properties (data not shown). Reductions in either
the mesh size or growth rate below these values was found to
have only a minimal effect on the simulation outcomes. Average
simulations consisted of &5 V 106 elements, dependent on the spe-
cific NP. Steady-state solutions were obtained using a multigrid
method, using the successive over relaxation method for the pre-
and post-smoother and the PARADISO method for the course
solver. After convergence of each solution, steady values of the an-
alyte interaction rate were calculated as _N ¼ R n̂ ? ðDrcÞdA, where
n̂ is the normal vector for each nanorod reactive surface in contact
with the fluid.

Results

For mesh verification we simulated analyte transport to both
nanodisks and nanosquares. Figure 2 b shows the results of

these simulations, where data are plotted in a dimensionless
form as _N

2
coDa.1 At a mesh density of a/500 (along the edge

of each NP) our simulation results were within 0.05 % of stan-
dard solutions for nanodisks (4.0) and nanosquares (4.606).

These two values thus form the base solution for transport to
the derived shapes shown in Figure 1 as in Equation (3):

f0 ¼
4:0 for nanorod shapes;

4:606 for sqare nanorod shapes:

(
ð3Þ

We simulated transport to both nanocylinders and square
posts (i.e. , nanosquares with a>0) having variable vertical

aspect ratio (0<a<25) at low P8clet number. Figure 3 shows

the results of these simulations. From the steady-state contour
profiles, it can be seen that the overall size of the boundary

layer increases with increases in a. This growth occurs in a
complex fashion, where at high aspect ratios the shape of

each boundary layer takes on a cylindrical form. The shape of
these boundary layers lead to an edge effect phenomenon,

leading to enhanced rates of transport near nanocylinder tops

or similarly, nanorod caps (discussed later).
Despite the complexity in the shape of the boundary layer,

the rate of analyte interaction follows a fairly simple trend. This
is shown in Figure 3 b, which plots data taken from finite ele-

ment (FE) simulations regarding nanocylinders and square
posts. We also plot numerical data previously given by Britz

et al.[14b] It can be seen that all of the data has a very good

match to the function f1 = f0 + 6a3/4. It should be noted that
this function was chosen for its simplicity and accuracy and

Figure 2. (a) Typical mesh for a nanorod (a= 0.5, g = 2.7) with a mesh size of
a/500 along the upper nanorod edges. (b) Mesh density test for nanodisks
and nanosquares as a function of the mesh size along the edge of each
shape (independence of domain size shown in the nanodisk data). The con-
verged values of 4.0 and 4.606 correspond to previous solutions for a nano-
disk[7] and a nanosquare,[13] respectively. The arrow indicates the mesh densi-
ty used within this study.

Figure 3. Mass transport to nanocylinders and square posts with variable
vertical aspect ratio a (Penp = 10@5). (a) Steady-state analyte contours for
nanocylinders along the channel floor (x,z plane) and the symmetry (y,z)
plane. Flow is in the z-direction. The thin black line plots the analyte boun-
dary layer (c/co = 0.9). (b) The rate of analyte interaction, normalized as
_N
2

coDa, plotted as a function of a. We also include numerical data taken di-
rectly from Britz et al.[14b] The inset plots the percent difference between the
numerical data and the function f1 = f0 + 6 a3/4. The dashed blue line indi-
cates predictions based on an equivalent surface area approach.

1 The value Nu ¼ _N
2

coDa is a dimensionless number known in mass (or heat)
transfer as the Sherwood (or Nusselt) number.
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was not derived from first principles. The difference between
values calculated via f1 and data taken from FE simulations is

less than 6 % for the range of 0<a<25. Figure 3 also shows
the predictions via an equivalent area approach, where trans-

port to a 3D cylinder is estimated by the transport to a disk of
equivalent surface area. It can be seen that as a increases,

there is a large deviation between the numerical data and
those predicted via such an approach.

We next simulated transport to nanobands having variable

horizontal aspect ratio (0<g<400). Figure 4 shows the results
of these simulations. Data from FE simulations were observed

to scale as /g17/20 at high aspect ratio. This trend was also ob-
served for larger domains (100 V larger a/H ratio), indicating

the size of the domain had no influence on this scaling rela-
tionship. This relationship was also observed to hold for nano-

bands having g<104 via simulations with lower density

meshes (size of a/20 along the reactive edge, data not shown).
The data from FE simulations were within 2 % of the function

f0 + 2.157g17/20 (inset). Our results agree with those of Cutress
and Compton[13] at low g ; however, at larger aspect ratios (g>

102) we observed a deviation from their proposed solution
(which scales as /g). Figure 4 also shows predictions via an

equivalent area approach. As with the data in Figure 3, there is

a large deviation from numerical data as g increases.
Applying a similar approach to more complex shapes, we si-

mulated analyte transport to nanorods and square nanorods
having variable aspect ratios in the range of 0<a<8 and 0<

g<100 at low P8clet number (Penp = 10@5) ; this range of nano-
rod sizes reflect those often used in experiment. Figure 5

shows the results of these simulations. As expected, there is an

increase in the rate of analyte interaction with increases in
both a and g. Similar to the data in Figure 4, all of the data

shown in Figure 5 asymptotically approach the scaling relation-
ship _N / g17=20 in the range such that a nanorod length is

much larger than its height (g@a). Using this data, we
searched for a function f2 in the form of f2 = f1 +Wg17/20, where

W= W(a). The best fit for W resulted in f2 = f1 + (2.157 +

0.525a3/5)g17/20. From data shown in the inset, it can be seen

that all of the data from FE simulations are within 11 % of
those calculated via f2. From this data, it follows that a fairly

simple form of the characteristic length for catalytic nanorods
can be expressed as Equation (4):

lo=a ¼ f0 þ 6a3=4 þ ð2:157þ 0:525a3=5Þg17=20 ð4Þ

which is written in the form of lo=a ¼ f0 þ f2, where f0 is taken

from Equation (3).

To test the merit of Equation (4) over a wider range of condi-
tions, we simulated the analyte transport to nanocylinders (0<

a<16) and nanorods (a= 2, 2<g<64) of variable aspect ratio
under conditions pertaining to the range 10@3<Penp<103. For

a given nanoparticle shape, this range of Penp is often encoun-

tered experimentally via changes in U, H, or D (among other
parameters). Figure 6 plots the data from these simulations, in
the dimensionless form of 4 _N

2
coDlo, as a function of Penp. We

compare the FE simulation data with analytical solutions for

transport to a nanodisk (Figure 6, red line). Specifically, we plot
the solution given by both Phillips[17] as well as a modified[5]

solution of that given by Stone[18] for low and high P8clet
number flow, respectively. These solutions are rewritten here
as Equation (5):

Nud ¼
4@ 0:123Pe3=2

np

0 /
1@ 0:203Pe1=2

np

0 /@1ðPenp < 0:44Þ
2:16Pe1=3

np þ 4:04Pe@1=6
np @ 1:29Pe@1=3

np ðPenp > 0:44Þ

8<: ð5Þ

For transport to a nanodisk, these solutions can be calculated
as Nud ¼ _N

2
coDa.

It can be seen that plotted in this manner, all of the data

taken from FE simulations have a close match to the analytical
solutions for transport to a nanodisk. For nanocyliders under

conditions such that Penp<1, numerical data were within 5 %
of those calculated via Equation (5). For nanorods the differen-

Figure 4. Mass transport to nanobands with variable horizontal aspect ratio
g (Penp = 10@5). The inset plots the percent difference between the numerical
data and the function 4.606 + 2.157g17/20 (solid red line). The dashed line
plots the solution proposed by Cutress and Compton,[13] modified here to
the form _N

2
co Da ¼ 2ð1þ gÞð1:004þ 1:3 expð@2:53 log10ð1þ gÞÞÞ. The

dashed blue line indicates predictions based on an equivalent surface area
approach.

Figure 5. Mass transport to nanorods and square nanorods with variable
aspect ratios in the vertical (a) and horizontal (g) directions (Penp = 10@5).
Data from FE simulations is plotted as symbols, and predictions (f2) are
shown in the red lines, solid for nanorods, dashed for square nanorods. The
inset plots the percent difference between the FE simulation data and the
function f2 = f1 + (2.157 + 0525a3/5)g17/20.
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ces between numerical and analytical solutions were slightly
larger: in the range of Penp<1 all differences were within 10 %,
whereas at for Penp>1 those differences were within 20 %. Fur-
ther simulations regarding nanorods with different vertical

aspect ratios (a= 1,4) followed similar trends (data not shown).

Discussion

Application to experiment. The results in this study pertain to

steady-state rates of analyte transport. It is important to
know when these steady rates will be applicable to an experi-

mental system. For low P8clet number applications, the

transient rate of transport can be estimated as
_N
2

coD ¼ loð1þ lo

2ð4p3DtÞ1=2Þ.[9] Thus the characteristic time for

transport to reach steady state (tc) can be calculated as
tc & l2

o

2
4p3D. For transport to nanoparticles these times can be

very short, for example, a nanorod having a = 25 nm with g =

100 and a= 1 will reach steady state at tc&0.01 s.

Low Penp transport to nanocylinders and nanobands. Accord-
ing to theory, the rate of analyte interaction for transport to

nanocylinders (Figure 3) should scale as _N / a for situations
when a!1. Such behavior was found by Britz et al. ,[14b] who

proposed a solution of _N
2

coDa ¼ 4þ 0:335a1:152 þ 5:603a0:722

(modified to fit the geometry here), which begins to approxi-

mately scale as _N / a for cylinders with a>102. Within the
range of aspect ratios shown in Figure 3, which represents the
capability of modern fabrication techniques, their solution pro-

vides similar accuracy with respect to the one proposed
herein.

A similar theoretical argument can be made for the nano-
bands, which should scale as _N / g for situations when g!1.
Such scaling was found by Cutress and Compton.[13] We did
not observe this scaling relationship under the range of param-

eters studied herein; all of our computational simulations

yielded results similar to that shown in Figure 4 (which includ-
ed variation in domain size, variation in mesh, and variation in

solution method), where at large aspect ratio in the range of
g<400 (up to g<103 for low quality meshes), the rate of ana-

lyte interaction scales as _N / g17=20. We were unable to per-
form simulations (even with low density meshes) above an

aspect ratio of g>104, as such structures become computa-

tionally difficult to simulate.
One source of discrepancy between our results and those of

Cutress and Compton, shown in Figure 4, can likely be attribut-
ed to the methodology they used for predicting steady-state

responses. Specifically, they simulated the transient transport
to variable aspect ratio nanobands, where simulation times

were restricted to values corresponding to a dimensionless

time of t<30, where t was defined (modified for the parame-
ters used here) as t= Dt/4a2. Predictions for the steady-state

response were then obtained from fits to transient data; how-
ever, for these simulation times, transport to high aspect ratio

nanobands were not observed to reach a full steady-state. To
quantify this effect, we note that the dimensional characteristic

time for transport to reach steady state (tc & l2
o

2
4p3D, defined

above) leads to a dimensionless characteristic time of
tc ¼ 1=4p3 ? ðlo=aÞ2. For the high aspect ratio nanobands in

their study (g&1000), this leads to a value of tc&1200, much
higher than the simulation times used in their study.

Prediction of analyte transport to single nanorods. The agree-
ment between FE simulation data and the solutions for trans-

port to a nanodisk (Figure 6) indicates that both the choice of
lo [Eq. (4)] and the calculation of Penp [Eq. (2)]are appropriate.
This agreement thus serves as a simple route for prediction,

where the steady-state rate of analyte interaction for a single
nanorod can be calculated as in Equation (6):

_N ¼ Nud ? coDlo=4 ð6Þ

where Penp, lo, and Nud can be calculated via Equation (2), (4),
and (5), respectively. As seen in Figure 6, this method should

enable predictions to single nanorods of varying shapes over a
wide range of P8clet numbers with an accuracy of <10 % for

most experimental systems (Penp<1). The alignment of the
nanorod with respect to the flow direction will have little to

Figure 6. Transport to nanocylinders (a) and nanorods (b) having variable
aspect ratio under variable P8clet number. For all data, _N was taken from FE
simulations and lo was calculated via Equation (4). Simulations were carried
out via variation of U (constant H, D). The inset shows the percent difference
between data taken from FE simulations and that calculated by Equation (5)
(plotted as a solid red line); the shaded region represents a difference of
:5 %.
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no effect on _N for conditions such that Penp<1; we did not ex-
amine other nanorod alignments.

Prediction of analyte transport to arrays of nanorods. For ap-
plications involving arrays of nanorods, Equation (6) can be

used with the results of our previous study.[5] Nevertheless, the
results shown herein are directly useful for experiments based

on nanorod arrays : the rate of transport to a single nanorod,
measured in terms of analyte flux (rate of transport divided by
active surface area) will define the upper limit for the flux to a

surface composed of an array of such nanorods.
Prediction of spatially dependent transport to a single nano-

rod. In addition to predicting the rate of analyte interaction for
the entire nanorod, the results given here can also be used to

estimate the rate of collection by portions of the nanorod of
interest. This is especially relevant for photonic applications,

where electromagnetic fields are enhanced near the nanorod
caps. The ratio between the rate of interaction by the caps of
a nanorod ( _Ncap, extending a distance a from each end) and

that of the entire nanorod can be estimated as the ratio be-
tween the transport to a cylinder lying by itself (described by

f1) and that to the entire nanorod (described by f2). The rate of
interaction to the nanorod caps will monotonically decrease

with increases in g (influenced by the boundary layer along

the sides of the nanorod), thus the ratio f1/f2 will provide an
upper bound for _Ncap

2
_N. Figure 7 demonstrates this effect per-

taining to a square nanorod with variable g. Following the
same line of reasoning, the ratio f0/f1 will provide an upper

bound to the ratio between the rate of interaction by the
upper face of a nanocylinder and the entire nanocylinder.

Conclusions

In this study, we used numerical simulation to calculate the

steady-state diffusion-limited rate of analyte transport nano-
rods lying on the surface of a fluidic channel. We considered a

number of nanorod shapes as well their derivatives (Figure 1),

all of which have importance within electrochemical and pho-
tonic applications. Based on the results of these simulations,

we have proposed a simple analytical approximation to predict
the rate of analyte transport to nanorods of variable aspect

ratio, both in the horizontal and vertical direction. Our pro-
posed solution, given by Equation (6), predicts rates of analyte

interaction within 10 % of results from numerical simulation at
flows having low P8clet number (Figure 5); these predictions

also maintain accuracy for flows of intermediate and high
P8clet number (Figure 6). These results can also be applied to

estimate the rate of analyte transport to the nanorod caps
(Figure 7). The results of this study are useful for applications

based on the use of a single nanorod as well as applications
based on arrays of nanorods.

Acknowledgements

This work was supported by both the Praemium Academiae of

the Academy of Sciences of the Czech Republic, the Czech Sci-
ence Foundation (contract no. GBP205/12/G118), and the Euro-

pean Union’s Horizon 2020 research and innovation program
(project ULTRAPLACAD, contract no. 633937).

Conflict of interest

The authors declare no conflict of interest.

Keywords: biosensors · electrochemistry · microfluidics ·
nanoparticles · surface plasmon resonance

[1] a) J. Cao, T. Sun, K. T. Grattan, Sens. Actuators B 2014, 195, 332 – 351; b) I.
Mannelli, M.-P. Marco, Anal. Bioanal. Chem. 2010, 398, 2451 – 2469.

[2] a) M. Alagiri, P. Rameshkumar, A. Pandikumar, Microchim. Acta 2017,
184, 3069 – 3092; b) P. A. Rasheed, N. Sandhyarani, Microchim. Acta
2017, 184, 981 – 1000.

[3] a) G. J. Nusz, S. M. Marinakos, A. C. Curry, A. Dahlin, F. Hççk, A. Wax, A.
Chilkoti, Anal. Chem. 2008, 80, 984 – 989; b) P. Zijlstra, P. M. Paulo, M.
Orrit, Nat. Nanotechnol. 2012, 7, 379; c) I. Ament, J. Prasad, A. Henkel, S.
Schmachtel, C. Sçnnichsen, Nano Lett. 2012, 12, 1092 – 1095.

[4] a) M. Ongaro, P. Ugo, Anal. Bioanal. Chem. 2013, 405, 3715 – 3729; b) B.
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Figure 7. Ratio of the rate of interaction between the caps of a square nano-
rod ( _Ncap vs. the rate of interaction of the entire nanorod ( _N). The caps of a
nanorod extend a distance a from each end (shown as shaded grey in the
schematic). All data pertains to a square nanorod with a= 1 at Penp = 10@5.
The dashed line represents the function f1/f2.
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