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Renal ischemia-reperfusion injury (IRI) is an inevitable process in kidney transplantation,
leading to acute kidney injury, delayed graft function (DGF), and even graft loss. Ferroptosis
is an iron-dependent regulated cell death in various diseases including IRI. We aimed to
identify subtypes of renal IRI and construct a robust DGF predictive signature based on
ferroptosis-related genes (FRGs). A consensus clustering analysis was applied to identify
ferroptosis-associated subtypes of 203 renal IRI samples in the GSE43974 dataset. The
FRG-associated DGF predictive signature was constructed using the Least Absolute
Shrinkage and Selection Operator (LASSO), and its robustness was further verified in the
validation set GSE37838. The present study revealed two ferroptosis-related patient
clusters (pBECN1 and pNF2 cluster) in renal IRI samples based on distinct expression
patterns of BECN1 and NF2 gene clusters. Cluster pBECN1 was metabolically active and
closely correlated with less DGF, while pNF2 was regarded as the metabolic exhausted
subtype with higher incidence of DGF. Additionally, a six-gene (ATF3, SLC2A3, CXCL2,
DDIT3, and ZFP36) ferroptosis-associated signature was constructed to predict
occurrence of DGF in renal IRI patients and exhibited robust efficacy in both the
training and validation sets. High-risk patients tended to have more infiltration of
dendritic cells, macrophages, and T cells, and they had significantly enriched
chemokine-related pathway, WNT/β-catenin signaling pathway, and allograft rejection.
Patients with low risks of DGF were associated with ferroptosis-related pathways such as
glutathione and fatty acid metabolism pathways. In conclusion, patient stratification with
distinct metabolic activities based on ferroptosis may help distinguish patients who may
respond to metabolic therapeutics. Moreover, the DGF predictive signature based on
FRGs may guide advanced strategies toward prevention of DGF in the early stage.
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INTRODUCTION

Kidney transplantation is the major treatment for patients with end-
stage renal disease. But wide discrepancies exist between the demand
and supply of kidney for transplantation, which renders us to
improve success rates and survival of kidney allografts. Ischemia-
reperfusion injury (IRI) is an inevitable process in kidney
transplantation, during which the cold ischemia, warm ischemia,
and subsequent reperfusion result in dysfunction of renal allografts
(Smith et al., 2019). The major damage caused by IRI is the loss of
function in tubular epithelial cells, which then contributes to acute
kidney injury (AKI), delayed graft function (DGF), and loss of
allografts (Saat et al., 2016). DGF increases the possibility of
prolonged hospitalization or more renal failures (Schroppel and
Legendre, 2014).Much interest has been devoted to the prediction of
DGF, but there is still lack of an effective predictive tool. Irish et al.
(2010) proposed a nomogram integrating donor’s and recipient’s
risk factors to predict DGF. But it is far from satisfactory, and thus
better predictive tools are needed.

Ferroptosis is an iron-dependent and regulated cell death,
characterized by membrane damage due to accumulation of lipid-
based reactive oxygen species (ROS) (Yang and Stockwell, 2016). The
glutamate/cystine antiporter system Xc−, which transports cystine
inside a cell to produce glutathione, would be inhibited.
Subsequent over-consumption of glutathione leads to inactivation
of lipid repair enzyme glutathione peroxidase 4 (GPX4) (Stockwell
et al., 2017). Emerging research discovered that ferroptosis exerted
profound effects on a variety of pathological processes and diseases,
including cancer (Friedmann Angeli et al., 2019; Mou et al., 2019),
degenerative diseases (Chen et al., 2015; Do Van et al., 2016; Guiney
et al., 2017), and stroke (Alim et al., 2019). In the field of renal IRI, it
was reported that inducible inhibition of GPX4 led to acute kidney
failure attributed to ferroptosis (Friedmann Angeli et al., 2014).
Additionally, miR-182-5p, miR-378a-3p, and PANX1 promoted
ferroptosis in renal IRI (Su et al., 2019; Ding et al., 2020). In
addition, pachymic acid and XJB-5-131 showed protective roles in
renal IRI by inhibiting ferroptosis (Zhao et al., 2020; Jiang et al., 2021).
However, current research has not analyzed ferroptosis-related gene
(FRG) profiles comprehensively in renal IRI.

This study sought to identify clusters with distinct functions in
IRI patients and construct a DGF predictive signature by
comprehensive analysis of FRGs. We first screened differentially
expressed FRGs (DFRG) in IRI patients using data from the FerrDb
and GEO databases. A consensus clustering analysis distributed IRI
patients into two clusters with distinct molecular traits based on
FRGs. Furthermore, a robust DGF predictive signature was
constructed using DFRGs and validated in the external validation
set. It was noteworthy that this was the first study to establish patient
classification and construct a DGF predictive signature based on
FRG expression profiles in renal IRI.

MATERIALS AND METHODS

Data Acquisition
The gene expression profiles of kidney tissues obtained after
ischemia-reperfusion (IRI group) in kidney transplantation

and kidney tissues obtained before retrieval (control group)
were analyzed using the GSE43974 dataset from the Gene
Expression Omnibus (GEO) database (http://www.ncbi.nlm.
nih.gov/geo). There were 203 IRI samples and 188 control
samples with clinical information in the GSE43974.
Additionally, the GSE37838 comprised of 70 samples with
corresponding clinical information, was used as the validation
set. The probe matrices of GSE43974 and GSE37838 were
matched to the platform GPL10558 and GPL570 to obtain
gene symbols. Data were normalized using the RMA
algorithm.

A total of 259 FRGs were retrieved from the FerrDb database
(http://zhounan.org/ferrdb) (Zhou and Bao, 2020). There were
237 FRGs in the gene matrix of GSE43974, and these FRGs were
used for further research.

Differential Expression Analysis
The differential expression analysis between IRI and control in
GSE43974 was performed using the “limma” package in R
software (Ritchie et al., 2015). Genes with | log(fold change) |
≥ 1 and FDR adjusted p < 0.05 (Benjamini and Hochberg
method) were considered differentially expressed genes (DEG).
DFRGs were defined as common genes in both DEGs and FRGs.
The volcano plot showed DFRGs between IRI and control using
the “ggpubr” package in R software.

Functional Enrichment Analysis
To clarify the function of DFRGs, the “clusterprofiler” R package
was used to perform Gene Ontology (GO) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) functional enrichment analyses
(Yu et al., 2012). Additionally, the function of the top 10 genes in
each cluster was analyzed using the “clueGO” plugin of Cytoscape
software 3.8.2 (Shannon et al., 2003; Bindea et al., 2009). The gene
set variation analysis (GSVA), a functional enrichment analysis
method for assessing pathway activity variation, was performed to
determine KEGG pathway activities and metabolic pathway
activities using pre-determined genesets including the KEGG
geneset and the metabolic geneset. The KEGG geneset was
retrieved from the GSEA website (http://www.gsea-msigdb.org/
gsea/index.jsp), and the metabolic geneset was obtained from
Rosario et al. (2018). Terms with adjusted p < 0.05 (Benjamini
andHochbergmethod) were selected. Gene set enrichment analyses
(GSEA) in terms of signaling pathways, immune, and metabolism,
were conducted in IRI samples of GSE43974, divided by high-risk
and low-risk groups. Terms with a nominal p-value < 0.05 and an
FDR q-value < 0.25 were statistically significant.

Construction of Transcription Factor
Network and LncRNA–miRNA–mRNA
Network
TRRUST (version 2) is a manually curated database consisting of
human and mouse transcriptional regulatory networks, derived
from published articles with experimental studies of
transcriptional regulation (Han et al., 2018). Transcription
factors which regulated DFRGs were predicted using the
TRRUST database. Then we constructed the transcription
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factor regulatory network that consisted of DFRGs and their
targets or regulators using Cytoscape software (version 3.8.2)
(Shannon et al., 2003). Additionally, miRtarBase, an
experimentally validated miRNA–target interaction database,
was used to predict miRNA of DFRGs (Huang et al., 2020).
LncACTdb was a comprehensive database of experimentally
supported competing endogenous RNA (ceRNA) interactions
(Wang et al., 2019). To analyze the ceRNA network of DFRGs,
miRtarBase and LncACTdb databases were used to predict
miRNA and lncRNA, respectively.

Correlation and Co-Expression Analyses
The Spearman correlation was computed among all FRGs in
IRI samples of GSE43974, and genes with p < 0.05 were
considered statistically significant. Moreover, a list of 30
genes involved in inflammation and inflammasome and 1,881
genes involved in immunity, including innate, adaptive, and
cytokine signaling, were retrieved from Benfeitas et al. (2019).
Then, co-expression analyses between the top 10 genes in both
clusters and aforementioned genes were performed, and co-
expressed genes with p < 0.05 were selected. The co-
expression network was visualized by Cytoscape software
(version 3.8.2).

Consensus Clustering Analysis
As distinct expression patterns shown in BECN1 and NF2 gene
clusters, we sought to distribute IRI samples into several clusters
by using the “ConsensusClusterPlus” R package based on the
expression profile of the top 10 correlated genes (Wilkerson and
Hayes, 2010). “Partition Around Medoids” algorithm was
applied, and the Pearson distance was used to estimate
similarity among samples. The resampling method was applied
to sample 80% of patients for 50 times. All samples were clustered
into k (2–8) groups. The optimal number of clusters was
determined according to cumulative distribution function
(CDF) and Δ(k). Moreover, the principal component analysis
(PCA) was performed to analyze expression differences between
clusters.

Construction and Validation of DGF
Predictive Signature
To identify DGF predictive signature, the least absolute shrinkage
and selection operator (LASSO) regression analysis was
performed to screen predictive markers among DFRGs using
the “glmnet” package (Friedman et al., 2010; Simon et al., 2011;
Tibshirani et al., 2012). A total of 203 IRI samples of GSE43974
were randomly divided into a training set and an internal testing
set at a ratio of 1:1. The risk score of DGF predictive signature was
calculated using coefficients (β) as follows: risk score =
∑n

i�1expi × βi. The DGF risk score of each sample was
calculated, and IRI samples were distributed into high-risk and
low-risk groups based on the median risk score. Furthermore,
GSE37838 was used as the validation set to test the robustness of
the model. Expression levels of candidate genes in the signature
were shown in the heatmap, and the patient distribution
according to risk score was shown. The area under the

receiver operating characteristic (AUC) was compared to
evaluate the predictive efficiency.

Estimation of Cell Abundance
xCell allows estimation of 64 immune and stromal cell
infiltrations with validation using in silico simulations and
cytometry immunophenotyping (Aran et al., 2017). The
proportion of infiltrated cell was estimated by applying xCell
to the data of GSE43974. The differences of infiltrated cells
between high-risk and low-risk groups were analyzed, and
cells with p value < 0.05 were found to be statistically significant.

Mice and Renal IRI Model
All animal experiments were strictly conducted in accordance
with the institutional animal care and use committee guidelines
and approved by the Biomedical Ethics Committee of Sun Yat-
sen University (Guangzhou, China). Male 8- to 10-week-old
C57BL/6 mice (Guangdong Medical Experimental Animal
Center, Guangzhou, China) were used in this research. Mice
were anesthetized with an intraperitoneal injection of
pentobarbital sodium (60 mg/kg), and the core body
temperature was maintained between 34 and 36°C on a
heating blanket. According to our previously reported method
(Hu et al., 2021), a midline abdominal incision was taken,
bilateral renal pedicles were blocked with non-traumatic
vascular clips (FT222T, B.BRAUN, Germany) for 30 min, and
then the clips were released to allow renal reperfusion for 24 h.
The sham-operated mice only exposed bilateral renal pedicles
without clamping. The mice were euthanized 24 h after surgery,
and kidney tissues were harvested. Serum was collected for blood
urea nitrogen (BUN) and serum creatinine detection using the
mouse BUN ELISA Kit (MM-0692M2, MEIMIAN) and the
mouse creatinine ELISA Kit (MM-0693M2, MEIMIAN).

Cell Culture and Ferroptosis Induced by
Erastin
Human proximal tubule epithelial cells (HK-2) were purchased
from ATCC and validated by a short tandem repeat assay (STR)
(IGE Biotech, Guangzhou, China). The cells were cultured in the
DMEM/F12 medium (Gibco, CA, United States) supplemented
with 10% fetal bovine serum (Gibco, CA, United States), 100 IU/
ml penicillin, and 100 μg/ml streptomycin (Gibco, CA,
United States) in an incubator containing 5% CO2 and 95%
air at 37°C. For the induction of ferroptosis, HK-2 cells were
treated with erastin (15 μM) for 24 h.

Transfection of siRNA
DDIT3 siRNA and SLC2A3 siRNA were designed and
synthesized from GenePharma (Shanghai, China). Before
transfection, HK-2 cells were plated in a 6-well plate and
incubated until 50–60% confluence. Cells were transfected for
24 h before treatment with ferroptosis inducer erastin, for
another 24 h. Transfection mixture containing the
Lipofectamine 2000 reagent (Invitrogen, Carlsbad,
United States) and siRNA in an Opti-MEM medium (GIBCO,
CA, United States) was added to the 6-well plate. siRNA-NC was
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served as the negative control. The siRNA sequences of target
genes are shown in the Supplementary Table S1.

Quantitative Real-Time PCR (qRT-PCR)
Total RNA was isolated from mouse kidney tissues using the
TRIzol reagent (Invitrogen, Thermo Fisher Scientific,
United States). Reverse transcription was performed using the
1st Strand cDNA Synthesis (+gDNA wiper) Kit (Vazyme,
Nanjing, China). qRT-PCR was performed, according to the
manufacturer’s protocol, using the ABI QuantStudioTM 5
(Thermo Fisher Scientific, Inc.) and SYBR Green PCR Master
Mix (Vazyme, Nanjing, China). The relative mRNA expression
levels were calculated using the 2−ΔΔCt method with
normalization to GAPDH mRNA. The primers used in this
study are listed in Supplementary Table S2.

Cell Viability Assay
After 6 h of siRNA transfection, HK-2 cells were plated in 96-well
plates (5,000 cells per well) and incubated for 24 h. Then cells
were treated with 15 μM of erastin for another 24 h. Cell viability
was assessed by Cell Counting Kit-8 (CCK-8) Assay Kit (Vazyme,
Nanjing, China). After treatment with erastin, 10 μl CCK-8 was
added to each well and incubated at 37°C for 2 h. The optical
density value of each well was measured with a microplate reader
(Bio-Tek, United States) at 450 nm.

Hematoxylin-Eosin, Immunohistochemical,
and Immunofluorescent Staining
Kidney tissues from mice were embedded in paraffin and 4 μm
sections were used for Hematoxylin-eosin (HE) staining to detect
morphological changes.

To perform immunohistochemical (IHC) staining, paraffin-
embedded kidney tissue was deparaffinized in xylene, rehydrated,
and blocked with 10% goat serum for 30 min. Rabbit polyclonal
anti-KIM-1 (2.5 ug/ml, Abcam, ab78494) primary antibodies
were incubated at 4°C overnight and subsequently incubated
with HRP-conjugated secondary antibody for IHC.

Frozen sections of mouse’s kidney were cooled to room
temperature for 10 min and then blocked with 5% goat serum
(Beyotime, Shanghai, China) at room temperature for 1 h.
Sections were washed with phosphate-buffered saline (PBS)
followed by incubation with primary antibodies against DDIT3
(1:200 dilution, CST, 2895T) and SLC2A3 (1:100 dilution, Santa
Cruz, sc74399) overnight at 4°C. After washing for three times
with PBS, fluorescent secondary antibodies were added and
incubated at room temperature for 1 h. After counterstaining
with DAPI (Beyotime, Shanghai, China) for 10 min, sections were
sealed under glass coverslips with an anti-fading fluorescence
medium (Applygen, Beijing, China). Images were captured with a
fluorescent microscope (Nikon, Tokyo, Japan).

Cellular ROS Detection
An intracellular ROS level was quantified by the ROS Assay Kit
(Beyotime Biotechnology, Shanghai, China). HK-2 cells were
plated on coverslips in a 6-well plate with a density of 4 × 105

per well and cultured in the incubator containing 5% CO2 and

95% air at 37°C. After transfection and treatment by erastin, cells
were incubated with 10 μM DCFH-DA at 37°C for 30 min in the
dark and then washed with PBS. The fluorescence intensity was
detected by the fluorescence microscope with an excitation of
488 nm and an emission of 525 nm.

Iron Assay
After transfection and induction by erastin, HK-2 cells were
washed with PBS and lysed for 2 h. Then the relative iron
levels were assessed using the Iron Assay Kit (Applygen,
Beijing, China), according to manufacturer’s protocol. The
optical density was detected at the wavelength of 550 nm.

Statistical Analysis
All statistical analyses were performed using SPSS 25.0 (SPSS Inc.,
Chicago, IL), GraphPad Prism software version 8 (GraphPad
Software, San Diego, CA, United States), and R software 4.0.3.
Cytoscape software (version 3.8.2) was used to visualize networks.
Differences between two groups were compared using Student’s
t test or the Mann–Whitney test. The association of clusters with
DGF and donor types was analyzed using the Chi-square test. The
qRT-PCR results were presented as mean ± standard error of
mean. All the tests were two-sided, and a value of p < 0.05 was
considered statistically significant.

RESULTS

Identification and Functional Annotation of
DFRGs in Renal IRI
The flowchart of this study is shown in Figure 1. To identify
DEGs in renal IRI, the GSE43974 geneset, which consisted of 203
kidney tissues obtained after reperfusion (IRI group) and 188
kidney tissues obtained before organ retrieval (control group),
was used to perform the differential expression analysis. Then we
identified 74 DEGs with | log(fold change) | ≥ 1 and FDR adjusted
p < 0.05. A total of 259 FRGs were retrieved from the FerrDb
database and 237 FRGs were listed in the microarray data of
GES43974 (Supplementary Table S3). Common genes in both
the DEGs and FRGs were defined as DFRGs. Thus, we identified
eight DFRGs (ATF3, JUN, ZFP36, DUSP1, DDIT3, GDF15,
CXCL2, and SLC2A3) which were all upregulated in IRI
samples (Figures 2A–C; Supplementary Table S4). To gain
an insight into the potentially involved function of DFRGs, we
performed GO and KEGG pathway analyses. Results of the GO
analysis showed that DFRGs were associated with hydrogen
peroxide response, reactive oxygen species response, and
regulation of transcription (Figure 2D). Additionally, KEGG
results revealed that DFRGs were enriched in the MAPK
signaling pathway, TNF signaling pathway, IL-17 signaling
pathway, and apoptosis (Figure 2E).

Construction of Transcription Factor
Regulatory Network and ceRNA Network
Considering several transcription factors in DFRGs such as JUN
and ZFP36, we attempted to investigate the transcription factor
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regulatory network of DFRGs. Dysregulation of transcription
factors and their targets could lead to disease states; thus,
elucidating the transcription factor–target interaction could
help understand the regulatory relationship underlying the
complex traits in IRI. As a database of transcription factor
regulatory network based on experimental evidence, the
TRRUST database was used to predict regulators or targets of
DFRGs (Han et al., 2018). In the transcription factor regulatory
network, transcription factors ATF3, JUN, ZFP36, and DDIT3
interacted with predicted targets, while CXCL2, SLC2A3, GDF15,
and DUSP1 were targeted by several transcription factors
(Figure 3A). We also showed evidence-based interactions
(activation or repression) between transcription factors and
targets. Additionally, a regulatory network of ceRNA could
uncover crosstalk between protein-coding transcripts and non-

coding transcripts and shed light on novel therapeutic targets
(Tay et al., 2014). The miRtarBase and LncACTdb databases were
used to identify experimentally validated miRNA and lncRNA of
DFRGs (Figure 3B).

Patient Stratification Based on
Heterogeneously Expressed FRGs
As shown in the Figure 4A, 237 FRGs were heterogeneously
expressed in the IRI samples and two distinct clusters were
identified. Then we performed the Spearman correlation
analysis using 237 FRGs to investigate their associations. Two
clusters with positively co-expressed genes in one cluster but
negatively co-expressed with the other were identified
(Figure 4B; Supplementary Table S5). The top 10 correlated

FIGURE 1 | Flowchart of research design and analyzing process of this study. A differential expression analysis was performed between the IRI group and the
control group in the GSE43974. FRGswere retrieved from the FerrDb database. A consensus clustering analysis was performed to identify ferroptosis-related clusters in
IRI samples. A total of eight differentially expressed FRGs were selected for the functional enrichment analysis and network construction. Additionally, the LASSO
regression analysis was performed to establish the delayed graft function predictive signature. The validation set GSE37838 with 70 IRI samples further verified the
robustness of the signature. Cell infiltration of IRI samples was analyzed using the xCell algorithm. The mRNA expression of key genes was validated in the mouse IRI
model by qRT-PCR. By analyzing cell viability, ROS generation, and relative iron level, knockdown of DDIT3 and SLC2A3 in HK-2 cell mitigated ferroptosis. FRG,
ferroptosis-related gene; GO, gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; GSVA, gene set variation analysis; LASSO, least absolute shrinkage
and selection operator; GSEA, gene set enrichment analysis; ROC, receiver operating characteristic; ROS, reactive oxygen species; IF, immunofluorescence.
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genes in one cluster included drivers of ferroptosis (DUOX1,
NOX1, ALOX15, CDKN2A, ALOX15B, and MAPK14),
suppressors (PML and NF2), and markers (NGB and
MAPK14) (Figure 4B, inset). Wu et al. (2019) reported that
inactivation of NF2 rendered cancer cells more sensitive to
ferroptosis and highlighted its key role in prediction of
responsiveness to ferroptosis-associated therapies. This cluster
was hereafter referred as the NF2 cluster. On the other hand, the
top 10 correlated genes in another cluster included drivers of
ferroptosis (PRKAA1, BECN1, MAPK9, ATG3, CS, SLC1A5, and
ATG16L1) and markers (OXSR1, CEBPG, and EIF2S1)
(Figure 4B, inset). BECN1 had more interaction with other
nine genes suggesting a potentially key role (Supplementary
Figure S1), and thus we regarded this cluster as the BECN1
cluster.

It was noteworthy that the top 10 correlated genes in each
cluster were co-expressed with genes in the inflammasome or
immune-associated pathway which were retrieved from
Benfeitas et al. (2019). As shown in Figure 4C, more

immune- and inflammasome-related genes were positively
co-expressed (green lines) with the NF2 cluster while
negatively co-expressed (gray lines) with the BECN1 cluster
(Supplementary Table S6). These results suggested a closer
correlation of the NF2 cluster with immune infiltration and
inflammation.

The above results revealed opposite expression patterns of two
gene clusters in IRI, which rendered us to investigate the
possibility of patient stratification based on genes in BECN1
and NF2 gene clusters. The PCA showed distinct distribution
patterns between the BECN1 cluster and the NF2 cluster
(Figure 5A). The consensus clustering analysis was performed
based on the top 10 correlated genes in the BECN1 cluster and the
NF2 cluster. Obviously, k = 2 was selected as the optimal value
with clustering increasing from k = 2 to k = 8, and the consensus
matrix heatmap kept distinct boundaries when k = 2, suggesting
robust clustering for all samples (Figures 5B–D). Therefore, IRI
samples were divided into two clusters, namely, the pBECN1
cluster and the pNF2 cluster with high expression of top 10 genes

FIGURE 2 | Differential expression analysis and functional enrichment analysis of FRGs. (A) Intersection between FRGs and differentially expressed genes (DEG) in
renal IRI. (B) Volcano plot showing log2 (fold change) and adjusted P value of differentially expressed FRGs (DFRG). The gene symbols of DFRGs were labeled. (C)
Heatmap showing the expression of DFRGs in the IRI group compared with the control group. (D) GO enrichment analysis of DFRGs in terms of biological process,
cellular component, and molecular function. (E) KEGG pathway analysis of DFRGs. Terms with adjusted p < 0.05 were selected.
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in the BECN1 cluster and the NF2 cluster, respectively (Figure 5E).
The association of clinical traits including occurrence of DGF and
donor types with patient clusters was analyzed (Supplementary
Table S7), and it revealed that DGF occurred more frequently in
patients of the pNF2 cluster (p = 0.001). Additionally, the pNF2
cluster had more DCD patients, while the pBECN1 cluster had
more DBD and living patients (p = 0.004; Figure 5F).

Functional Enrichment Analysis of Clusters
To clarify the potential function of top 10 genes in each cluster,
these genes were analyzed using the ClueGO plugin of Cytoscape
software. The GO results showed that these genes were closely
associated with metabolism including NADPH kinase activity,
lipoxin synthesis, and glutamine secretion (Figure 6A). On the
other hand, these genes were enriched in autophagy and apoptosis
signaling pathways (Figure 6B). Additionally, the GSVA analysis
in terms of the KEGG pathway revealed that regulation of actin
cytoskeleton, mTOR signaling pathway, WNT signaling pathway,
Notch signaling pathway, and P53 signaling pathway were
significantly elevated across the pBECN1 cluster relative to the
pNF2 cluster (adjusted p < 0.05; Supplementary Figure S2).
Moreover, GSVA results in terms of metabolic pathways which
were retrieved from Rosario et al. (2018) showed that the pBECN1

cluster had a higher score in most metabolic pathways, especially
glutathione metabolism and fatty acid degradation pathways,
which were closely associated with ferroptosis (Figure 6C;
Supplementary Table S8). Meanwhile, the pNF2 cluster had a
high GSVA score in only one pathway. These results suggested that
the pBECN1 cluster was more metabolic active compared with the
pNF2 cluster, suggesting more benefits from metabolic treatment
in patients of the pBECN1 cluster.

Construction and Validation of the DGF
Predictive Signature
The DGF is mainly a consequence of renal IRI after the kidney
transplantation, which may lead to rejection and worse allograft
survival (Siedlecki et al., 2011). As aforementioned results
revealed close association between ferroptosis and DGF, we
attempted to construct a robust predictive signature for DGF
based on DFRGs. To this end, IRI samples of GSE43974 were
randomly distributed into the training set or the internal testing
set (1:1). The LASSO regression analysis screened ATF3, SLC2A3,
CXCL2, DDIT3, ZFP36, and GDF15 as candidate genes of the
DGF predictive model, with the coefficients of 1.574, 0.772, 0.051,
−0.429, −0.786, and −0.873, respectively (Figures 7A–C). The

FIGURE 3 | Construction of the transcription factor regulatory network and the lncRNA–miRNA–mRNA network based on eight DFRGs. (A) Transcription factor
regulatory network of DFRGs constructed by using data from the TRRUST database. The interaction between transcription factors and targets were shown in green
(repression) or purple lines (activation). (B) Construction of the lncRNA–miRNA–mRNA network with data from miRtarBase and LncACTdb databases.
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risk score of each patient was calculated, and patients were
divided into high-risk or low-risk groups based on the median
risk score. Subsequently, the receiver operating characteristic
(ROC) curves were used to evaluate predictive efficiency of the
signature. The AUCs of ROC curves in the training set and
internal testing set were 0.769 and 0.755 (Figures 7D,E). To
further validate the robustness, the GSE37838 geneset comprising
70 IRI samples was used as the validation set. The AUC in the
validation set was 0.754 and outperformed the Irish score (AUC
0.65), which was a DGF-predicting nomogram composed of 16
donor’s and recipient’s risk factors (Salvadori and Tsalouchos,
2019) (Figure 7F). Collectively, we constructed a ferroptosis-

related DGF predictive signature in patients with renal IRI, and
this signature outperformed the traditional Irish score.

Functional Annotation and Correlation of
the Signature With Ferroptosis
Investigating involved function or signaling pathways of high-risk or
low-risk groups helped identify signaling pathways related to DGF
and seek possible targeted treatment. The results of GSEA showed
that high-risk samples were enriched in the KRAS signaling pathway,
WNT/β-catenin signaling pathway, Toll-like receptor signaling, and
allograft rejection (Figure 8A). In terms of immune and

FIGURE 4 | Two major clusters were identified in heterogeneously expressed FRGs. (A) Heatmap showing heterogeneously expressed FRGs across IRI samples.
The color bar showed the expression level of genes. (B) Spearman correlation analysis revealed twomajor clusters with genes in one cluster opposite to the other cluster.
The inset displayed the top 10 correlated genes in each cluster. The color bar showed the range of spearman correlation r. (C) Co-expression analysis of the top 10
correlated genes in each cluster with genes involved in inflammasome and immune pathways. Gray lines indicated negative correlation while green lines indicated
positive correlation between genes.
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inflammation, dendritic cells and the chemokine-related pathway
were significantly enriched in the high-risk group (Figure 8B).
Additionally, the low-risk group was associated with metabolism
including glutathione and fatty acid metabolism (Figure 8C).

During the progression of DGF, macrophages may stimulate
chemokines production by dendritic cells and subsequently
activate T lymphocytes (Siedlecki et al., 2011). To clarify the
changes of immune cells, the xCell algorithm was performed to

estimate cell infiltration of each sample in IRI (Aran et al., 2017).
The results showed that samples with high risks of DGF were
infiltrated with dendritic cells, M1 macrophages, CD8+ T cells,
CD4+ T central memory cells, and CD4+ T effector memory cells
(Figure 8D). Moreover, the vital regulator glutathione peroxidase
4 (GPX4), which prevented iron-dependent formation of lipid
ROS, was decreased in ferroptosis (Friedmann Angeli et al.,
2014), whereas prostaglandin-endoperoxide synthase 2

FIGURE 5 | Consensus clustering analysis stratified patients into two clusters based on the top 10 correlated genes in the BECN1 gene cluster and the NF2 gene
cluster. (A) Principal component analysis (PCA) showing distinct expression patterns of these two gene clusters. (B) Consensus matrix of IRI samples when k = 2. (C,D)
Consensus CDF and relative change in the area under CDF curve when k = 2–8. (E)Gene expression level of top correlated genes in pBECN1 and pNF2 clusters. ****, p <
0.0001. (F) Heatmap showing association of the pBECN1 cluster and the pNF2 cluster with donor types and occurrence of DGF. The expression of the top 10
correlated genes in each cluster was shown. The color bar showed the expression level of genes. DBD, donation after brain death; DCD, donation after cardiac death.
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(PTGS2) were increased. Intriguingly, the high-risk group
showed decreased GPX4 and increased PTGS2 compared with
the low-risk group (Figure 8E), suggesting that high-risk patients
may present severe ferroptosis. Therefore, these results not only
indicated close correlation of the signature with ferroptosis but
also reflected the changes of immune cells in DGF.

Validation of Gene Expression and Function
of DDIT3 and SLC2A3 in Ferroptosis
To further validate the expression of six genes in the renal IRI, we
first constructed a mouse IRI model (ischemia for 30 min and
reperfusion for 24 h). The HE staining of IRI showed tubular cell
death, increased inflammatory cell infiltration, effacement of brush

border, and proteinaceous casts in the tubule compared with the
sham group (Figure 9A). Immunohistochemistry demonstrated
strong KIM-1 staining in IRI, a typical biomarker for renal proximal
tubule injury (Figure 9A). Additionally, serum creatinine and BUN
were significantly increased in IRI compared with the sham group
(Figure 9B). The mRNA expression of six genes was verified by
qRT-PCR in mouse kidney tissues after IRI. Results of qRT-PCR
showed that six genes, namely, ATF3, SLC2A3, CXCL2, DDIT3,
ZFP36, and GDF15, were significantly upregulated in the mice IRI
group compared with the sham group (p < 0.05; Figure 9C).

As few studies analyzed DDIT3 and SLC2A3 in renal IRI, we
further investigated their correlation with ferroptosis in IRI.
Immunofluorescence staining of kidney tissue showed stronger
staining of DDIT3 and SLC2A3 in IRI mice (Figures 9D,E). To

FIGURE 6 | Functional enrichment analysis of the top 10 correlated genes and the pBECN1 cluster and the pNF2 cluster. (A,B)GO and KEGG enrichment analysis
of the top 10 correlated genes in each cluster using the ClueGO plugin of Cytoscape software. (C) Gene Set Variation Analysis (GSVA) in terms of metabolic signaling
signatures showing functional differences between the pBECN1 cluster and the pNF2 cluster. Terms with adjusted p < 0.05 were selected. The color bar showed the
GSVA score in each sample.
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FIGURE 7 | Establishment and validation of the DGF predictive signature. (A,B) DGF predictive signature was established from eight DFRGs. The lambda.min was
selected as the best lambda value of the model. (C) LASSO coefficients of candidate genes in the signature. (D–F) Evaluating the performance of the signature in the
training set, internal testing set, and validation set (GSE37838). The heatmaps showing gene expression of six genes (CXCL2, SLC2A3, GDF15, DDIT3, ZFP36, and
ATF3) in the signature. Patients’ distribution based on the median risk score. ROC curves presenting the efficacy of the signature for predicting DGF in IRI patients.
Area under the ROC curve (AUC) was calculated and compared.
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investigate whether knockdown of DDIT3 and SLC2A3 could
alleviate ferroptosis, we transfected HK-2 cells with siRNAs
targeting DDIT3 or SLC2A3, and cells were treated by a
ferroptosis inducer erastin (15 μM) for 24 h. ROS generation
was increased in ferroptosis, and knockdown of DDIT3 and
SLC2A3 mitigated increased ROS generation caused by
ferroptosis (Figure 9F). The CCK-8 assay showed that cell
viability decreased significantly after treatment of erastin, and
knockdown of DDIT3 or SLC2A3 alleviated cell death caused
by erastin (Figure 9G). Moreover, increased relative iron levels in
ferroptosis were mitigated by knockdown of DDIT3 or SLC2A3
(Figure 9H). Collectively, consistent with the analysis of GEO data,
six model genes were upregulated in IRI. Interference of DDIT3 or
SLC2A3 expression inhibited ferroptosis induced by erastin.

DISCUSSION

Renal IRI occurring in kidney transplantation usually leads to
AKI, DGF, and eventually graft loss. Much progress has been

obtained in understanding the underlying mechanism and
developing therapeutic methods in renal IRI but it is still far
from satisfactory. Ferroptosis is an iron-dependent type of
programmed cell death and contributes to tubular cell death
in renal IRI (Linkermann et al., 2014). The present study
attempted to reveal the characterization of ferroptosis in renal
IRI. We identified two gene clusters with heterogeneously
expressed FRGs and stratified patients into two clusters
(pBECN1 and pNF2). Cluster pBECN1 was regarded as
metabolic active subtype and tended to have less DGF.
Inversely, cluster pNF2 was metabolic exhausted with higher
incidence of DGF. Additionally, a DGF predictive signature
consisting of six DFRGs (ATF3, SLC2A3, CXCL2, DDIT3,
ZFP36, and GDF15) was constructed and validated.
Furthermore, we verified the expression of six DFRGs in IRI
and revealed that knockdown of DDIT3 or SCL2A3 alleviated
ferroptosis in renal IRI.

Ferroptosis is an iron-dependent necrotic type of regulated cell
death, characterized by accumulation of lipid peroxide which is
regulated by GPX4 (Dixon et al., 2012). Failure of lipid peroxide

FIGURE 8 | Association of the model with involved function, immune cell infiltration, and ferroptosis. (A–C) GSEA showing the involved function of high-risk and
low-risk groups in terms of the DGF-related pathway, immune, and metabolism. Terms with p < 0.05 and FDR q < 0.25 were considered statistically significant. (D)
Differences of immune cell infiltration between low-risk and high-risk groups, estimated by the xCell algorithm. (E) Gene expression of key ferroptosis markers, namely,
GPX4 and PTGS2 between risk groups. *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001.
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FIGURE 9 | Expression of candidate genes in the renal IRI mouse model and knockdown of DDIT3 and SLC2A3 in HK-2 cell alleviated ferroptosis. (A)
Representative images of hematoxylin and eosin staining and immunohistochemistry staining of KIM-1 in IRI mice and sham mice. The image of IRI showed tubular cell
death, effacement of brush border (blue arrow), and proteinaceous casts in tubules (black arrow). Scale bars, 100 μm. n = 3 per group. (B) Serum creatinine and BUN
were measured in the IRI group and the sham group. n = 6 per group. (C)mRNA expression level of ATF3, SLC2A3, CXCL2, DDIT3, ZFP36, and GDF15 in kidney
tissue of the IRI group and the sham group. n = 3 per group. (D,E) Representative immunofluorescence images of DDIT3 and SLC2A3 in kidney tissue of IRI mice and
sham mice. Nuclei were stained with DAPI (blue). Scale bars, 100 μm. n = 3 per group. (F) ROS generation was detected using DCFH-DA staining. HK-2 cells were

(Continued )
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to be metabolized by the GPX4-catalyzed reduction and massive
production of ROS results in ferroptosis (Friedmann Angeli et al.,
2014). The relevant role of ferroptosis in renal IRI had been
uncovered by Linkermann et al. (2014). In addition, it was
reported that combination therapy targeting necroptosis and
ferroptosis might be effective in preventing renal IRI (Muller
et al., 2017). We found all DFRGs upregulated in renal IRI and
significantly enriched in inflammatory signaling pathways such
as the MAPK signaling pathway, IL-17 signaling pathway, and
TNF signaling pathway. It was reported that the MAPK signaling
pathway played a role in ferroptosis by affecting ROS production
(Nakamura et al., 2019). As several genes in DFRGs, such as JUN,
ZFP36, DDIT3, and ATF3, were transcription factors, the
TRRUST database was used to construct a transcription factor
regulatory network with all DFRGs and uncover evidence-based
interactions between transcription factors and targets (Han et al.,
2018). Among DFRGs, six genes, namely, ATF3, SLC2A3,
CXCL2, DDIT3, ZFP36, and GDF15, were selected as
candidate genes of the DGF predictive model. The qRT-PCR
results showed that these genes were upregulated in mouse IRI
kidney tissue. ATF3 was reported to promote ferroptosis by
suppressing system Xc− (Wang et al., 2020), and inhibition of
ATF3 alleviated AKI by suppressing ferroptosis (Wang et al.,
2021). Additionally, CXCL2 was involved in a ferroptosis-
associated signature for predicting graft loss after kidney
transplantation (Fan et al., 2021). It was reported that RNA-
binding protein ZFP36 suppressed ferroptosis by regulating
autophagy and was identified as the therapeutic target of liver
fibrosis (Zhang et al., 2020). Knockdown of GDF15 promoted
ferroptosis by interfering SLC7A11 and the system Xc− function
(Chen et al., 2020), and it was upregulated in renal IRI though
deficiency of it exacerbated kidney injury (Liu et al., 2020).
DDIT3 was involved in the interaction between ferroptosis
and apoptosis (Lee et al., 2018). But few studies investigated
the roles of DDIT3 and SLC2A3 in renal IRI. The
immunofluorescence staining showed that SLC2A3 and
DDIT3 were highly expressed in kidney tissue from the IRI
group compared with the sham group. Furthermore,
knockdown of SLC2A3 and DDIT3 significantly rescued
decreased cell viability, increased iron level, and increased ROS
caused by ferroptosis. These results verified the upregulation of
six candidate genes in renal IRI tissue and uncovered the role of
SLC2A3 and DDIT3 in promoting ferroptosis.

Consensus clustering is an unsupervised approach to identify
subtypes based on gene expression profiles (Wilkerson and
Hayes, 2010). It has been applied to identify subtypes in clear
cell renal cell carcinoma and hepatocellular carcinoma based on
expression profiles of FRGs (Bai et al., 2021; Liu et al., 2021). As
shown in Figure 4, two clusters of heterogeneously expressed
FRGs in IRI were formed. The top 10 correlated genes in one
cluster included NF2, which was proved to play a pivotal role in

ferroptosis (Wu et al., 2019). Hence, this cluster was defined
as the NF2 cluster. Among the top 10 correlated genes in
another cluster, BECN1 was a driver of ferroptosis (Song
et al., 2018), and it interacted with most of the other genes. It
suggested that BECN1 might play a key role among these
genes, and thus we regarded this cluster as the BECN1 cluster.
Moreover, IRI usually elicited an adaptive immune response
characterized by activation of T cells and subsequent
T cell–mediated injury (Day et al., 2006). Inflammasomes
responded to injury and resulted in production of pro-
inflammatory cytokines (Schroppel and Legendre, 2014). A
co-expression analysis revealed close association of the NF2
cluster with immune- and inflammasome-related genes. This
finding may suggest that the NF2 cluster was associated with
more severe kidney injury. Considering the opposite
expression patterns between BECN1 and NF2 clusters, the
consensus clustering analysis was performed to successfully
divided patients into two distinct clusters (the pBECN1
cluster and the pNF2 cluster) based on the top 10
correlated genes in BECN1 and NF2 clusters. The GSVA
analysis showed that the pBECN1 cluster had higher GSVA
scores in most metabolic signatures, and thus the pBECN1
cluster was metabolically active. Inversely, pNF2 had low
GSVA scores in most metabolic signatures, and we regarded
pNF2 as a metabolically exhausted cluster. Cluster pNF2 had
higher incidence of DGF, indicating close association of
ferroptosis with DGF. These results indicated possible
responses of IRI patients to metabolic therapeutics.

DGF usually results from renal IRI, and it is a challenge for
allograft survival after kidney transplantation (Schroppel and
Legendre, 2014). Considering close association of clusters with
DGF, we constructed a ferroptosis-related model to predict
occurrence of DGF. The model exhibited robustness in
predicting DGF in the training set, internal testing set, and
validation set. The predictive efficacy of this model was better
than Irish score, which was a nomogram combining donor’s
and recipient’s risk factors for DGF prediction (Irish et al.,
2010). Additionally, injured cells release inflammatory
cytokines such as IL-1α, TNFα and subsequently activated
T cells and macrophages during IRI (Li and Okusa, 2006). Our
results revealed more infiltration of dendritic cell, M1
macrophages, CD8+ T cells, CD4+ T central memory cells,
and CD4+ T effector memory cells in high-risk patients. These
results suggested that patients with high risks of DGF may
experience more infiltration of inflammation and even more
severe IRI. Ferroptosis was characterized by increased PTGS2
and decreased expression of GPX4. Consistently, the high-risk
group had lower expression of GPX4 but over-expressed
PTGS2. Collectively, it may suggest more severe ferroptosis
in the high-risk group and possible benefits from treatment
targeting ferroptosis for high-risk patients.

FIGURE 9 | transfected with si-DDIT3, si-SLC2A3, or si-NC and treated with erastin (15 μM, 24 h) or DMSO. Scale bars, 200 μm. (G) Cell viability was measured by
CCK-8 assay. n = 3 per group. (H) Relative iron level in HK-2 cell was measured. Data were presented as the mean ± standard error of mean. *p < 0.05, **p < 0.01, ***p <
0.001, ****p < 0.0001. IRI, ischemia-reperfusion injury; BUN, blood urea nitrogen; NC, negative control; CCK-8, Cell Counting Kit-8.
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However, some limitations of this research should be noted.
First, more datasets were needed to further verify the robustness
of the classification and predictive signature. Secondly, clinical
samples could be used to validate the gene expression. More
research should be carried out to investigate regulatory
mechanism of DDIT3 and SLC2A3 in ferroptosis and renal IRI.

CONCLUSION

In this study, we first identified vital DFRGs in renal IRI and
constructed a transcription factor regulatory network and a
lncRNA–miRNA–mRNA network based on DFRGs. Additionally,
we stratified IRI patients into the pBECN1 cluster and the pNF2
cluster based on two gene clusters with distinct expression patterns.
Cluster pBECN1 had less DGF and was regarded as the metabolic
active subtype, suggesting possible response to metabolic
therapeutics. Inversely, the pNF2 cluster was metabolic exhausted
and had higher incidence of DGF. Furthermore, we constructed and
validated a ferroptosis-associated DGF predictive signature with
robust efficacy. Knockdown of DDIT3 and SLC2A3 could
alleviate ferroptosis. Collectively, these results provided an insight
into characterization of ferroptosis in renal IRI, thoughmore research
and samples were needed.
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