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ABSTRACT Nocardia wallacei is one of the members of the N. transvalensis complex
which possess a highly unique susceptibility pattern. Here, we describe the closed com-
plete genome sequence of the multidrug-resistant strain N. wallacei FMUON74, which
was obtained using a hybrid approach combining Nanopore long-read sequencing and
Illumina and DNBseq short-read sequencing.

N ocardia species are ubiquitous environmental organisms that can cause opportun-
istic infections in humans (1). Pulmonary and disseminated infections are more

prevalent in immunosuppressed patients, and the mortality rate is high (2). Nocardia
wallacei is one of the members of the N. transvalensis complex which is generally resist-
ant to all aminoglycosides, a highly unique susceptibility pattern among Nocardia spe-
cies (3).

In this study, we provide a detailed description of the complete genomic sequence of
the multidrug-resistant strain N. wallacei FMUON74, which was resistant to amikacin (MIC,
.256mg/ml), tobramycin (MIC, .256mg/ml), clarithromycin (MIC, 16mg/ml), imipenem
(MIC, 32mg/ml), and trimethoprim-sulfamethoxazole (MIC, 152/8mg/ml). Antimicrobial
susceptibility testing was performed using the broth microdilution method according to
CLSI M24-A2 guidelines (4) using multiple panels with different lots. This strain was iso-
lated from the sputum of a male patient with pulmonary nocardiosis. Nocardia wallacei
strain FMUON74 was cultured aerobically at 37°C in tryptic soy broth from a single colony
on a blood agar plate. High-molecular-weight genomic DNA was extracted with the
phenol-chloroform extraction technique (5). The obtained genomic DNA was dis-
solved in 1/10 low Tris-EDTA (TE) buffer.

For long-read sequencing, a DNA library was prepared using a ligation sequencing
kit (SQK-LSK-109; Oxford Nanopore Technologies, Ltd. [ONT], Oxford, UK) without DNA
shearing and was sequenced with a GridION X5 system (ONT) on an R9.4.1 flow cell
(FLO-MIN106). The long-read sequences, which were base called using Guppy v.3.6.0
(ONT), generated 127,404 reads (1,460Mb) with an average length of 5,604 bp during a
24-h run time (numbers are for reads after quality trimming, with an average Phred
quality value of .10.0 using NanoFilt v.2.7.1 [6]). For short-read sequencing, Illumina
and DNBseq sequencing were performed to reduce bias. For Illumina sequencing, the
paired-end Nextera DNA library (prepared using the Nextera DNA Flex library prep kit
[Illumina]) was sequenced on a MiSeq instrument in 2� 150-bp format, yielding
2,005,908 paired-end reads. For DNBseq sequencing, the MGIEasy FS PCR-free DNA
library prep set (MGI Tech, Shenzhen, China) was used for the library preparation;
2� 150-bp paired-end sequencing was performed using the DNBSEQ-G400RS FAST
sequencing instrument (MGI Tech.) according to the manufacturer’s instructions, yield-
ing 8,522,018 paired-end reads. Raw sequencing data were processed using the FASTQ
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preprocessing program fastp v.0.20.1 (7) for the purpose of trimming adapters and
low-quality data, yielding 19.5 million short reads with an average length of 147.8 bp.
Default parameters were used for all software unless otherwise specified.

For complete de novo genome assembly while preventing potential misassembly,
we performed long-read assembly using Flye v.2.8 (8) and hybrid assembly using
Unicycler v.0.4.8 (9) and compared the results. Harplot analysis of the two assembler
sequences showed that no structural discrepancies exist between the two assembly
sequences. Pilon v.1.23 (10) was used to polish the Unicycler assembly, generating a
single circular sequence for the chromosome with a length of 7,832,428 bp (G1C con-
tent, 69.1%) and another circular sequence for a plasmid with a length of 60,434 bp
(G1C content, 67.7%). To confirm that both circular contigs have no structural misas-
sembly and no assembly gaps, we used the software program SV-Quest (https://github
.com/kazumaxneo/SV-Quest), which maps short-read sequences to the contigs, detect-
ing no signals for structural gaps and other inconsistencies. The genome was rotated
to the first nucleotide of the 100 bp upstream of the dnaA gene. The genome sequence
was then annotated using the annotation pipeline DFAST v.1.2.7.0 (11), provided by
DDBJ, which predicted 7,241 coding sequences as well as 9 rRNA genes and 65 tRNA
genes.

This study was conducted in accordance with the ethical guidelines of the Ministry
of Health, Labor and Welfare, Japan.

Data availability. The closed complete chromosomal and plasmid sequences were
deposited at DDBJ/EMBL/GenBank under accession numbers AP023396 and AP023397,
respectively. The raw sequencing data were deposited in the DDBJ SRA database under
accession numbers DRR240479 through DRR240481.
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