
1Scientific RepoRts | 7:46046 | DOI: 10.1038/srep46046

www.nature.com/scientificreports

Origami-based cellular 
metamaterial with auxetic, 
bistable, and self-locking properties
Soroush Kamrava1, Davood Mousanezhad1, Hamid Ebrahimi1, Ranajay Ghosh2 & 
Ashkan Vaziri1

We present a novel cellular metamaterial constructed from Origami building blocks based on Miura-ori 
fold. The proposed cellular metamaterial exhibits unusual properties some of which stemming from the 
inherent properties of its Origami building blocks, and others manifesting due to its unique geometrical 
construction and architecture. These properties include foldability with two fully-folded configurations, 
auxeticity (i.e., negative Poisson’s ratio), bistability, and self-locking of Origami building blocks to 
construct load-bearing cellular metamaterials. The kinematics and force response of the cellular 
metamaterial during folding were studied to investigate the underlying mechanisms resulting in its 
unique properties using analytical modeling and experiments.

Origami, the ancient Japanese art of paper folding, relies on seemingly straightforward operations of concerted 
folding of a flat sheet of paper to produce incredibly complicated geometrical objects. This relatively simple con-
trol of topology makes Origami an important conceptual paradigm for deployable structures across a wide spec-
trum of applications. This includes several recent demonstrations in areas as diverse as deployable solar panels1,2, 
fold-core sandwich panels3,4, three-dimensional (3D) cell-laden microstructures5, flexible medical stents6, flexible 
electronics7, soft pneumatic actuators8, and self-folding robots and structures9–11. Furthermore, periodic cellular 
metamaterials have been recently designed by assembling foldable Origami units (i.e., sheets or tubes) which 
tessellate to fill the 3D space12–17. In addition, Origami has found applications in designing mechanical metama-
terials with tunable stiffness, auxeticity, bistability, load bearing capacity and self-folding features14,15,18–22.

Although an Origami construction relies on a mechanically simple folding operation, discovering the exact 
sequence of folds for a desired behavior is a combinatorically intractable problem23–25. In this context, simplifica-
tion is possible through an intricate coupling of topology and mechanical compatibility to design periodic fold 
sequence that can be repeated to create such Origami26,27. An example is the pioneering work of Tachi and 
Miura13, who introduced a type of rigid Origami based on the previously-proposed Miura-ori fold28. Miura-ori is 
a single degree of freedom (DOF) rigid-foldable Origami shown in Fig. 1(a) – left image. The four crease lines of 
Miura-ori which result in one mountain and three valley folds define four identical parallelograms with adjacent 
sides defining an acute angle, α [shown in Fig. 1(a) – left image]. As the flat sheet deforms, these parallelograms 
become inclined to each other which can be quantified in terms of dihedral angles, θ ∈ ° °[0 , 180 ], ξ ∈ ° °[0 , 180 ], 
or the angle between the mountain and front valley folding lines, β α∈ ° − °[180 2 , 180 ]. Due to the geometrical 
constraints, only one of these angles (θ, ξ, or β) is independent and can then be used to represent the single DOF 
of the system in analysis. For example, β and ξ can be expressed in terms of θ, and the constant angle, α, using the 
following relationships [see Supporting Information for details]:
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Putting Miura-ori units next to each other results in a Miura-ori sheet construction while retaining its single 
DOF properties and rigid-foldability. Stacking and bonding Miura-ori sheets along fold lines are shown to form 
cellular metamaterials with a single DOF that can be machined into any desired shape while preserving its folding 
motion14,29.

In this work, we propose a new class of Origami-based cellular metamaterials with a wide range of interesting 
properties such as auxeticity, bistability, foldability, and self-locking. We start our design with putting together 
four Miura-ori folds as shown in Fig. 1(a) – middle image. First, two Miura-ori units were positioned in a zig-
zag pattern, then mirrored to form a symmetric structure, preserving the single DOF, inherent to the original 
Miura-ori fold. Based on this design, we fold a single sheet of paper to construct a ‘first-order element’ that will be 
used in developing the Origami-based cellular metamaterial, Fig. 1(a) – right image. It is noteworthy that folding 
of the first order element, for example by changing θ, results in change in its overall length; however, the left and 
right parts of the element stay aligned, independent of the folding level.

First-order elements can be attached together in three different ways, shown in Fig. 1(b), to make a 
‘second-order element’. From these three configurations, only the configuration shown on the right can be made 
by folding a single sheet of paper, and the other two configurations can be constructed by attaching the two 
first-order elements. The angle between the two segments in each second-order element is denoted by γ1, γ2, and 
γ3, which can be calculated as 180° −  β, 180° −  β, and β, respectively (recall from Fig. 1(a) that β is an angle var-
ying between 180° −  2α and 180° ). Considering γ1, γ2, and γ3 as internal angles, these second-order elements can 
be connected to generate contiguous geometrically closed-loop elements with many different topologies with the 
following geometrical constraints: 1. Second-order elements with γ1 and γ2 cannot be adjacent, 2. The two sides of 
the second-order element with γ3 cannot be connected to two identical elements with γ1 or γ2. Note that ignoring 
these geometrical constraints will result in closed-loop elements with at least one external angle with γ 1 or γ 2 or 
γ 3 value (i.e., closed-loop elements with at least one internal angle not equal to γ 1 or γ 2 or γ 3). Figure 1(c) shows 
three possible quadrangular configurations that satisfy above constraints.

Figure 1. (a) (left image) The Miura-ori can be described by constant angle of α and the single degree of 
freedom (DOF) which can be defined in terms of dihedral angles, θ, and ξ, and the angle between mountain and 
front valley folding lines, β. (middle image) Two Miura-ori units are first positioned in a zigzag pattern, then 
mirrored to form a symmetric structure. (right image) ‘First-order element’, used in developing the Origami-
based cellular metamaterial. (b) First-order elements are attached together in three different ways to make a 
‘second-order element’ with internal angles, γ1, γ2, and γ3. (c) From all possible closed-loop elements, formed 
by using second-order elements, only one arrangement leads to a rigid-foldable geometry while the other are all 
rigid.
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We now prove that from all possible close-loop elements only one arrangement leads to a rigid-foldable 
geometry. For each closed-loop element with n sides, the summation of all internal angles must be equal to 
180° ×  (n −  2), where n is the number of first-order elements used to construct the closed-loop element. Denoting 
mi (i =  1, 2, 3) as the number of γi (i =  1, 2, 3) angles (i.e., n =  m1 +  m2 +  m3) yields the following geometrical 
relationship:

β β+ ° − + = + + − × °m m m m m m( )(180 ) ( 2) 180 (2)1 2 3 1 2 3

To achieve a foldable configuration, the left hand side of Equation (2) must be independent of the folding variable, 
β (note that the right hand side of the equation is a constant and independent of β). This yields m1 +  m2 =  2 and 
m3 =  2, meaning that the only possible foldable configuration is a ‘quadrangle’ (n =  4). The examples provided in 
Fig. 1(c) are the only configurations that satisfy the Equation (2). The left and middle configurations can only built 
for β =  90°, while the right configuration can be built for any value of β α∈ ° − °[180 2 , 180 ]. This means that the 
left and middle configurations are rigid and the only possible foldable polygon is the jigsaw-puzzle-like unit cell 
highlighted in green (see Supporting Information for further discussions on the rigidity of unit cells). All other 
possible configurations of triangular, quadrilateral, and hexagonal closed-loop elements (i.e., the only 2D shapes 
which can individually tessellate the 2D space to form periodic geometries), formed by different types of 
second-order elements introduced in Fig. 1(b), are given in Fig. 2. Note that all these elements are rigid (i.e., 
non-foldable), since they don’t satisfy Equation (2), however, they can be used as building blocks to construct 
rigid tessellations such as the well-known ‘Kagome’ structure made from triangular and hexagonal elements (see 
Supplementary Fig. S2 for an illustration of the structure).

It is essential to employ a connecting mechanism to link the adjacent unit cells of a lattice structure together, 
to form the final configuration of the system. An example of this mechanism is using an adhesive material to 
connect the unit cells together, however, this may affect the foldability of the structure by restricting degrees of 
freedom of the system, which will definitely alter the geometrical and mechanical properties of the final assembly. 
Here, we introduce an embedded self-locking mechanism into the proposed foldable unit, bonding the adjacent 
units together, which originates from the locking of first-order elements as shown in Fig. 3(a). To ensure fitting 
of one first-order element into another, each element must have a folding level corresponding to β >  90°. Once 
a contact is established between the two elements, self-locking can manifest by decreasing the folding angle to 
β <  90°, as for example is achieved in Fig. 3(a) – right image, by applying an out-of-plane compression.

The foldable closed-loop element (i.e., Fig. 1(c) – right image) can be stacked in the out-of-plane direction 
to create a foldable tubular topology, which then can be used as building blocks to construct a cellular meta-
material, Fig. 3(b). The self-locking feature of the first-order elements described above gets transferred to these 
building blocks and similarly gets activated for folding levels with β <  90°. Note that this locked state would 
impose effective contact strength between the building blocks in addition to simple frictional assembly. To this 
end we subjected a prototype, made of paper, to tension, when in locked and unlocked states, Fig. 3(c) (see 
Supporting Information for details on the experiments). When in the unlocked state, the structure exhibits no 
force resistance [i.e., force ~ 0 (N)], while in the locked state the structure shows noticeable resisting force [i.e., 
force ~ 35 (N)] before locking fails (see Supporting Information and Movie). Note that the resisting force strongly 
depends on folding level as well as the mechanical properties (i.e., elasticity) of the parent material which the 
plates are made of. However, the main goal of these experiments was to demonstrate the effect of the embedded 
self-locking mechanism on the structural resistance against the applied in-plane tensile load by comparing their 
resisting force in unlocked versus locked configurations. In theory, since the plates are assumed to be rigid, the 
resisting force will be infinite in the locked configuration.

The behavior and properties of the cellular metamaterial, which exhibits periodicity in both in-plane as well 
as out-of-plane directions can be analytically evaluated by assuming an infinite repetition of a representative vol-
ume element (i.e., RVE; same as the closed-loop element) of the cellular metamaterial, Fig. 4(a) – left and middle 
images. Thus, we investigate the kinematics and kinetics of the cellular metamaterial by analyzing the closed-loop 
element during folding. Figure 4(a) shows top and side views of the closed-loop element as well as the geometrical 
characteristics of the constituting first-order element introduced earlier. The in-plane diagonals, D1 and D2, and 
out-of-plane height, H, of the closed-loop element at an arbitrary level of folding, illustrated in Fig. 4(a), are given 
in terms of the geometry of the underlying Miura-ori unit as (see Supporting Information for details):
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Note that D1 and D2 are diagonals of a diamond (i.e., the closed-loop element) and therefore always perpendicular 
to each other. In order to quantify the folding process, we define a non-dimensional parameter called ‘folding 
ratio’ as, θ° − ° ×[(180 )/180 ] 100%, which varies from 0% (i.e., θ =  180°) to 100% (i.e., θ =  0°). In other words, 
0% and 100% folding ratios correspond to two fully-folded configurations of the proposed construction.

The cross-sectional area of the closed-loop element, S, defined as the area of the polygon formed by intersect-
ing the closed-loop element with a plane normal to its height, is constant through the height of the closed-loop 
element. The volume of the closed-loop element, V, is the volume bounded by the constituting first-order 
elements. Figure 4(b) depicts the variation of the cross-sectional area and volume of the closed-loop element 
(respectively normalized by a2 and a3) as functions of the folding ratio, respectively, presented for four different 
values of α ranging from 30° to 75°. The results are plotted using the analytical expressions of area and volume 
derived in the Supporting Information. As the folding ratio increases, the normalized area rises from zero (i.e., 
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fully-folded configuration) up to a turning point, and then decreases due to the auxetic behavior of closed-loop 
element in both diagonal directions (will be discussed later). This is then followed by a plateau regime as the 
closed-loop element reaches the other fully-folded configuration. The critical folding ratio associated with the 
turning point decreases significantly for higher values of α. Similar behavior is observed for the variations of the 
normalized volume, except the fact that at 100% folding ratio, the volume becomes zero due to the fully-folded 
configuration of the closed-loop element.

Next, for an uniaxial out-of-plane load, we calculate the Poisson’s ratio of the closed-loop element in D1 and 
D2 directions (since they are always perpendicular to each other), defined as ν = −H D

dD D
dH H

/
/i

i i , where i =  1 or 2. 
Differentiating Equation (3) with respect to the folding angles and plugging the results into the above equations 
yield the following closed-form expressions for Poisson’s ratios:

Figure 2. All possible configurations of triangular, quadrilateral, and hexagonal closed-loop elements (the only 
2D shapes which can individually tessellate the 2D space to form periodic geometries), formed by different 
types of second-order elements. 
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It is noteworthy that although these formulations were derived for a single closed-loop unit, they still hold true for 
the infinite periodic metamaterial. This is due to the fact that the calculations were performed on an RVE, which 
can be tessellated in diagonal (i.e., D1 and D2) and out-of-plane directions [as the “lattice vectors”]30 to form the 
final configuration of the metamaterial.

Figure 4(c) shows the dependence of Poisson’s ratio on the folding ratio in two orthogonal in-plane directions 
(i.e., D1 and D2), for four different values of α ranging from 30° to 75°. νH D1

 is negative for the entire range of 
folding ratio and α, with a significantly pronounced auxetic response at greater values of α. In contrast, νH D2

 has 
a positive infinity value at 0% folding ratio [theoretically, the denominator of νH D2

 becomes zero at 0% folding 
ratio, see Equation (4)], which then reduces to 0 at 100% folding ratio. For α 60, this involves exhibiting a neg-
ative Poisson’s ratio after a certain folding ratio. Insets in Fig. 4(b,c) illustarete the effect of changing α in the 
geometry and folding procedure of unit-cell. Figure 4(d) shows folding of a sample closed-loop element demon-
strated under loading in out-of-plane compression and in-plane stretching along the direction of D1 (see 
Supporting Information for details). For this sample, α =  60° and the fully-folded states are achieved at 
β =  180° −  2α =  60° (or θ =  0°) and β =  180° (θ =  180°), as shown under out-of-plane compression and in-plane 
stretching experiments, respectively. Note that the closed-loop element, shown in Fig. 4(d) tessellates the 3D 
space regardless of folding level – see Supplementary Fig. S3.

Next, we investigated the force required to attain a desired level of folding for each building block of the cel-
lular metamaterial under two loading directions (i.e., out-of-plane and in-plane). We assumed that each building 
block is made of rigid plates, connected together at straight creases modeled as linear torsional springs15 with 
spring constant per unit crease length of k(N). Also, as mentioned earlier, we idealized a building block of the 
cellular metamaterial as an infinite array of closed-loop elements stacked on top of each other, and analyzed the 
RVE. In the Supporting Information, we derived the following analytical expressions for the folding force on the 
RVE under out-of-plane and in-plane loadings using the principle of minimum total potential energy:

Figure 3. (a) Assembly and locking procedure for two first-order elements. (b) The assembly and self-locking 
feature of the first-order elements are transferred to the building blocks. This forms the final assembly of the 
Origami-based cellular metamaterial. (c) Measuring the resisting force for unlocked and locked states of two 
building blocks of the Origami-based cellular metamaterial, where the unlocked configuration exhibits no 
resisting force while in the locked state the structure shows noticeable resisting force before locking fails.
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Figure 4. (a) Front and side views of the closed-loop element, as well as geometrical characteristics of the 
first-order element. The structural organization of the first-order element (as well as the closed-loop element) 
can be defined by two constant values related to the topology of the underlying Miura-ori unit, length a and 
angle α, and one variable angle which can be chosen between β, θ, and ξ representing the structure’s single 
degree of freedom. (b) Variations of cross-sectional area and volume of the closed-loop element (respectively 
normalized by a2 and a3) with respect to the folding ratio. (c) Plots of Poisson’s ratio versus folding ratio for in-
plane diagonal directions, D1 and D2, while the insets in (b,c) show the folded configurations for α =  75°, 60°. 
45°, 30° at the specified points. (d) Rigid-foldability of the closed-loop element under out-of-plane and in-plane 
loadings (i.e., two orthogonal directions).
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Figure 5. (a) The normalized out-of-plane and in-plane folding forces (i.e., F/k, where F is applying force and 
k is torsional spring constant per unit crease length) versus the folding ratio for different values of the angle, 
α, ranging from 30° to 75°, while the torsional springs are assumed to be free at 50% folding ratio [or equally 
θ0 =  90°, and ξ0 can be calculated from Equation (1)]. (b) The normalized out-of-plane and in-plane folding 
forces versus the folding ratio for a constant value of α =  60°, with θ0 varying between the extreme cases, θ0 =  0° 
and θ0 =  180°. (c) Comparison between out-of-plane and in-plane folding forces for an RVE with α =  60° and 
θ0 =  90°. The sub-plot presents the folding ratio versus α, for the point at which the out-of-plane and in-plane 
forces are equal.



www.nature.com/scientificreports/

8Scientific RepoRts | 7:46046 | DOI: 10.1038/srep46046

θ θ ξ ξ

α θ

β
θ θ ξ ξ

β β

= −
− + −

= −






− + −

−







ξ
θ

ξ
θ
β
θ

− −

−

F
k

F
k

104( ) 80( )

2 sin cos( /2)

2 1 cos
104( ) 80( )

2 sin (17 12 cos ) (5)

out of plane
d
d

in plane
d
d

d
d

0 0

0 0

where Fout–of–plane and Fin–plane denote the folding forces for out-of-plane and in-plane loading directions, respec-
tively, θ0 and ξ0 are the free angles of horizontal and inclined torsional springs, respectively (i.e., the angles at 
which no potential energy is stored in the springs), and dξ/dθ and dβ/dθ can be calculated using Equation (1).

Figure 5(a) shows the plots of normalized out-of-plane and in-plane folding forces, versus the folding ratio for 
different values of α, while the free angle of the torsional springs is kept constant as θ0 =  90° (i.e., 50% folding 
ratio; ξ0 can be calculated from Equation (1) by plugging θ0 instead of θ). In addition, for α =  60°, we plotted the 
normalized out-of-plane and in-plane folding forces versus the folding ratio for a set of θ0 varying between the 
extreme cases, θ0 =  0° and θ0 =  180°, Fig. 5(b). The results show a so-called “bistable“ behavior for θ °1550  in 
out-of-plane loading, and for θ °400  under in-plane loading. For example, the sample with θ 0 =  170° exhibits 
local extremum points at 20% (local maximum) and 66% (local minimum) folding ratios when subjected to 
out-of-plane loading. This reveals the two stable configurations – one at the initial state (i.e., F/k =  0) where the 
folding ratio is 5.5%, and – the other one at the local minimum point at 66% folding ratio. We should note that the 
structure will go to the “local minimum” point (i.e., 66% folding ratio) only if the load is still there (i.e., a 
pre-load), otherwise, if we remove the load, the structure will always go back to its stable state at zero force (i.e., 
5.5% folding ratio) after going through a “snap-through”29. This bistability in the response highlights the potential 
of the proposed cellular metamaterials for energy absorption, energy harvesting, and impact mitigation applica-
tions31–33. Next, we compare out-of-plane and in-plane loading responses for an RVE with α =  60° and θ0 =  90°, 
see Fig. 5(c). These calculations show that except for folding ratios greater than 78%, the in-plane force associated 
for achieving a specific folding ratio is lower than the out-of-plane force for the same value of folding ratio. This 
means that for folding ratios smaller than 78%, it is easier to fold the structure under in-plane loading (compared 
to an out-of-plane loading), while the opposite is true for folding ratios greater than 78%. Additionally, the inset 
of the figure shows that the folding ratio corresponding to the point at which the two curves meet [shown by a 
hollow circle in Fig. 5(c)], decreases with increasing α, making the out-of-plane force smaller than the in-plane 
force for a wider span of the folding ratio.

In summary, in this paper we propose an Origami-based paradigm of constructing cellular materials which 
are capable of undergoing large reversible deformation while exhibiting highly nonlinear auxeticity, bistability 
and topological locking. Particularly, the locking phenomena is used as a platform for scaling up these structures 
in a systematic modular fashion into larger cellular structures with single force activation without taking recourse 
to any special structural or surface modifications. The self-locking is achieved using an applied force on the struc-
ture. In the Supporting Information we discussed the force required for achieving the initial self-locking under 
different loading types and geometrical parameters. Thus, in summary, this present work sets forth an important 
avenue of novel cellular metamaterial design based on both self-similar and self-locking assembly.

Methods
Fabrication of the Origami-based elements and structures. All the elements and structures were fab-
ricated out of paper (thickness ~ 0.01 in), where the cuts and crease lines were made using a Silhouette CAMEO 
cutting machine (Silhouette America, Inc., Lindon, UT).

Tensile tests. We first subjected the prototype under out-of-plane compression using an Instron 5582 testing 
machine with a 1 kN load cell. Next, we manually applied in-plane tension using a force-gauge to directly meas-
ure the tensile force. The experiments were videotaped in order to qualitatively compare the results between the 
unlocked and locked states of the structure (see Supporting Information video).
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