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Classically, the zebrafish model organism has been used to elucidate the genetic and cellular
mechanisms related to development since the embryo forms and grows externally following
fertilization. This provides insight into the genetic control of developmental processes in humans
because their genomes are similar. Also, unlike other animal models, the genes of zebrafish can
be manipulated quite easily by using reverse genetic screens tools such as morpholinos, which
transiently silence target genes of interest or systems such as the transposon-mediated insertional
mutagenesis or CRISPR-Cas9. Moreover, one pair of fish will provide up to 300 offspring, which
means that if there is a gene of interest that is manipulated, then it can be transmitted to a
large population of fish. What is beginning to emerge is that similar to other mammals, adult
zebrafish have an integrated nervous system, which is proposed to contain homologous brain
structures to those found in humans, as well as equivalent cellular and synaptic structure and
function. Moreover, like humans, zebrafish exhibit age-related declines in cognitive functions,
and a convergence of evidence has indicated that subtle changes in cellular and synaptic integrity
underlie these changes. Therefore, the zebrafish is a powerful model organism for studying the
neurobiological consequences of aging-related behavioral and biological changes, which offers the
potential to identify possible interventions that would promote healthy aging. In what follows, we
present and discuss recent findings and advances along these directions.

BEHAVIORAL TASKS AND ABILITIES ALTERED IN AGED

ZEBRAFISH

The zebrafish is a promising model for studying age-related changes in cognition and perception.
Early behavioral studies date back to 1960s and the characterization of zebrafish behavior has
accelerated since 2000 (Kalueff et al., 2013). They have been suggested to reflect the evolutionarily
conserved nature of many behaviors and to resemble those of other species (Kalueff et al.,
2014; Stewart et al., 2014; Orger and de Polavieja, 2017). A rich repertoire of behavioral
phenotypes has been identified for cognitive functioning, perceptual processes, and associated
disorders (Stewart and Kalueff, 2012). Using different behavioral assays (e.g., inter- and intra-
trial habituation, T-maze, conditioned place preference paradigms), previous studies indicated
that zebrafish have both simple and relatively complex forms of learning, and also display good
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performance on cognitive tasks dependent on short-term and
long-termmemory (Blaser and Vira, 2014; Gerlai, 2016). There is
also growing interest in other aspects of zebrafish behavior which
significantly depend on perception, low-level discrimination, and
sensitivity (Neuhauss, 2010). For instance, the basic components
of the zebrafish visual system, the visual processing hierarchy, and
pathways are similar to those commonly found in other species
(Bilotta and Saszik, 2001). In particular, most of the previous
research evaluated visual motion perception and sensitivity
through optomotor response and/or optokinetic reflexive eye
movements. These behavioral studies point to qualitatively
similar visual acuity and contrast sensitivity functions for
zebrafish (Rinner et al., 2005; Haug et al., 2010; Tappeiner et al.,
2012). It has also been shown that zebrafish perceive first- and
second-order motion. They also experience motion illusions
commonly used in studies on human vision such as reverse-phi
illusion, motion aftereffect, and rotating snakes illusion (Orger
et al., 2000; Gori et al., 2014; Najafian et al., 2014). Within
the context of visual motion, these studies provide behavioral
evidence that mechanisms and principles similar to those of
humans and other species underlie zebrafish sensory processing
and associated behavior.

Characterizing aging-related changes in zebrafish behavior
has important implications for our understanding of cognition
and perception. First, aging-related changes in cognition are
a part of the normal aging process and common in all
the species. Monitoring age-dependent changes in cognition
and perception is difficult to perform on the same human
subject throughout life. Due to their short lifespan, behavioral
assays and paradigms developed, zebrafish provides an ideal
model to study cognitive and perceptual performance during
aging. Second, when these behavioral studies are combined
with already developed molecular and genetic tools on this
aging model, we will also have a deeper understanding on
the functional links between key synaptic targets, cognition,
and perception during neural aging. Previous studies report
significant declines in learning and memory in aged zebrafish.
Typically, old zebrafish have less performance on tasks relevant
with associative learning, avoidance, spatial learning and working
memory (Yu et al., 2006; Arey and Murphy, 2017; Brock
et al., 2017). Compared to wild-types, mutants with impaired
acetylcholinesterase function had better performance in spatial
learning, entrainment and increased rate of learning (Yu
et al., 2006; Parker et al., 2015). These findings suggest
that cholinergic signaling may also play a role in age-related
cognitive decline. In terms of perceptual performance, there
are studies comparing larvae and adult zebrafish. However,
we have limited knowledge on how perceptual performance
(and thus perception and sensitivity) changes during neural
aging. A challenge for the future is to characterize aging-related
changes in perceptual performance and sensitivity of adult
zebrafish. As mentioned above, we consider that such studies can
provide comprehensive information not only on perception and
behavior in general (Owsley, 2016) but also on the cellular and
molecular mechanisms underlying specific aspects (e.g., motion)
of perception and sensitivity.

AGING-RELATED NEUROBIOLOGICAL

ALTERATIONS

Understanding the cellular mechanisms that underlie cognitive
decline is important for determining sites of actions for possible
interventions that could ameliorate alterations in cognitive
function. Early reports indicated that age-related cognitive
decline was due to significant cell (Brody, 1955; Devaney
and Johnson, 1980; Henderson et al., 1980) and synapse loss
(Geinisman et al., 1977; Bondareff, 1979; Curcio and Hinds,
1983; Haug and Eggers, 1991; Shi et al., 2005). However, it has
become well accepted that significant cell (Haug and Eggers,
1991; Rapp and Gallagher, 1996; Rasmussen et al., 1996; Peters
et al., 1998) and synapse loss does not occur in conjunction
with normal aging-related declines in cognitive capacities (Poe
et al., 2001; Newton et al., 2007; Shi et al., 2007). Therefore,
research studies have been designed at examining markers of
cellular and synaptic integrity during the aging process, such
as altered neurogenesis rates (Kempermann et al., 1998, Luo
et al., 2006) and the levels of key excitatory and inhibitory pre-
and post-synaptic proteins (Newton et al., 2007; Shi et al., 2007;
Adams et al., 2008), since subtle changes in cellular and synaptic
functions likely underlie the aging-related declines in cognitive
abilities. Moreover, examining key molecular targets that control
these processes will increase our understanding of the cellular
and synaptic regulation of behavior across the lifespan.

While these aging-related changes in cellular and synaptic
processes could be examined in many different animal species,
the zebrafish model organism is well-adapted to studying the
cellular and molecular changes with aging because they have
similar patterns as mammals with regards to the cellular
aging process. Zebrafish on average live approximately three
to five years and share a similar genome with humans (Kishi
et al., 2003; Howe et al., 2013). Moreover, senescence-associated
ß-galactosidase, which is a biomarker of aging, increases with
advancing age in zebrafish, and this cellular alteration has been
described in humans as well (Kishi et al., 2003; Arslan-Ergul
et al., 2016). Finally, zebrafish have continued neurogenesis
even into late adulthood (Kizil et al., 2012; Schmidt et al.,
2013), they express key excitatory and inhibitory pre- and post-
synaptic proteins (Karoglu et al., 2017), and classical cellular
synaptic plasticity (i.e., long-term potentiation) is found in their
brains (Nam et al., 2004). Recent work in the zebrafish brain
has demonstrated that there are age-related declines in genes
related to cellular and synaptic structure and growth (Arslan-
Ergul and Adams, 2014), neurogenesis (Edelmann et al., 2013;
Arslan-Ergul et al., 2016), and synaptic alterations (Arslan-
Ergul et al., 2016; Karoglu et al., 2017). Interestingly, as has
been shown in mammals, these changes depend on the gender
of the animal (Arslan-Ergul and Adams, 2014; Karoglu et al.,
2017), and the data are in good agreement with those showing
sexually-dimorphic patterns published in young zebrafish brains
(Ampatzis et al., 2012). Taken together, these findings indicate
that the zebrafish is an appropriate model to study the effects
of cellular and synaptic aging and its relationship to cognitive
decline.
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USE OF INTERVENTIONS TO ALTER

AGING-RELATED PROCESSES

A major goal of research related to elucidating the altered
cellular and synaptic processes that underlie cognitive aging is
to determine possible interventions to restore youthful cellular
and synaptic function. As was mentioned previously, mutant
zebrafish with lower levels of acetylcholinesterase had better
performance in spatial learning, entrainment, and increased rate
of learning (Yu et al., 2006; Parker et al., 2015). Therefore,
these animals likely have a more youthful cellular and synaptic
profile as compared to their wild-type counterparts. Currently,
we are investigating this possibility and our data suggest that
genetic manipulation of the cholinergic system alters the course
of aging-related changes in the synaptic protein levels. We have
demonstrated that at old ages as compared to their wild-type
siblings, mutants have higher levels of synaptophysin, which is
an indicator of presynaptic integrity, and gephyrin, a component
of post-synaptic inhibitory transmission, and interestingly these
changes are gender-dependent (Karoglu et al., 2018). If we can
determine the cellular and synaptic profile of these mutants and
how they relate to cognitive aging, it would provide potential
targets for drug development to ameliorate the effects of cognitive
decline.

Another potential intervention with promise is dietary
restriction (DR), which is the only non-genetic intervention
that reliably increases both lifespan and healthspan. Numerous
studies have shown that a lifelong reduction in caloric intake
from ad libitum levels increases lifespan (Roth et al., 2001; Lin
et al., 2002; Colman et al., 2009). Additionally, DR increases
neuronal proliferation and survival (Lee et al., 2002; Kitamura
et al., 2006; Park and Lee, 2011; Park et al., 2013). We applied
a short-term DR of 10 weeks and observed that this treatment
did not prevent an age-related decline in cell proliferation but
altered the telomere lengths of these neuronal cells (Arslan-
Ergul et al., 2016), thereby DR exerted positive effects by subtly
altering the cell cycle dynamics of these neurons. We have tested
the timing and duration of short-term DR and a potential DR-
mimetic, rapamycin, as the positive effects of DR are thought
to be modulating the mammalian target of rapamycin signaling
pathway. Our data indicate that a longer duration of both DR and

its mimetic is more effective on aging-related changes in synaptic
protein levels and transcripts, which might reflect a conserved
mechanism of the beneficial effects of DR and rapamycin on
life- and healthspan (Celebi-Birand et al., 2018). These studies
also have the potential to provide suitable therapeutic targets
around which drug development can proceed for ameliorating
the devastating effects of cognitive decline.

CONCLUSIONS

The zebrafish is clearly a powerful model organism that can
be used to understand the aging-related changes in both
cognition and the underlying cellular and molecular processes.
As previously mentioned, zebrafish exhibit characteristics
that are similar to humans, as well as other mammals,
including the fact that these animals age gradually, and they
demonstrate aging-related changes across both cognitive and
neurobiological spectrums. It clear that both genetic and non-
genetic interventions can be applied to alter the course of the
aging process and provide potential drug targets that could
be manipulated to ameliorate age-related cognitive declines.
Therefore, this model will help researchers elucidate the
biological mechanisms that underlie aging-related cognitive
decline.
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