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Multidrug-resistant (MDR) Klebsiella pneumoniae is a top-prioritized Gram-

negative pathogen with a high incidence in hospital-acquired infections.

Polymyxins have resurged as a last-line therapy to combat Gram-negative

“superbugs”, including MDR K. pneumoniae. However, the emergence of

polymyxin resistance has increasingly been reported over the past decades

when used asmonotherapy, and thus combination therapywith non-antibiotics

(e.g., metabolites) becomes a promising approach owing to the lower risk of

resistance development. Genome-scale metabolic models (GSMMs) were

constructed to delineate the altered metabolism of New Delhi metallo-β-
lactamase- or extended spectrum β-lactamase-producing K. pneumoniae

strains upon addition of exogenous metabolites in media. The metabolites

that caused significant metabolic perturbations were then selected to examine

their adjuvant effects using in vitro static time–kill studies. Metabolic network

simulation shows that feeding of 3-phosphoglycerate and ribose 5-phosphate

would lead to enhanced central carbon metabolism, ATP demand, and energy

consumption, which is converged with metabolic disruptions by polymyxin

treatment. Further static time–kill studies demonstrated enhanced

antimicrobial killing of 10 mM 3-phosphoglycerate (1.26 and 1.82 log10 CFU/

ml) and 10mM ribose 5-phosphate (0.53 and 0.91 log10 CFU/ml) combination

with 2 mg/L polymyxin B against K. pneumoniae strains. Overall, exogenous

metabolite feeding could possibly improve polymyxin B activity via metabolic

modulation and hence offers an attractive approach to enhance polymyxin B

efficacy. With the application of GSMM in bridging the metabolic analysis and

time–kill assay, biological insights into metabolite feeding can be inferred from
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comparative analyses of both results. Taken together, a systematic framework

has been developed to facilitate the clinical translation of antibiotic-resistant

infection management.
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1 Introduction

The emergence of multidrug-resistant (MDR) bacterial

pathogens, including carbapenem-resistant Klebsiella

pneumoniae, has garnered regular warnings of the World

Health Organization (World Health Organization, 2020) and

the U.S. Centers for Disease Control and Prevention (U.S.

Centers for Disease Control and Prevention, 2021).

Polymyxins (i.e., polymyxin B and colistin) are a group of

lipopeptide antibiotics that are used as a last resort to treat

severe infections caused by Gram-negative “superbugs”.

Resistance can emerge during polymyxin monotherapy,

which is mainly mediated by lipid A modifications in K.

pneumoniae (Baron et al., 2016). Recently, the increasing

prevalence of the mobile resistance gene mcr in

Enterobacterales places critical challenges to polymyxin use

(Liu et al., 2016; Yang et al., 2018; Hadjadj et al., 2019),

underlining the urgent need for a novel antimicrobial

therapeutic strategy. In clinics, colistin and polymyxin B

are either used alone or in combination with other

antimicrobials to treat life-threatening infections due to

carbapenem-resistant K. pneumoniae (Nang et al., 2021;

Yang et al., 2021). The emergence of polymyxin resistance

in K. pneumoniae clinical isolates through diverse genetic

adaptation has renewed the research focus on the importance

of combination therapy. Furthermore, polymyxin dosage is

limited by its nephrotoxicity and neurotoxicity (Aggarwal

and Dewan, 2018). Combination therapies of polymyxin

antibiotics are often employed to inhibit the resistance

emergence and minimize the potential toxicity (Bergen

et al., 2019). Among the combination treatments, using

non-antibiotic adjuvants such as exogenous metabolites

together with polymyxin B is a promising approach as the

use of metabolites at low concentrations is generally non-

toxic to the host (Chengxue et al., 2014; Zeng et al., 2017;

Jiang et al., 2020; Rosenberg, Fang and Allison, 2020; Wang

et al., 2020).

Recent studies have demonstrated that the cellular

metabolism of bacterial pathogens is critical for

antimicrobial efficacy (Liu et al., 2019). Modulation of

cellular metabolism via exogenous metabolite feeding

could significantly elevate antibiotic susceptibility of drug-

resistant bacteria (Zeng et al., 2017; Su et al., 2018; Yang et al.,

2019). However, the complicated interplay of multiple

metabolic pathways underlying the synergy of

metabolite–antimicrobial combination remains unclear,

thus hampering the discovery of effective metabolite

adjuvants to improve antimicrobial efficacy, including the

last-line polymyxins. A genome-scale metabolic model

(GSMM) serves as a systematic tool to simulate metabolic

flux changes in response to antimicrobial treatment and

metabolite feeding (Wadhwa et al., 2018; Rizvi et al., 2019;

Zhou et al., 2021), and thus it can assist in delineating the

mechanisms of enhanced bacterial killing by exogenous

metabolite feeding.

The primary aim of this study was to identify promising

polymyxin B–metabolite combinations against MDR K.

pneumoniae using GSMM coupled with time–kill studies.

Four GSMMs were constructed to elucidate the metabolic

adaptation of K. pneumoniae strains upon addition of

metabolites. We reveal that rewiring of metabolic flux

distribution occurred owing to the feeding of additional

metabolites. We also show that increased antimicrobial

activity was demonstrated by the combination of 3-

phosphoglycerate (3PG) and ribose 5-phosphate (R5P) with

polymyxin B against New Delhi metallo-β-lactamase (NDM)-

and extended spectrum β-lactamase (ESBL)-producing

isolates.

2 Materials and methods

2.1 Bacterial isolates

FourK. pneumoniaeAmerican Type Culture Collection (ATCC)

isolates were analyzed: ATCC 10031, 700603 (ST489, Pasteur

scheme, same for following strains), 700721 (ST38, also known as

K. pneumoniae MGH78578), and BAA-2146 (ST11). The strains

were selected to represent a mixture of strains susceptible and

resistant to polymyxin B (Table 1) and MDR strains. Strain

TABLE 1 MICs of K. pneumoniae isolates.

K. pneumoniae isolate Polymyxin
B MIC (mg/L)

ATCC 10031 4

ATCC 700603 2

ATCC 700721 2

ATCC BAA-2146 2
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ATCC 700603 was originally isolated from a urine sample of a

hospitalized patient in 1994 (Elliott et al., 2016) and produces

multiple ESBLs, especially beta-lactamase SHV-18. Strain ATCC

BAA-2146 is an NDM-producing reference strain. All strains

were purchased from ATCC and were stored in tryptone soy

broth with 20% glycerol at −80°C.

2.2 Genome-scale metabolic modeling

The draft models were initially constructed by CarveMe

(Machado et al., 2018) using genome annotation and coded in

System Biology Markup Language Level 3 Version 1 (Smith

et al., 2010). Manual curation and metabolic simulations were

performed using COBRApy (Ebrahim et al., 2013). Transport

and exchange reactions were added to allow nutrient

uptake and metabolite transport across membranes

according to the BiGG database (Norsigian et al., 2020).

The manually added metabolites were complemented with

specific properties including compartment localization,

charge, formula, name, and database identifier according to

the BiGG database.

For simulation of bacterial growth in minimal media (M9),

the maximum uptake rates of nutrient ingredients were set to

10 mmol·gDW−1·h−1 (Zhu et al., 2018) whereas for

Mueller–Hinton (MH) medium, the maximum uptake rates of

nutrient ingredients were empirically constrained to

1 mmol·gDW−1·h−1 (Zhu et al., 2019). Non-growth-associated

maintenance ATP consumption was set to 10 mmol·gDW−1·h−1
according to the previous study (Zhu et al., 2018).

Seven exogenous metabolites tested in this study are

phenylpyruvate (PHPYR), orotate (OROT), 3-

phosphohydroxypyruvate (3PHP), glycerol 3-phosphate

(GLYC3P), 3PG, R5P, and uridine 5ʹ-diphospho-

N-acetylglucosamine (UACGAM). The MH medium was used

for metabolic modeling. For each metabolite, additional

transport reactions were incorporated into the draft model,

and the maximum uptake rate was constrained to

10 mmol·gDW−1·h−1. The metabolic solution space was

sampled with 10,000 random points using OptGpSampler

(Megchelenbrink, Huynen and Marchiori, 2014). Flux

distributions of metabolite feeding were then compared with

those of non-feeding conditions.

2.3 Antibiotic and exogenous metabolites

Polymyxin B was purchased fromMerck (Darmstadt, Hesse)

and was prepared by dissolving with Milli-Q water to obtain a

final concentration of 512 mg/L. The exogenous metabolites

(10 mM PHPYR, 1 mM OROT, 5 mM 3PHP, 10 mM 3PG,

10 mM R5P, and 1 mM UACGAM) were individually

examined, alone and in combination with 2 mg/L polymyxin

B against the four K. pneumoniae strains by static time–kill

studies. The concentrations of exogenous metabolites were

normalized to deliver 60 mM carbon except OROT, 3PHP,

and 3PG due to their poor aqueous solubility. All

metabolites were purchased from Sigma-Aldrich (Saint Louis,

Missouri).

2.4 Static time–kill studies

Static time–kill studies were conducted over 24 h to study

antimicrobial activity and the emergence of resistance after

treatment with polymyxin B (Lin et al., 2019; Wistrand-Yuen

et al., 2020). K. pneumoniae isolates were investigated at an initial

inoculum of 106 CFU/ml [standard inoculum, as per the Clinical

and Laboratory Standards Institute (CLSI) guidelines]. Log-

phase cultures of K. pneumoniae isolates were prepared prior

to the experiments.

Before spiking in antimicrobial agents, a sample of t = 0 h was

collected. Clinically relevant free unbound concentration of

polymyxin B 2 mg/L was used. After spiking in antimicrobial

agents, further samples (~700 μl) at t = 1, 4, and 24 h were

collected aseptically, diluted appropriately in 0.9% saline

solution, and plated manually. Upon incubation at 35°C for

24 h, viable cell counting was conducted. The final cell

viability was expressed in log10 CFU/ml.

Polymyxin B exerted rapid bactericidal activity within 1 h, but

significant bacterial regrowth was observed following 24 h exposure

to polymyxin B monotherapy (Lin et al., 2019). Hence, the

pharmacodynamic effect of the combination treatment was

assessed over 24 h to investigate bacterial regrowth. Findings from

polymyxin B pharmacokinetic studies suggest that the currently

recommended mean polymyxin B maximum serum concentration

at steady-state ranges from ~2 to 14mcg/ml (Avedissian et al., 2019).

The polymyxin B concentrations selected were based on the clinical

dosing regimens (Tsuji et al., 2019).

2.5 Pharmacodynamic analysis

Pharmacodynamic analysis was carried out to determine

microbiological response to antimicrobial treatment (Lin

et al., 2019). The log change method (log change = [log10
(CFUt)−log10 (CFU0)]) was used, comparing the change in

bacterial count from 0 h to time point of interest. For static

time–kill studies, antibacterial activity involves a reduction

of ≥1 log10 CFU/ml from the initial inoculum. Bactericidal

activity was defined as ≥ 3 log10 CFU/ml reduction from the

starting inoculum. Additivity and synergy were defined as

1.0 to <2 log10 CFU/ml and ≥2 log10 CFU/ml reduction with

the combination relative to its most active single agent,

respectively (Sharma et al., 2017). Antagonism was defined

as a ≥1 log10 CFU/ml increase between the combination and
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the most active single agent (Shields et al., 2018; Barber et al.,

2021).

3 Results

3.1 Construction of genome-scale
metabolic models for selected K.
pneumoniae strains

With the aim of identifying promising metabolite adjuvants to

increase antimicrobial activity of polymyxinB againstK. pneumoniae,

we have studied polymyxin-resistant strainATCC10031, polymyxin-

susceptible strain ATCC 700721, and polymyxin-susceptible but

MDR K. pneumoniae strains (ATCC 700603 and BAA-2146)

(Table 1). In addition, GSMMs were constructed to simulate flux

changes upon metabolite addition. Initial draft models were

developed for the four K. pneumoniae isolates based on genome

annotation. During manual curation against the literature and

databases, a total of 10–12 metabolites and 20–23 reactions were

added to each model (Supplementary Table S1), enabling metabolite

uptake and secretion. The resulting models were designated

iKpne_ATCC10031_21 (ATCC 10031), iKpne_ATCC700603_21

(ATCC 700603), iKpne_ATCCBAA2146_21 (ATCC BAA-2146),

and iKpne_ATCC700721_21 (ATCC 700721) according to

naming convention, and each of them contains

2,531–2,713 reactions, 1,695–1,778 metabolites, and

1,292–1,612 genes (Table 2).

3.2 Genome-scale metabolic modeling

The four models predicted the maximum specific growth rate

(μmax) of 0.92 and 1.05 h−1 in M9 and MH media, respectively.

The predicted μmax in MHmedia is similar to the calculated μmax

using time–kill data, which varied between 1.02–1.16 h−1 for the

K. pneumoniae isolates.

The metabolites were selected based on the previous

transcriptomic and metabolomic findings (Maifiah et al.,

2017; Han et al., 2018; Hussein et al., 2018; Abdul Rahim

et al., 2021), which indicated that the intracellular levels of

metabolites R5P, UACGAM, and GLYC3P were significantly

perturbed by polymyxin. Furthermore, metabolites PHPYR,

OROT, 3PG, and 3PHP have also been identified as significant

metabolites perturbed by the combination (Abdul Rahim

et al., 2021). Although many significant metabolites were

identified from the studies, the selected metabolites were

those that demonstrated perturbations to both gene

expression and metabolism of the same pathway [e.g., gnd

and R5P in the pentose phosphate pathway (PPP); pgk and

3PG in gluconeogenesis] by the combination (Abdul Rahim

et al., 2020; 2021). For instance, transcriptomics and

metabolomic results revealed that the expression of gene

gnd and abundance level of R5P were downregulated and

decreased in response to the polymyxin combination

treatment, respectively. Thus, these observations were

believed to further strengthen the basis of selection.

GSMM simulation results show that the addition of PHPYR,

OROT, and 3PHP resulted in limited impact on non-central

metabolic pathways, whereas feeding of 3PG, GLYC3P, R5P, and

UACGAM induced significant metabolic perturbations to

multiple pathways, including central metabolism (Figure 1).

GLYC3P was excluded for further analyses due to its similar

impact as 3PG. The perturbed reaction specific flux values under

control and metabolite feeding treatment are denoted in the

format fluxcontrol/fluxmetabolite in brackets in Sections 3.2.1, 3.2.2.

3.2.1 Metabolic impact on non-central
metabolism

The model simulations predict that the uptake of exogenous

PHPYR was at a relatively low rate compared to that of other

metabolites and exerted minimal effect on phenylalanine

metabolism upon feeding. Generally, GSMM results show that the

addition of OROT would increase pyrimidine biosynthesis. A higher

flux distribution of orotate phosphoribosyltransferase (ORPT)

(iKpne_ATCC10031_21: 0.41/0.54; iKpne_ATCC700603_21: 0.20/

0.43; iKpne_ATCC700721_21: 0.22/0.48; and

iKpne_ATCCBAA2146_21: 0.19/0.42), orotidine 5′-phosphate
decarboxylase (OMPDC) (iKpne_ATCC10031_21: 0.41/0.54;

iKpne_ATCC700603_21: 0.20/0.43; iKpne_ATCC700721_21: 0.22/

0.48; and iKpne_ATCCBAA2146_21:0.19/0.42), and uridine 5′-
monophosphate kinase (UMPK) (iKpne_ATCC10031_21: 1.67/

1.76; iKpne_ATCC700603_21: 2.64/2.87; iKpne_ATCC700721_21:

2.57/2.58; and iKpne_ATCCBAA2146_21: 2.59/2.65) indicated

elevated pyrimidine biosynthesis activity. Uridine diphosphate

(UDP) was further converted to uridine-5′-triphosphate (UTP) via
higher flux through nucleoside-diphosphate kinase (NDPK2)

(iKpne_ATCC10031_21: 5.99/6.17; iKpne_ATCC700603_21: 4.92/

5.20; iKpne_ATCC700721_21: 4.65/4.55; and

iKpne_ATCCBAA2146_21: 5.18/5.14). Moreover, the addition of

exogenous 3PHP was predicted to digest into serine and glycine

metabolism to increase fluxes of phosphoserine transaminase

(PSERT) (iKpne_ATCC10031_21: 2.29/11.43;

iKpne_ATCC700603_21: 0.89/10.67; iKpne_ATCC700721_21:

1.47/10.62; and iKpne_ATCCBAA2146_21: 1.29/10.57),

TABLE 2 Total number of genes, metabolites, and reactions in the
constructed GSMMs.

GSMM Gene Metabolite Reaction

iKpne_ATCC10031_21 1,292 1,703 2,531

iKpne_ATCC700603_21 1,612 1,778 2,708

iKpne_ATCC700721_21 1,587 1,778 2,713

iKpne_ATCCBAA2146_21 1,572 1,695 2,611
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phosphoserine phosphatase (PSP_L) (iKpne_ATCC10031_21: 2.29/

11.43; iKpne_ATCC700603_21: 0.89/10.67; iKpne_ATCC700721_21:

1.47/10.62; and iKpne_ATCCBAA2146_21: 1.29/10.57), and then

glycine hydroxymethyltransferase (GHMT2r)

(iKpne_ATCC10031_21: 1.11/6.00; iKpne_ATCC700603_21: 2.15/

4.33; iKpne_ATCC700721_21: 1.27/4.98; and

iKpne_ATCCBAA2146_21: 0.90/6.04) to form glycine.

3.2.2 Metabolic impact on central metabolism
GSMM results show that feeding of 3PG resulted in increased

glycolytic/gluconeogenetic fluxes in all four strains (Figure 1). Results

show that 3PG influx bifurcates to form D-glycerate 2-phosphate

(2PG) of glycolysis and 3-phospho-D-glyceroyl phosphate (13DPG)

of gluconeogenesis; the latter in turn enhances PPP flux to generate

R5P. Results show enhanced production of 5-phospho-alpha-D-

ribose 1-diphosphate (PRPP), the starting metabolite of the

nucleotide biosynthesis pathway (Figure 1) and increased fluxes of

reactions ORPT, OMPDC, UMPK, and NDPK2 toward UTP

biosynthesis. Furthermore, addition of 3PG was predicted to

increase serine biosynthesis via enhanced fluxes of PSERT

(iKpne_ATCC10031_21: 2.29/5.39; iKpne_ATCC700603_21: 0.89/

3.70; iKpne_ATCC700721_21: 1.47/3.85; and

iKpne_ATCCBAA2146_21: 1.29/4.43) and PSP_L

(iKpne_ATCC10031_21: 2.29/5.39; iKpne_ATCC700603_21: 0.89/

3.70; iKpne_ATCC700721_21: 1.47/3.85; and

iKpne_ATCCBAA2146_21: 1.29/4.43). Increased tricarboxylic acid

cycle (TCA) cycle flux was observed upon feeding of 3PG.

Additionally, the overall fluxes within oxidative phosphorylation

were increased (Figure 2) which potentially resulted in higher

oxygen consumption and a higher ATP turnover rate.

FIGURE 1
Metabolite feeding of 3PG, GLYC3P, R5P, and UACGAM induced metabolic alterations. The subgraphs indicate the distribution of sampled
metabolic fluxes (mmol·gDW−1·h−1) in iKpne_ATCC700603_21 (blue, control; orange, 3PG; gray, GLYC3P; red, R5P; green, UACGAM). Themetabolite
abbreviations are as follows: g6p, D-glucose 6-phosphate; f6p, D-fructose 6-phosphte; fdp, D-fructose 1,6-biphosphate; dhap, dihydroxyacetone
phosphate; g3p, glyceraldehyde 3-phosphate; 13dpg, 3-phospho-D-glyceroyl phosphate; 3pg, 3-phosphoglycerate; 2pg, D-glycerate 2-
phosphate; pep, phosphoenolpyruvate; pyr, pyruvate; ru5p, D-ribulose 5-phosphate; xu5p, D-xylulose 5-phosphate; r5p, D-ribose 5-phosphate;
s7p, sedoheptulose 7-phosphate; e4p, D-erythrose 4-phosphate; prpp, 5- phospho-alpha-D-ribose 1-diphosphate; 3php, 3-
phosphohydroxypyruvate; ser_L, L-serine; gly, glycine; mal_L, L-malate; oaa, oxaloacetate; cit, citrate; acon_C, cis-aconitate; icit, isocitrate; akg, 2-
oxoglutarate; succoa, succinyl-CoA; succ, succinate; fum, fumarate. The reaction abbreviations are as follows: FBP, fructose-bisphosphatase; PGK,
phosphoglycerate kinase; PGM, phosphoglycerate mutase; TKT2, transketolase 2; RPI, ribose-5-phosphate isomerase; PRPPS,
phosphoribosylpyrophosphate synthetase; PGCD, phosphoglycerate dehydrogenase; PSP_L, phosphoserine phosphatase; ACONTa, aconitase
(half-reaction A); AKGDH, 2-oxoglutarate dehydrogenase.
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Furthermore, the GSMM predicted the exogenous GLYC3P

formed dihydroxyacetone phosphate (DHAP) through enhanced

dehydrogenation (iKpne_ATCC10031_21: 4.15/4.26;

iKpne_ATCC700603_21: −4.92/1.80; iKpne_ATCC700721_21:

−3.92/3.95; and iKpne_ATCCBAA2146_21: −4.15/3.06), which

in turn flew down to glycolysis, serine metabolism, and

eventually to the TCA cycle (Figure 1). The metabolic flux

changes caused by GLYC3P feeding are similar to 3PG feeding.

In addition, feeding of R5P was predicted to significantly affect

central carbon metabolism flux. The addition of R5P would

preferably form D-ribulose 5-phosphate (RU5P) than PRPP via

isomerization (iKpne_ATCC10031_21: −0.44/5.80;

iKpne_ATCC700603_21: −2.42/1.48; iKpne_ATCC700721_21:

−2.59/0.54; and iKpne_ATCCBAA2146_21: 2.56/1.19).

Increased flux of generating fructose 6-phosphate (F6P) from

RU5P would enter glycolysis metabolism, and then the end

product of glycolysis, acetyl CoA, would be fueled to the TCA

cycle for cellular respiration. Furthermore, the GSMM results also

reveal that feeding of UACGAM increases the fluxes of central and

nucleotide metabolism. The exogenous UACGAM flows into PPP

through the nucleotide salvage pathway (Figure 1) via increased

flux of pyrimidine-nucleoside phosphorylase

(iKpne_ATCC700603_21: −1.42/6.54; iKpne_ATCC700721_21:

−1.32/6.40; and iKpne_ATCCBAA2146: −1.00/6.91) except for

iKpne_ATCC10031_21. Model iKpne_ATCC10031 predicted

exogenous UACGAM digested into PPP via increased flux of

uridine hydrolase (URIH) (iKpne_ATCC10031_21: 0.44/9.85).

3.3 Validation of metabolite effects using
in vitro time–kill studies

Polymyxin B (2 mg/L) monotherapy produced rapid and

extensive killing within 1 h against all isolates except ATCC

10031 with ≥3 log10 CFU/ml killing (Figures 3A,B). Nevertheless,

significant bacterial regrowth was observed at 24 h for all isolates

treated with polymyxin B monotherapy.

For the six metabolites tested, three metabolite–polymyxin B

combinations demonstrated enhanced antimicrobial activity against

MDR K. pneumoniae isolates even when NDM was present.

The combination of polymyxin B (2 mg/L) with 10 mM 3PG

resulted in strong bacterial killing at 1 h with 4.3–6.2 log10 CFU/

ml reduction for isolate ATCC 700603 and BAA-2146 compared

to initial inoculum (Figure 3A). At 4 h, the combination

treatment increased the extent of antibacterial activity

approximately to 2 log10 CFU/ml (1.82 log10 CFU/ml)

reduction for isolate ATCC 700603 relative to its most active

polymyxin B monotherapy (Figure 3A). A similar increased

antibacterial effect was also observed for the combination

treatment against MDR isolate BAA-2146 with

1.26 log10 CFU/ml reduction at 4 h (Figure 3A). However,

bacterial regrowth was observed for both isolates at 24 h.

Metabolite feeding with 10 mM R5P combined with

polymyxin B showed a bacterial count reduction of

approximately 1 log10 CFU/ml (0.91 log10 CFU/ml) for isolate

ATCC 700721 (Figure 3B). Interestingly, isolate ATCC 10031 is

FIGURE 2
Oxidative phosphorylation fluxes changes upon metabolite addition. The reaction abbreviations are as follows: NADH16pp, NADH
dehydrogenase (ubiquinone-8 and 3 protons) (periplasm); FADRx, FAD reductase; CYTBDpp, cytochrome oxidase bd (ubiquinol-8: 2 protons)
(periplasm).

Frontiers in Pharmacology frontiersin.org06

Chung et al. 10.3389/fphar.2022.880352

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.880352


resistant to polymyxin Bmonotherapy and the addition of R5P to

polymyxin B resulted in a modest improvement in antibacterial

activity with 0.53 log10 CFU/ml reduction compared with

polymyxin B monotherapy at 4 h (Figure 3B).

The antibacterial effect of UACGAM feeding was also tested

against MDR isolates. For ESBL isolate ATCC 700603, addition

of 1 mM UACGAM to polymyxin B treatment showed an

increase of bacterial killing of 1 log10 CFU/ml reduction. The

magnitude of antibacterial activity was further enhanced to

0.70 log10 CFU/ml reduction at 4 h in contrast to polymyxin B

monotherapy (Supplementary Figure S1).

4 Discussion

The rapid spread of opportunistic K. pneumoniae that are

resistant to last-resort polymyxins highlights the urgent

requirement for novel antimicrobial adjuvant therapy to

minimize the emergence of resistance. Polymyxin B combined

with non-antibiotics, such as metabolites, offers an attractive

approach to increase antibacterial activity without exceeding the

clinically achieved concentration of polymyxin B. To this end, it is

crucial to understand the reciprocal relationship between bacterial

metabolic responses to exogenous metabolites and antimicrobial

activity to optimize the combination therapy. GSMM is a powerful

tool in studying bacterial metabolism, and it has been applied to

elucidate the mechanism of antibiotic killing and development of

resistance. Thus, integration with in vitro experiments enables a

systematic framework for identifying novel exogenous

metabolite–antibiotic combinations.

Simulation with the four GSMMs showed that additions of

exogenous metabolites such as 3PG, 3PHP, GLYC3P, R5P, and

UACGAM display an effect on increasing bacterial growth except

for metabolites PHPYR and OROT. This could be explained by the

flow of metabolic flux corresponding to the metabolite addition in

which metabolite PHPYR was not digested in the metabolism;

OROT addition only exerted minor effects on purine and

pyrimidine metabolism. The highest growth induced by

UACGAM feeding among the metabolites demonstrated the

highest metabolic flux changes in model predictions. The uridine

part of UACGAM can be digested to form nucleotides, whereas the

amino sugar component (i.e., N-acetylglucosamine) can be utilized

for cell envelope biosynthesis.

The growth rate is the primary variable that determines the

phenotype of susceptibility to antibiotics of the bacterial populations

(Martínez and Rojo, 2011). A slow growth rate was associated with

low antibiotic activity (Yang, Bening and Collins, 2017; Zampieri

et al., 2017; Lee et al., 2018). Thus, we hypothesize that the stagnant

bacterial growth upon feeding of PHPYR and OROT would not

exert antibacterial activity when treated together with polymyxin B

against K. pneumoniae isolates. The time–kill studies supported this

hypothesis where both combination therapies (i.e., polymyxin B

with PHPYR; polymyxin B with OROT) did not show effect on

antibacterial activity. In addition, minor metabolic flux changes in

glucose metabolism and oxidative phosphorylation displayed by

feeding of these twometabolites suggest that nometabolic regulation

and modulation occur.

Prax et al. (2016) showed that glucose potentiated a

membrane-active antimicrobial peptide, daptomycin, in which

killing may be dependent on glucose metabolism. The

attenuation of carbon catabolism associated with cellular

respiration is the primary cause of metabolite-driven

ciprofloxacin activity (Gutierrez et al., 2017). Recent

metabolomics results showed polymyxin treatment-induced

FIGURE 3
Time–kill curves of metabolite treatment with polymyxin B (PMB), alone and in combination. (A) 10 mM 3PG and (B) 10 mM R5P.
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dramatic changes in central carbon metabolism in polymyxin-

susceptible Gram-negative pathogens (Maifiah et al., 2017; Zhu

et al., 2019). Our fluxomic data revealed that metabolite feeding of

3PG, R5P, UACGAM, and GLYC3P notably increased glycolysis,

PPP, and TCA cycle fluxes. It is conceivable that exogenous

metabolite feeding would further intensify the metabolic burden

attributed to polymyxin B activity and cause increased cellular

respiration. On top of that, polymyxin treatment also induced

disruption of nucleotide biosynthesis (Zhu et al., 2018). In silico

addition of the aforementioned four metabolites also upregulated

purine and pyrimidine metabolism. Our time–kill result showed

enhanced antimicrobial killing by the combination of 3PG, R5P,

and UACGAM treated along with polymyxin B against K.

pneumoniae (Figures 3A,B; Supplementary Figure S1). These

results indicate that the surge of ATP is required to restore the

disrupted nucleotide pool because of both antibiotic and

metabolite treatments (Yang et al., 2019). The enhanced ATP

demand stimulates the nucleotide biosynthesis metabolism and

elevates the central carbon metabolism. The increased metabolic

activity by metabolite feeding is likely to produce toxic metabolic

by-products that reduce bacterial fitness (Stokes et al., 2019), hence

increasing the killing effect of polymyxin B.

Another possible mechanism of metabolite feeding is

increased production of reactive oxygen species (ROS) to

enhance antibiotic activity (Brynildsen et al., 2013; Van Acker

and Coenye, 2017). Increasing ROS production would increase

bacterial sensitivity to oxidative attack (Brynildsen et al., 2013).

The mechanism of polymyxin action involves free radical-

induced death (Trimble et al., 2016). Abdul Rahim et al.

(2021) postulated that an increase in nucleotide synthesis

including R5P and OROT was an initial bacterial stress

response to polymyxin combination treatment (Abdul Rahim

et al., 2021). Such metabolic perturbation might be exacerbated

driven by TCA activity upon metabolite feeding. Our results

showed that metabolite feeding upregulated the TCA cycle and

produced NADH which is utilized for facilitating the electron

transport chain. This would induce the formation of ROS and

cause oxidative damage, contributing to lethality. Altogether, the

increased fluxes of NADH16pp, FADRx, and CYTBDpp

(Figure 2), inducing an oxidative stress and concurrently

increasing metabolic activity by metabolite feeding, may

sensitize K. pneumoniae to polymyxin B killing.

For polymyxin B-resistant isolate ATCC 10031, evident in

time–kill studies, the addition of metabolite R5P to polymyxin B

resulted in a slight improvement (log change = 0.52 log10 CFU/

ml) in antibacterial activity at 4 h compared with polymyxin B

monotherapy (Figure 3B). This suggests that metabolite feeding

may be a possible approach to restore antibiotic susceptibility of

antibiotic-resistant isolates. Antibiotic-resistant strains are

generally demonstrated to have weaker bacterial fitness and

reduced metabolism due to evolution of mutation under

selection pressure of antibiotics (Lázár et al., 2014). The

addition of exogenous metabolites to restore the metabolic

deprivation offers a hopeful approach to increase sensitivity to

antibiotics of antibiotic-resistant bacteria (Cheng et al., 2019; Li

et al., 2020). This enables better antimicrobial activity to be

achieved with combinations containing clinically relevant

polymyxin B concentrations given that polymyxin B-induced

nephrotoxicity is a dose-limiting adverse effect (Avedissian et al.,

2019).

Despite the positive antimicrobial effect of the combination

treatment, an antagonistic effect was observed for the

combination of 3PG and R5P with polymyxin B against

ATCC 10031 and ATCC 700603, respectively (Figures 3A,B).

Although the underlying mechanisms of these antagonism pairs

remain unclear, they could be considered a potential target for

the development of new antimicrobial therapy for these K.

pneumoniae isolates. Alteration of related metabolic processes

could thereby lead to a reversal of the antagonistic effect, thus

improving the susceptibility of antibiotics. It would be interesting

to investigate the metabolic perturbations in gene expression and

metabolism in the K. pneumoniae isolates driven by the

combination.

In summary, this is the first study incorporating GSMM

findings to unveil mechanistic insights into metabolic flux

changes following metabolite addition, correlated with

antibiotic activity through in vitro studies. This will shed light

on antimicrobial development of non-antibiotic combinations

with polymyxin B to rescue the last-line resort. Further studies

into transcriptomics and metabolomics analysis to delineate the

complexmetabolic responses tometabolite feeding are warranted

for better model validation and accuracy. Apart from that, in vivo

studies are crucial to evaluate the efficacy, concentration, and

safety of metabolite adjuvants used in potentiating antibiotic

activity against MDR K. pneumoniae infections.
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