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Abstract

Tropical infectious disease prevalence is dependent on many socio-cultural determinants.
However, rainfall and temperature frequently underlie overall prevalence, particularly for
vector-borne diseases. As a result these diseases have increased prevalence in tropical as
compared to temperate regions. Specific to tropical Africa, the tendency to incorrectly infer
that tropical diseases are uniformly prevalent has been partially overcome with solid epide-
miologic data. This finer resolution data is important in multiple contexts, including under-
standing risk, predictive value in disease diagnosis, and population immunity. We
hypothesized that within the context of a tropical climate, vector-borne pathogen prevalence
would significantly differ according to zonal differences in rainfall, temperature, relative
humidity and vegetation condition. We then determined if these environmental data were
predictive of pathogen prevalence. First we determined the prevalence of three major path-
ogens of cattle, Anaplasma marginale, Babesia bigemina and Theileria spp, in the three veg-
etation zones where cattle are predominantly raised in Ghana: Guinea savannah, semi-
deciduous forest, and coastal savannah. The prevalence of A. marginale was 63%, 26% for
Theileria spp and 2% for B. bigemina. A. marginale and Theileria spp. were significantly
more prevalent in the coastal savannah as compared to either the Guinea savanna or the
semi-deciduous forest, supporting acceptance of the first hypothesis. To test the predictive
power of environmental variables, the data over a three year period were considered in best
subsets multiple linear regression models predicting prevalence of each pathogen. Cor-
rected Akaike Information Criteria (AICc) were assigned to the alternative models to com-
pare their utility. Competitive models for each response were averaged using AlCc weights.
Rainfall was most predictive of pathogen prevalence, and EVI also contributed to A. margin-
ale and B. bigemina prevalence. These findings support the utility of environmental data for
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understanding vector-borne disease epidemiology on a regional level within a tropical
environment.

Introduction

The World Health Organization defines tropical diseases as encompassing “all diseases that
occur solely, or principally, in the tropics” and that “in practice, the term is often taken to refer
to infectious diseases that thrive in hot, humid conditions” (http://www.who.int/topics/
tropical_diseases/en/) [1]. While tropical infectious disease prevalence is, in general, dependent
on a broad number of factors, including economic, demographic, and socio-cultural determi-
nants, rainfall and temperature frequently underlie overall prevalence [2, 3]. This is especially
true for arthropod vector-borne diseases for which vector presence, abundance, activity, and
seasonality are highly dependent on climate [4-6]. As a result vector-borne diseases, including
“targeted” diseases such as malaria as well as neglected infectious diseases, have a highly skewed
distribution with increased prevalence in tropical countries [7-10].

Specific to Africa, the tendency to incorrectly infer that tropical diseases are uniformly prev-
alent throughout the roughly 75% of the continent that lies within the tropics has been over-
come, at least partially, with solid epidemiologic data, including the data presented here from
Ghana [11]. This finer resolution epidemiologic data has at least two important implications.
First is that prevalence data can guide treatment, especially in areas where the diagnosis is pri-
marily based on clinical signs [12-14]. Illustrative of this are findings from northern Tanzania
in which non-malarial febrile illness greatly exceeded the proportion attributed to malaria and
for which different therapy is required [15]. Second is the importance for population immu-
nity. Boundaries where higher prevalence zones, with a correspondingly higher level of popula-
tion immunity, intersect with zones of lower prevalence and low population immunity create
risk for more rapid spread and more severe disease if the underlying transmission determinants
change.

We hypothesized that vector-borne pathogen prevalence would significantly differ accord-
ing to zonal differences in environmental parameters such as rainfall, temperature, relative
humidity and vegetation, even in the overall context of a national tropical climate. We
addressed this question by determining the prevalence of tick-borne pathogens within three
vegetation zones of Ghana (Fig 1). These areas are located entirely within the tropics (between
4° and 12°N, 4°W and 2°E) and are considered to have a tropical climate at the national level as
characterized by high mean temperature and rainfall. Despite this national level tropical classi-
fication, Ghana has three climatic zones (humid, sub-humid humid, and sub-humid dry) and
encompasses a variety of vegetation zones (rain forest, semi-deciduous forest, Guinea savan-
nah, Sudan savannah and coastal savannah). To control for movement between climatic
regions, we determined the prevalence of tick-borne pathogens in cattle raised exclusively
within the three distinct vegetation zones in which cattle are predominantly raised: the Guinea
savannah, the semi-deciduous forest and the coastal savannah. Here, we report the testing of
the hypothesis of significant differences in pathogen prevalence in cattle within a national level
tropical climate, determine if weather data and the enhanced vegetation index (EVI) could be
used to predict pathogen prevalence and discuss the results in the context of transmission and
mitigation of disease risk.
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Fig 1. Sampling locations within three vegetation zones in Ghana. Samples from cattle were collected
from multiple sites per vegetation zone, marked with black dots. EVI was extracted from MODIS satellite
imagery from the same sites. The capital of Ghana, Accra, is marked with a star.

doi:10.1371/journal.pone.0152560.g001

Materials and Methods
Zonal climatic characteristics

The monthly means of the minimum and maximum temperature, relative humidity and rain-
fall (mm) were obtained from Ghana Meteorological Authority for 2010, 2011, and 2012 for
the Guinea savannah (Tamale), the deciduous forest zone (Sunyani), and the coastal savannah
(Accra region). Statistically significant differences in minimum and maximum temperatures,
relative humidity and rainfall among the three zones were determined using an ANOVA fol-
lowed by Tukey’s HSD for pairwise comparisons and JMP software version 10.0.0 (SAS Insti-
tute Inc., Cary NC). For each variable (temperature, relative humidity and rainfall), zone, year,
month and all interacting effects were tested. Also considered as a predictor variable was the
Enhanced Vegetation Index (EVI) calculated from Moderate Resolution Imaging Spectroradi-
ometer data (MODIS), which are collected daily and globally at 250 meters spatial resolution
and composited every 16 days into the MOD13Q1 data product. The compositing process
effectively reduces pixel contamination by clouds or cloud shadows. The EVI is designed to
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provide consistent spatial and temporal comparisons of vegetation conditions. The USGS
MODIS Re-projection Tool Web Interface was used to generate downloadable Geo-Tiff files of
the MOD13Q1 imagery, from which EVI was extracted at the 15 study sites. Satellite and
weather data were entered into a spreadsheet and exported for analysis to the R platform for
computing [16].

Determination of infection prevalence

Anaplasma marginale, Babesia bigemina, and Theileria spp. have previously been identified in
cattle on a national scale within Ghana and have been targeted as pathogens that constrain live-
stock production [17]. Blood samples were collected from animals in each of the three targeted
climatic zones and included 131 animals in Guinea savannah (5 sites), 69 animals in the decid-
uous forest (5 sites), and 197 animals in the coastal savannah (5 sites) collected between 2010
and 2012. Genomic DNA was then extracted (Qiagen) and a previously validated multiplex
PCR used to determine infection prevalence [18]. Briefly, the primers used were specific for a
265 bp fragment of A. marginale msp1f (forward, 5 gctctagcaggttatgcgtc 3’; reverse 5’
ctgcttgggagaatgcacct 3°); an 1125 bp fragment of B. bigemina cytochrome b oxidase (forward, 5’
tggeggegtttattagttcg 3’; reverse 5 ccacgettgaagcacagga 3°); and a 462 bp fragment common to
the cytochrome b oxidase in multiple Theileria spp. (forward 5’ actttggccgtaatgttaaac 3’; reverse
5’ ctctggaccaactgtttgg 3°). Amplification conditions were an initial denaturation step of 95°C
for 5 min, followed by 30 cycles of 94°C for 5 sec, 55°C for 30 sec, and the initial extension at
72°C for 45 sec. The products were finally extended at 72°C for 7 min before holding at 10°C.
The minimum detection limits of pathogen DNA were 0.1ng, 10ng and 50ng using pathogen-
specific primers for A. marginale, Theileria spp. and Babesia spp., respectively. In order to con-
firm the reported levels of sensitivity, these standards were included in each PCR assay.

Relationship of infection prevalence to environmental data

Because infection prevalence was not temporally explicit within the 3-year period of interest
for the 15 sites, the 3-year weather and EVI records (Figs 2 and 3) were averaged at each site
and tested as candidate predictors of infection prevalence using ordinary least squares multiple
linear regression. A best subsets procedure was applied using the ‘leaps’ package in R [16] to
exhaustively search for the best combinations of environmental variables to use in the most
predictive yet parsimonious models, as determined using the Akaike information criterion cor-
rected (AICc) for small sample size. Model residuals were normal and without spatial autocor-
relation based on the Shapiro-Wilk test [19] and Moran’s I statistic [20]. To compare the
relative quality of the alternative regression models, the change in the corrected Akaike infor-
mation criterion (delta AICc) between the best and competing models was calculated and
Akaike weights assigned [21] using the ‘“AICcmodavg’ package in R [16]. Models with delta
AICc of 0-2 have substantial support; models with delta AICc of 4-7 have considerably less
support; models with delta AICc >10 have essentially no support [21]. Evidence ratios for
comparing competing models were calculated by dividing the AICc Wt of the best model by
the AICc Wt of a competing model.

Determination of transmission pressure

To test whether transmission was ongoing, as opposed to a single episodic event, blood samples
were collected from 19 animals at LIPREC biweekly over a 12 week period (July to October
2013) after the initial sampling and then biweekly for an additional 24 weeks from the whole
herds at Shai Hills, LIPREC and Ashiaman during March to September 2014, which is
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Fig 2. Monthly minimum and maximum temperatures, relative humidity and rainfall in the three zones
of interest. a) Minimum (dashed lines) and maximum temperatures (solid line) for the Guinea savannah,
deciduous forest, and coastal savannah from 2010 through 2012. b) Percent relative humidity for the Guinea
savannah, deciduous forest and coastal savannah from 2010 through 2012. c) Rainfall for the Guinea
savannah, deciduous forest, and coastal savannah from 2010 through 2012. These variables are
represented by a single weather station in each zone.

doi:10.1371/journal.pone.0152560.9002
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primarily during the rainy season when transmission is expected to be the greatest. Genomic
DNA was extracted (Qiagen) and multiplex PCR performed as described and referenced
above.

Ethics statement

The cattle used in this study from all locations were treated in strict accordance to guidelines
set by University of Ghana Institutional Animal Care and Use Committee.

The protocol was approved, for use in sampling blood from cattle in all locations within
Ghana, by the Noguchi Memorial Institute for Medical Research’s (NTACUC protocol number:
2015-01-5X).
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Fig 3. Enhanced Vegetation Index (EVI). EVI from 2010 through 2012 in the a) Guinea savannah, b)
deciduous forest, and c) coastal savannah. EVI was extracted from MODIS satellite imagery at five sites per
zone, from which mean (solid line) and +/- 1 standard deviation (dashed lines) statistics were derived.

doi:10.1371/journal.pone.0152560.g003

Results
Zonal characteristics

Maximum temperatures in all three zones exceeded 30°C with seasonal variation in the Guinea
savannah and the deciduous forest zones (Fig 2). Similarly, relative humidity varied dramati-
cally by season in these two zones, from <50 to >90% and 35-70% in the Guinea savannah
and the deciduous forest zone, respectively. In contrast, temperature and especially relative
humidity varied across a much smaller range within the coastal savannah (Fig 2). There were
statistically significant differences in maximum temperature, minimum temperature, and rela-
tive humidity (p < 0.0001) with each zone being significantly different from the other two
zones. In the case of rainfall (Fig 2), there were also statistically significant differences between
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the zones (p = 0.0063), with the deciduous forest zone being statistically significantly different
than the coastal savannah; though the Guinea savannah was not statistically significantly differ-
ent from either the deciduous forest zone or the coastal savannah. Only zone, month and the
interacting effect of zone*month were statistically significant in all cases and thus were the only
effects included in the final statistical analysis. Rainfall was episodic in all three zones while the
EVI analysis revealed substantial seasonal changes in vegetation in the Guinea Savannah rela-
tive to the deciduous forest and the coastal savannah (Fig 3).

Prevalence of tick-borne pathogens by vegetation zone

All three targeted pathogens could be detected by multiplex PCR, either individually or as co-
infections (Fig 4). The level of sensitivity for each pathogen was confirmed using standards in
each assay. A total of 397 cattle were sampled from 15 locations (131 from the Guinea savan-
nah, 69 and 197 from the semi-deciduous forest and coastal savannah, respectively). Of the
three targeted tick-borne pathogens, A. marginale was the most prevalent in all three zones
(45-75%) followed by Theileria spp. (13-34%) (Table 1). B. bigemina was least prevalent (3%)
and the few infected animals were all co-infected with A. marginale. By vegetation zone, vec-
tor-borne infections were significantly more prevalent in the coastal savannah as compared to
either the Guinea savannah or the deciduous forest (p = 0.001; Chi-Square Goodness-of-Fit
test). This held true for both A. marginale and Theileria spp. as individual pathogens

(p =0.001) and as co-infections (p = 0.001).

Prevalence of tick-borne pathogens by breed

The four most common breeds of cattle [22] were sampled and included Gudali (n = 76),
Sanga (n = 151), West African Shorthorn (WASH; n = 113), and White Fulani (n = 57). We
next determined if the difference in the distribution of cattle breeds among the zones or if dif-
ferences in breed susceptibility could account for the differences in pathogen prevalence
among the climate zones. There was no significant difference in breed distribution among the

M BBG/T  AMBBG  AM/T  AM/BBG/T

«1125bp
«462 bp
« 265 bp

Fig 4. Detection of targeted pathogens by multiplex PCR. M represents the 1Kb plus DNA ladder. BBG+T
represents PCR amplicons from simultaneous amplification of B. bigemina and Theileria species. AM+BBG
represents PCR amplicons from simultaneous amplification of A. marginale and B. bigemina. AM+T PCR
represents amplicons from simultaneous amplification of A. marginale and Theileria species. AM+BBG+T
represents PCR amplicons from simultaneous amplification of A. marginale, B. bigemina and Theileria
species.

doi:10.1371/journal.pone.0152560.g004

PLOS ONE | DOI:10.1371/journal.pone.0152560 March 29, 2016 7/13



el e
@ ' PLOS ‘ ONE Tropical Disease Prevalence by Climatic and Vegetative Zones

Table 1. Prevalence of targeted pathogens by vegetative zone.

Vegetative zones A. marginale B. bigemina Theileria spp. Multiple pathogens®
Guinea savannah 71/131 (54%) 4/131 (3%) 25/131 (19%) 20/131 (15%)
Deciduous forest 31/69 (45%) 0/69 (0%) 9/69 (13%) 10/69 (15%)

Coastal savannah 148/197 (75%) 6/197 (3%) 68/197 (34%) 75/197 (38%)

Total 250/397 (63%) 10/397 (2%) 102/397 (26%) 105/397 (26%)

x? (2df, a = 0.05) 85.8 5.7 55.3 70.7

p value 0.001 ® 0.059 0.001 ® 0.001 ®

& Animals infected with more than one pathogen.
b- Coastal savannah has significantly higher prevalence as compared to the Guinea savannah and deciduous forest zones.

doi:10.1371/journal.pone.0152560.1001

three climatic zones (p>0.05) nor was there a significant difference in overall infection preva-
lence or the prevalence of co-infection when comparing the different breeds (p>0.05).

Evidence for continuous transmission within the coastal savannah

The prevalence of animals infected with more than one of the targeted pathogens was highest
in the coastal savannah with 38% of animals infected with more than one pathogen. In the
Guinea savannah and forest regions, 15% of cattle had multiple infections. Based on this higher
pathogen prevalence in the coastal savannah, we hypothesized that pathogen transmission
pressure was intense. To test this hypothesis, we selected individual animals that were known
to harbor a single pathogen and then determined the rate of infection with a second pathogen.
Initially, 19 animals infected with a single pathogen were examined at bi-weekly interval for 12
additional weeks; 12% of these animals acquired a second pathogen within the first two-week
interval (Fig 5). Over 50% of these animals became infected with one or more pathogen during
the first eight weeks of observation. This increased to 60% and remained stable in weeks 10 and
12.

To determine if this high intensity transmission was mirrored on a larger scale, the rate of
acquisition of a second pathogen was determined for three different herds, located 8 miles
apart at different sites within the Coastal savannah. The mean number of pathogens per animal
as determined three months following the initial blood sampling from these herds from Shai

70 1
60 — —
. & 50 1 —
5540 .
o .£ 30 1
&820 -
10 1 I—I
0 T : . . . . )
0 2 4 6 8 10 12
Weeks

Fig 5. The percentage of animals acquiring more than one pathogen within a twelve-week period. The
x-axis represents the percentage of animals infected with more than one pathogen. The y-axis represents the
time of sampling in weeks.

doi:10.1371/journal.pone.0152560.g005
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Hills (40 cattle), LIPREC (46 cattle) and Ashiaman (41 cattle) were 1.2 £ 0.7, 1.6 + 0.5 and

1.6 + 0.7, respectively. These values increased progressively to 1.6 + 0.4 (p = 0.001), 1.8 + 0.5
(p=0.03) and 2.0 + 0.5 (p = 0.002) at the end of the 12-week study period, indicating ongoing
transmission. These increases in the number of cattle acquiring additional pathogens were sta-
tistically significant in all three locations using a one-tailed t-test.

Relationship of environmental variables to infection prevalence

We next determined if the environmental variables were predictive of prevalence for the targeted
pathogens. For A. marginale prevalence, the best model included rainfall and EVI as significant
predictors with an adjusted coefficient of determination (Adj. R?) of 0.805 (p = 2.22x107°) and
root mean square error (RMSE) of 0.086. For B. bigemina prevalence, the best model included
rainfall, EVI and their interaction with an Adj. R*=10.586 (p =0.005) and RMSE = 0.017. For
Theileria spp. prevalence, the best model included only rainfall with an adjusted R* = 0.727

(p= 3.30%x107°) and RMSE = 0.086 (Table 2). Besides the best models just described (Table 2),
there was some, albeit weaker, support for competing models predicting each response

(Table 3). For A. marginale prevalence, an evidence ratio of 3.27 indicated 3.27 times more sup-
port for the best model (AICc Wt = 0.71) than the second best model based on rainfall alone
(AICc Wt =0.22). The best model for B. bigemina also included not just the rainfall and EVI
predictors, but also their interaction; this model (AICc Wt = 0.59) was stronger than the second
best model without the interaction term (AICc Wt = 0.22) by an evidence ratio of 2.76. Finally,
Theileria spp. prevalence was best predicted by rainfall alone (AICc Wt = 0.58), although there
was weak yet equal support (AICc Wt = 0.21) for competing models that included maximum
temperature, either with or without an interaction term (Table 3). The evidence ratio in support
of the rainfall-only model was 2.80.

Discussion

Ghana is a tropical country. However, as has been previously described and as reported here,
there are significant regional differences in minimum and maximum temperature, relative
humidity and rainfall as well as greater seasonal variation in these parameters in the Guinea

Table 2. Prevalence predicted by the best multiple linear regression models for each pathogen as determined by best subsets variable selection
and minimum Akaike Information Criterion corrected (AlCc) for small sample size.

Pathogen Parameter Estimate Std. Error t Value Pr(>|t]) Significance®
A. marginale Intercept 1.71 0.15 11.79 5.88 x10 *xx
Rainfall -2.81x10° 5.47 x10* -5.14 2.45x10* s
EVI -8.33 x10°° 3.37 x10° -2.48 2.92 x102 @
Model Fit Statistics: RMSE®: = 0.086 Adj. R? = 0.805 p=2.22x10° B
B. bigemina Intercept -0.15 -0.11 -1.37 0.20
Rainfall 3.57 x10* 3.50 x10* 1.02 0.33
EVI 1.16 x10™ 410 x10° 2.86 0.02 *
Rainfall:EVI -3.15x107 1.27 x10”7 -2.49 0.03 3
Model Fit Statistics: RMSE® = 0.017 Adj. R% = 0.586 p = 0.005 *%
Theileria spp. Intercept 1.03 0.14 7.48 463 x10° *xX
Rainfall -2.81x10° 4.54 x10™ -6.18 3.30 x10° BT
Model Fit Statistics: RMSE® = 0.086 Adj. R? = 0.727 p =3.30 x10® *¥¥

& *¥* p<0.001; ** p<0.01; * p<0.05
b RMSE = Root Mean Square Error.

doi:10.1371/journal.pone.0152560.1002
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Table 3. Model averaging based on corrected Akaike Information Criterion (AlCc) weight (Wt).

Pathogen Model™ AlCc® Delta AlCc™ AlCc wt*- Cum. Wt*
A. marginale Rainfall + EVI -19.19 0.00 0.71 0.71
Rainfall -16.82 2.37 0.22 0.93
Rainfall + EVI + Rainfall:EVI -14.53 4.66 0.07 1.00
EVI -5.56 13.63 0.00 1.00
B. bigemina Rainfall + EVI + Rainfall:EVI -62.75 0.00 0.59 0.59
Rainfall + EVI -60.72 2.03 0.22 0.81
Rainfall -60.39 2.36 0.18 0.99
EVI -54.46 8.29 0.01 1.00
Theileria spp. Rainfall -23.21 0.00 0.58 0.58
Rainfall + MaxTemp + Rainfall:MaxTemp -21.15 2.06 0.21 0.79
Rainfall + MaxTemp -21.15 2.06 0.21 1.00
MaxTemp -6.93 16.28 0.00 1.00

a.

C

¢ Cum. Wt: Cumulative AICc Wt.

doi:10.1371/journal.pone.0152560.t003

- Statistical models listed in order of strength of evidence supporting the model.

- AlCc: A measure of the relative quality of competing statistical models, corrected for a small sample size (n = 15 sites).
" Delta AlCc: The difference between the best model (smallest AlCc, Table 2) and each subsequent model.

- AICc Wt: Weighted AlCc, which is the probability that a particular model is the best model.

savannah and the semi-deciduous forest zone relative to the coastal savannah [23]. The preva-
lence of the examined tick-borne pathogens was statistically significantly higher in the coastal
savannah than in the semi-deciduous forest zone or the Guinea savannah. These findings sup-
port the hypothesis that within the context of a national tropical climate, there are significant
regional differences in pathogen prevalence. We additionally demonstrated that rainfall and
EVI, were highly predictive of pathogen prevalence in the three major livestock raising regions
of Ghana. The most robust model was for A. marginale with rainfall and EVI together being
the most predictive of prevalence. Similarly, rainfall and EVI together along with their interac-
tion were most predictive of B. bigemina prevalence. Rainfall alone was most predictive for the
prevalence of Theileria species. A. marginale and B. bigemina are generally transmitted by Rhi-
picephalus ticks, while Theileria spp. are more commonly transmitted by ticks within the gen-
era Hyalomma and Amblyomma [17]. While the differences in optimum model parameters are
modest, they may reflect differences in the preferred habitat and environment of these tick
species.

Arthropod vectors have specific environmental requirements for survival and reproduction,
such as temperature, humidity and host availability. Accordingly, the distribution and preva-
lence of vectors and thus vector-borne pathogens is more strongly linked to environmental var-
iables than are other infectious diseases [24, 25]. Consequently, remote sensing, geographic
information systems and predictive models based on vector populations are often used as indi-
cators of disease risk [26, 27]. In particular, these models are likely to be robust in regions
where a particular pathogen is transmitted by a single vector species and disease surveillance is
relatively good. For example in the eastern U.S., Borrelia burgdorferi, the cause of Lyme disease,
is maintained in a sylvatic cycle and spillover transmission to humans occurs solely when
nymphal Ixodes scapularis feed on humans. The risk of Lyme disease is directly linked to the
abundance of I. scapularis nymphs, which is absent in the winter and most abundant in early
summer [28].
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In tropical regions, these predictive modeling approaches can have major limitations [26,
29]. Model validation is predicated on the accurate determination of distribution and abun-
dance of multiple tick species both spatially and temporally. However, vectors are difficult to
detect within the environment, are not uniformly distributed among animals, and thus accu-
rate and meaningful enumeration is difficult [30]. For tick populations, this is particularly true
in tropical regions which are often less accessible and where multiple tick vector species are
present year around, but can vary in abundance seasonally and by life stage [30, 31]. For exam-
ple, more than nine different tick species, many of which serve as vectors for more than one
pathogen, have been identified on cattle in the livestock rearing vegetation zones in Ghana [30,
32]. The competence and vector capacity of each of these ticks and their life stages and the
degree to which each contributes to the overall pathogen burden is unknown. Thus risk assess-
ment for many vector-borne diseases, particularly within the tropics, must be based on param-
eters that predict disease incidence and prevalence rather than solely on the abundance and
distribution of a vector species. Readily obtainable environmental data such as rainfall and EVI
can be used to predict pathogen prevalence, as demonstrated by the data presented here.

The spatial (Ghana) and temporal (three years) ranges of the data considered in our study
were too limited to detect or infer effects of global warming. In this context, however, regional
shifts in climate may have the largest impact in resource poor regions and the ability to accu-
rately predict the effect of such alterations allows for targeting limited resources for long term
planning and mitigation of negative outcomes. Livestock populations at greatest risk for
increased morbidity and mortality from tick borne pathogens are those that initially have
lower prevalence of infection and thus less herd immunity and then experience a climate-based
shift to more intense tick transmission. In addition, increased seasonal or interannual variation
may result in periods of low tick transmission leaving increasingly higher numbers of suscepti-
ble animals in a herd. Episodic periods of high transmission could then lead to periodic disease
outbreaks characterized by high morbidity and mortality.

Greater spatial resolution of rainfall data and disease incidence than that reported in this
paper may allow for finer resolution mapping and increased accuracy of predicting how altered
climatic variables and closely coupled vegetation dynamics affect pathogen transmission. Reso-
lution of such predictions on the scale of administrative districts is essential for efficient target-
ing of limited resources for mitigation efforts within a country. The current data suggest that
relatively small shifts in regional rainfall and vegetation may result in significant shifts in path-
ogen prevalence. Though the ecology of different vector borne pathogens will vary, these data
demonstrate that readily available weather and satellite data can be used to predict pathogen
prevalence and thus ultimately disease risk.
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