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Abstract

Craving is a key aspect of drug dependence that is thought to motivate continued drug use. Numerous brain regions have
been associated with craving, suggesting that craving is mediated by a distributed brain network. Whether an increase in
subjective craving is associated with enhanced interactions among brain regions was evaluated using resting state
functional magnetic imaging (fMRI) in nicotine dependent participants. We focused on craving-related changes in the
orbital and medial prefrontal cortex (OMPFC) network, which also included the subgenual anterior cingulate cortex (sgACC)
extending into the ventral striatum. Brain regions in the OMPFC network are not only implicated in addiction and reward,
but, due to their rich anatomic interconnections, may serve as the site of integration across craving-related brain regions.
Subjective craving and resting state fMRI were evaluated twice with an ,1 hour delay between the scans. Cigarette craving
was significantly increased at the end, relative to the beginning of the scan session. Enhanced craving was associated with
heightened coupling between the OMPFC network and other cortical, limbic, striatal, and visceromotor brain regions that
are both anatomically interconnected with the OMPFC, and have been implicated in addiction and craving. This is the first
demonstration confirming that an increase in craving is associated with enhanced brain region interactions, which may play
a role in the experience of craving.
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Introduction

Craving, or the strong desire to use an abused substance, is a

key component of drug addiction, and is a motivator for drug use

[1,2]. To understand craving, research has focused on identifying

the neurobiological substrates underlying the desire to use drugs.

However, craving is linked with a number of brain regions, such as

those involved in primary drug reward, habitual drug use,

memory, and reward based-decision making [3–8]. Thus, it is

hypothesized that a distributed brain network mediates craving

instead of a single localized region [9]. An increase in craving may,

therefore, involve enhanced brain region interactions that facilitate

integration of information across these disparate brain areas.

The relationship between craving and brain-network interac-

tions can be evaluated using functional magnetic resonance

imaging (fMRI) data collected at rest. While previous task-related

fMRI research has identified discrete brain regions associated with

craving [6,8], resting-state fMRI allows for the evaluation of brain

function at a more distributed network level. During rest, brain

regions with highly correlated fluctuations in blood oxygen level

dependent (BOLD) signals are defined as functional networks [10],

called resting state networks (RSNs), which are thought to reflect

intrinsic functional brain organization [11,12]. Subsequent

research has revealed that RSNs are associated with known brain

systems related to cognition, perception, and reward [13,14]. To

evaluate associations between craving and network-level brain

changes, we collected resting-state fMRI and subjective craving

data in nicotine-dependent smokers at two time points approxi-

mately one hour apart. Over this one-hour time period,

participants reported a significant rise in craving as measured by

the brief questionnaire of smoking urges (QSU) [15].

We focused on the orbital and medial prefrontal cortex

(OMPFC) network, which is a previously defined RSN [13,16]

comprised of anatomically interconnected brain regions [17]

involved in the mesocorticolimbic reward circuit. Specifically, the

OMPFC network contains the medial and orbital prefrontal cortex

(mPFC, OFC), and the subgenual anterior cingulate cortex

(sgACC) extending into the ventral striatum. We focused on this

network as these prefrontal and striatal regions are implicated in

craving [4,7,18] drug reinforcement [19,20], and reward process-

ing [21]. Additionally, the OFC is thought to be a multimodal

integration area leading to hedonic experience [22]. In addition to

the direct link between OMPFC brain regions and craving, this

network may act as a hub [23] where information is integrated to

facilitate the subjective experience of craving. To confirm the idea

that a distributed brain network is associated with craving, we

hypothesize that interactions between the OMPFC network and

other craving-related brain regions will increase along with a rise

in the subjective experience of craving.

Methods

Participants
Seventeen nicotine-dependent smokers (8 men/9 women) were

studied: 25.464.6 (mean 6 standard deviation) years old with

15.362.1 years of education and 6.764.7 pack-years of smoking
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use (pack years = number of packs of cigarettes smoked/day x

years as a smoker). Participants had an average Fagerström test for

nicotine dependence (FTND) [24] score of 6.361.0, which

confirmed moderate to severe nicotine dependence. Participants

also reported smoking $10 cigarettes/day over the past 6 months.

The Structured Clinical Interview for DSM-IV (SCID) was used

to assess all participants for current nicotine dependence and to

exclude those with a lifetime diagnosis of the following conditions:

organic mental disorder, bipolar or unipolar depression, or

schizophrenia spectrum disorder. Participants also were excluded

for pregnancy, current psychotropic drug use or recent alcohol use

(Alco-Sensor FST, Intoximeters, Inc.). No participants consumed

any alcohol prior to the study as indicated by a blood alcohol level

of 0. Additionally, no subjects met criteria for alcohol abuse or

dependence. Recruitment was conducted using online advertise-

ments and fliers posted in the Boston area. All participants gave

written informed consent prior to participating in the study and

the institutional review board at McLean Hospital approved this

study and consent procedure.

Functional Neuroimaging
All participants smoked one of their own cigarettes immediately

following signing the informed consent to standardize the time

since a cigarette was last smoked. MRI scanning began

approximately 1.5 h after smoking this cigarette. Scans were

acquired on a Siemens Trio 3 Tesla scanner (Erlangen, Germany)

with a 32-channel head coil. Multiecho multiplanar rapidly

acquired gradient-echo (ME-MPRAGE) structural images were

acquired with the following parameters (TR = 2.1 s, TE 3.3 ms,

slices = 128, matrix = 2566256, flip angle = 7u, resolution =

1.0 mm61.0 mm61.33 mm), and gradient echo echo-planar

images were acquired using the following parameters (TR =

2.5 s, TE = 30 ms, flip angle = 90u, slices = 42, voxel size =

3.5 mm isotropic). Slices were acquired aligned to the anterior and

posterior commissure and the phase encode direction was set to

acquire from the posterior to anterior direction to prevent

prefrontal signal loss. During the 6-minute resting state fMRI

scans participants were asked to remain awake with their eyes

open. Two resting state scans were acquired approximately 1 h

apart.

fMRI Pre-processing
All data analysis was conducted using tools from the Functional

Magnetic Resonance Imaging of the Brain (FMRIB) Software

Library (FSL; www.fmrib.ox.ac.uk/fsl). Functional data pre-

processing included: motion correction with MCFLIRT, brain

extraction using BET, slice timing correction, spatial smoothing

with a Gaussian kernel of full-width half-maximum 6 mm, and

high-pass temporal filter with Gaussian-weighted least-squares

straight-line fitting with s= 100 s. Subject specific data was

registered to the MNI152 2 mm3 standard space template

(Montreal Neurological Institute, Montreal, QC, Canada) using

FLIRT and the fMRI data was transformed into standard space at

26262 mm resolution using the registration transformation

matrices.

fMRI Resting-State Independent Components Analysis
To identify resting state networks common to all participants,

the data from all subjects were temporally concatenated and a

multivariate group probabilistic ICA (PICA) was conducted using

FSL MELODIC [25,26]. Consistent with our prior work [16], the

dimensionality was fixed to 35 to investigate large-scale RSNs. To

ensure stable convergence of the ICA, the ICA was run 8 times

followed by a meta-level ICA fed by all of the spatial maps from

the 8 decompositions [14]. This meta ICA was conducted to

identify the set of independent components common to all

subjects. These components included, common resting state

networks, which have been identified elsewhere [13,14] such as

the default mode, salience, fronto-parietal, motor, and visual

networks. Artifact-related components were also identified.

Through comparison with brain networks reported previously

[13,14,16] the resulting independent component maps were

visually inspected to identify the OMPFC network (see Fig. 1,

green shading).

Dual Regression
To calculate subject specific time courses and spatial maps, we

used a dual regression approach [27–29]. In the first stage of dual

regression, the full set of group ICs, which include all RSNs and

artifact components, are used in a multiple spatial regression

against each individual subject’s dataset to estimate the average

time course of voxels in each RSN. By including all of the ICs in

the multiple regression, any voxel with contributions from multiple

signal sources (for example, from coupling with an RSN and from

motion effects) will have these effects partialled out into their

separate contributions by the multiple regression prior to the

averaging. The subject-specific time courses were normalized to

unit variance and then used in a second multiple regression against

the individual subject’s dataset, to identify voxels correlated with

each of the RSN time courses, thus identifying the spatial map of

each RSN unique to the subject. To evaluate a change in

functional connectivity between the two resting state acquisitions,

difference maps were calculated by subtracting the individual

subject specific spatial maps for the second minus the first resting

state session.

Resting State Associations with Craving and Carbon
Monoxide

Just prior to the first resting state scan and just after the second

resting state scan, craving was measured by the brief 10-item

Questionnaire of Smoking urges [15]. Expired carbon monoxide

(CO; Micro Smokerlyzer II, Bedfont Scientific Instruments) was

also measured at these two time periods. Significant differences in

craving and CO at these two time periods were assessed using a

paired t-test. Changes in craving and CO were calculated by

subtracting the second (post-scan) minus the first (pre-scan)

measurements. Changes in craving and CO were correlated with

the RSN difference maps using non-parametric permutation

testing using 5,000 permutations (FSL Randomize) [30]. Multiple

comparisons were corrected to p,0.05 using cluster-based thresh-

olding where the cluster-forming threshold was Z = 2.3 [31].

Results

Craving and Carbon monoxide
Craving, measured by the QSU, significantly increased

following the second resting state scan (t16 = 23.3, p,0.01; pre

22.568.2, post 30.2610.2). Expired CO levels significantly

dropped from pre (26.9612.3 ppm) to post (18.668 ppm)

scanning (t16 = 6.3, p,0.01). There was no relationship between

the change in craving and CO, nor was the difference in craving

or CO associated with age, pack-year, or FTND score.

Identified resting state network
The OMPFC network common to all subjects included the

ventromedial PFC (Broadmann area (BA) 10), orbitofrontal cortex

(OFC; BA 11), subgenual ACC (BA 24, 32), and the ventral

striatum/nucleus accumbens extending into the adjacent caudate.

Craving and Enhanced Brain Network Coupling

PLOS ONE | www.plosone.org 2 February 2014 | Volume 9 | Issue 2 | e88228



(Figure 1, green shading). This definition of the OMPFC network

visually overlapped with our previous work [16] and the work of

others [13].

Craving associations with RSNs
No associations were found between the first assessment of

craving and the first RSN measure, nor were associations found

between the second craving assessment and the second RSN

measure. A positive correlation was found between the change in

craving (second – first) and the OMPFC RSN difference maps

(second – first). As craving rose, increased connectivity was found

between the OMPFC network difference map and several brain

regions including: left dorsal regions of the superior frontal gyrus

(BA 10) extending into the dACC (BA 24, 32) and left frontal pole

(BA 10), bilateral supplementary motor area (BA 6), bilateral

ventral striatum, bilateral caudate, bilateral ventral occipital cortex

(BA 18, 19), right thalamus, right hippocampus and parahippi-

campal gyrus, and left superior cerebellum (left crus 1 and left

lobule VI; Figure 1, orange shading; related correlation plot,

Figure 2; Table 1).

Carbon Monoxide associations with RSNs
No associations were found between CO and any of the RSN

measurements.

Discussion

The current results identify that a relationship exists between

increased subjective craving and enhanced coupling between the

OMPFC network and several other brain regions. This association

was noted only when evaluating the change in craving as no

interaction was found between craving and RSN measures at

either time point one or two alone. This suggests that stable levels

of craving are not related to network functional connectivity

strength, but experiencing a rise in craving is accompanied by

greater OMPFC network coupling. While others have evaluated

the relationship between nicotine withdrawal symptoms and the

default mode and executive control networks [28], this is the first

focused evaluation of craving on reward-related brain networks.

As we found no correlation between the decrease in expired CO

and OMPFC network coupling, the relationship between craving

Figure 1. Left to right: Sagittal, coronal, and axial views of grouped analyses demonstrating that craving increases along with
orbital and medial prefrontal cortex (OMPFC) network coupling. Green voxel highlighting is the OMPFC network defined by the group ICA.
The orange overlay represents voxels with increased coupling to the OMPFC network as craving increases.
doi:10.1371/journal.pone.0088228.g001

Figure 2. Difference in craving (post-scan minus pre-scan) associated with semi-standardized partial regression coefficients.
Coefficients were extracted from the subject specific spatial maps from stage 2 of the dual regression for regions that showed statistically significant
relationships with craving in the whole brain analysis (as such, this plot is only meant to supplement our inference and may overestimate the true
effect size).
doi:10.1371/journal.pone.0088228.g002
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and changes in connectivity cannot be attributed to physiological

changes due to a drop in CO.

There is a strong link between the OMPFC network and

craving as regions within this network, which include the vmPFC,

OFC, sgACC, and striatum, activate during craving [4,32].

Several, but not all studies also report deactivation of these regions

during the regulation of craving [4,32–35]. Supporting the idea

that OMPFC regions act as a craving-related functional unit,

Hanlon and colleagues [4] showed that this entire cluster of brain

regions activates during tobacco craving. More broadly the

OMPFC network may be involved in reward evaluation during

the experience of craving, as OMPFC network regions are active

during both reward anticipation and reward delivery [36–40].

In the present study, increased subjective craving paralleled

enhanced coupling between the OMPFC network and brain

regions that typically activate when drug users are exposed to

drug-associated cues; including dorsal regions of the mPFC [41],

the hippocampus [42], visual areas [41,43], sensory motor regions

[44], the striatum [7,45], and cerebellum [46]. This co-activation

of prefrontal and other cortical, limbic, striatal, and visceromotor

areas led London and colleagues [18] to speculate that there is an

‘‘interplay of related networks’’ during drug-cue exposure that

may correspond with craving. Our findings confirm that a rise in

subjective craving is correlated with enhanced coupling between

brain regions associated with craving, which are also anatomically

connected with the OMPFC [17]. These rich interconnections

with OMPFC brain regions are thought to form a sensory-

visceromotor link to guide reward-related behavior and give rise to

hedonic experience [17,22]. Thus, it is possible that the integration

of information between these regions may play a role in the

experience of craving as well as guiding smoking behavior.

In the context of the current study, we are unable to directly

determine whether there is a link between increased brain network

coupling and behavior. However, as craving intensity peaks prior

to relapse [47], it is tempting to speculate that that the enhanced

coupling between brain regions associated with increased craving

facilitates smoking-related behavior. Increased craving-related

coupling between the OMPFC network and regions such as the

supplementary motor area (SMA) supports the notion that the

observed network-interactions may have an impact on behavior.

Not only does the SMA activate to smoking-related cues [44], but

SMA neurons fire prior to hand movements, which is thought to

facilitate psychomotor responses to an object [48]. Thus, the

interaction between these brain regions implicated in craving and

behavior may actually be involved in the process of ‘‘preparing to

smoke’’. Alternatively, as smokers were in the scanner and unable

to smoke ad libitum, when they had the immediate desire, the

involvement of brain regions such as the SMA may regulate

smoking behavior as the SMA also is implicated in the inhibition

of action [49].

Future directions not only include linking network changes with

behavior, but also defining the neurotransmitter systems mediating

brain network connectivity. For instance, greater midbrain

dopamine D3 receptor availability is positively correlated with

enhanced coupling between the OMPFC network and brain

structures such as the striatum and OFC [50]. In addition, D3

receptors play a strong role in nicotine-seeking and are a

promising target for nicotine cessation treatment [51–53]. These

studies suggest that future research should focus on the role of D3

receptors in craving-related OMPFC network coupling. Given

that D3 receptors influence other addictive disorders [54], these

future studies should be expanded to include craving-related

network changes for nicotine and other abused substances. While

we found no relationship between craving and factors such as age

and level of nicotine dependence, these factors should also be

studied more directly as our work focused specifically on relatively

young and heavily nicotine dependent smokers. Finally, while we

speculate that OMPFC brain regions may act as an integrative

hub [23], future studies involving alternative connectivity methods

should focus on identifying the directionality of information flow

between craving-related brain structures.

Our results confirm that increased tobacco craving is associated

with enhanced interactions between reward- and craving-related

brain regions. This rise in craving over time was not related to

baseline measures of smoking history, nor was the change in brain

interactions due to a decrease in expired CO, indicating that

changes in OMPFC coupling are specifically related to enhanced

subjective craving. The relationship between changes in craving

and RSN connectivity indicate that brain network interactions are

associated with changes in subjective state.
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