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Accuracy of heart rate variability 
estimated with reflective wrist‑PPG 
in elderly vascular patients
Christoph Hoog Antink1,2*, Yen Mai3,4, Mikko Peltokangas3,4, Steffen Leonhardt2, 
Niku Oksala3,4,5 & Antti Vehkaoja3,4,6

Optical heart rate monitoring (OHR) with reflective wrist photoplethysmography is a technique 
mainly used in the wellness application domain for monitoring heart rate levels during exercise. In the 
absence of motion, OHR technique is also able to estimate individual beat-to-beat intervals relatively 
well and can therefore also be used, for example, in monitoring of cardiac arrhythmias, stress, or sleep 
quality through heart rate variability (HRV) analysis. HRV analysis has also potential in monitoring the 
recovery of patients, e.g. after a medical intervention. However, in order to detect subtle changes, 
the calculated HRV parameters should be sufficiently accurate and very few studies exist that asses 
the accuracy of OHR derived HRV in non-healthy subjects. In this paper, we present a method to 
estimate beat-to-beat-intervals (BBIs) from reflective wrist PPG signal and evaluated the accuracy 
of the proposed method in estimating BBIs in a cross-sectional study with 29 hospitalized patients 
(mean age 70.6 years) in 24-h recordings performed after peripheral vascular surgery or endovascular 
interventions. Finally, we evaluate the accuracy of more than 30 commonly used HRV parameters 
and find that the accuracy of certain metrics, for example SDNN and triangular index, shown in the 
literature to be associated with the deterioration of the status of the patients during recovery from 
surgical intervention, could be adequate for patient monitoring. On the other hand, the parameters 
more affected by the high-frequency content of the HRV and especially the LF/HF-ratio should be used 
with caution.

Unobtrusive continuous monitoring and automatic analysis of physiological variables is an emerging area that 
has the potential to improve the effectiveness of healthcare delivery by providing early indications in the changes 
of the patients’ status, whether being treated in a hospital or staying at home. However, in order to be usable in 
practice, the data used by the automatic analysis algorithms needs to be reliable and accurate.

Reflective photoplethysmography (PPG) measured with a wrist-worn device, also called optical heart rate 
(OHR) monitoring, is a technique traditionally used mainly in the wellness application domain for monitoring 
heart rate level during exercise. In the absence of motion, the OHR technique is also able to estimate individual 
beat-to-beat intervals (BBIs) relatively accurately and has therefore recently emerged as an unobtrusive method 
for detecting cardiac arrhythmias1–3. Besides arrhythmias, the performance of wrist-worn OHR monitoring has 
also been studied, for example, in the assessment of psychological stress4 and in sleep staging through heart rate 
variability (HRV) and movement analysis in healthy subjects5,6. Studies evaluating the performance in beat-to-
beat heart rate monitoring and accuracy of HRV parameters have usually been performed in controlled situa-
tions during selected activities or at rest as in7,8 or as reviewed in9. Further, studies evaluating the applicability of 
wrist-worn OHR technology in estimating HRV in hospitalised patients have been scantly reported.

A recent study reported poor performance of HRV estimation with commercial wrist OHR device in uncon-
trolled conditions10 highlighting the need for improvements in the measurement technology or signal analysis 
methods. The most significant limitation of OHR technology is its high sensitivity to movement artefacts, which 
poses challenges for the signal processing algorithms to choose only those heartbeats or heartbeat intervals that 
are not affected by movements. In addition, factors such as poor superficial blood perfusion and skin color affect 
the quality of the obtained signal and consequently, the accuracy of beat-to-beat heart rate11,12.
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The predictive value of HRV parameters measured through gold standard electrocardiography (ECG) in 
identifying patients at risk of post-surgical complications has been studied in various patient groups such as in 
hip fracture13, digestive surgery14, abdominal aortic surgery15, and cardiac surgery patients. In cardiac patients, 
a popular topic has also been the evaluation of the relation of long-term mortality and HRV after myocardial 
infarction. A number of studies focusing on cardiac patients and HRV have been aggregated in the reviews by 
Nenna et al.16 and Huikuri and Stein17. HRV analysis has also been proposed for early detection of infections 
related to communicable diseases18, development of septic shock19, and also for several other purposes related 
to anesthesia and intensive care20.

Large number of HRV parameters have been found in the aforementioned studies to indicate a high risk 
of perioperative complications and post-surgery mortality. Short descriptions of these parameters and their 
abbreviations are found in Table 1. Ernst et al. found significant association with decreased RMSSD and total 
power of pre-operatively measured HRV and increased probability of post-operative complications as well as 
decreased VLF power and HF/LF-ratio and post-operative infections in hip fracture patients13. They, however, did 
not find association between pre-operative SDNN and post-operative complications. On the other hand, SDNN 
and HRV triangular index measured on post-operative day 1 were found to be statistically significantly lower in 
digestive surgery patients developing post-operative complications14. Both Nenna et al. as well as Huikuri and 
Stein identified scaling exponent α1 of detrended fluctuation analysis as a non-linear HRV parameter with high 
prognostic value in predicting long-term cardiac mortality16,17. This parameter was also found to be the best 
predictor of complicated recovery after coronary artery bypass grafting21. In the studies that have also evaluated 
the heart rate level as a potential indicator, increased post-operative heart rate has been found to predict or be 
associated with post-operative complications.

In all studies presented above, HRV analysis for monitoring of post-surgery patients and detecting complica-
tions has been performed using ECG. However, in order to be suitable for continuous monitoring for the duration 
of several days, the monitoring method should be as unobtrusive as possible. ECG electrodes are usually attached 
to the body with adhesives and may cause medical adhesive related skin injuries22,23, especially if worn for long 
periods of time, and are thus not a suitable approach.

The OHR technology would provide a convenient and unobtrusive solution for the task. However, typically 
the absolute amount of heart rate variation is decreased in aged and fragile patients24. As these patients exhibit 
the highest risk of developing complications, even better accuracy is needed from the measurement method in 
order to obtain adequate relative accuracy for the HRV parameters of interest. Inaccuracies in estimated heartbeat 
intervals also affect different HRV parameters differently25. Therefore, it is an interesting question whether those 
HRV parameters that have earlier been found to predict the development of post-treatment complications, can 
be estimated with adequate accuracy with OHR technology. We hypothesize that not all commonly used HRV 
parameters can be estimated with the same accuracy. We further hypothesize that some parameters may exhibit 
error levels small enough to render them possible candidates for future studies.

We performed 24-h monitoring with 29 subjects who had undergone vascular surgery or endovascular 
treatment. Typically, these patients have several comorbidities such as diabetes, hypertension, dyslipidemia, 
coronary artery disease, cerebrovascular disease and may have reduced cardiac function. For all patients, long-
term recordings (mean 17.72 h, range 4.64–22.96 h) including day- and nighttime were acquired. The accuracy 
of a large set of HRV parameters was evaluated based on 5-min segments of BBIs estimated from reflective wrist 
PPG and reference ECG data.

Methods
Heartbeat interval and data quality estimation algorithm.  For BBI estimation, we used continu-
ous local interval estimation (CLIE) algorithm26 augmented with an iterative estimation approach (adaptive 
prior)27,28. The algorithm was originally developed for BBI estimation from ballistocardiography (BCG) data, 
which is often noisy and exhibits changes in morphology, rendering standard peak-detection strategies subop-
timal. In a previous study, we have shown that the methodology is suitable for accurate, unbiased estimation 
of BBI intervals from clean (finger clip) PPG29: In short, intervals are estimated based on self-similarity of the 
underlying signal. For this, three estimators, namely short-term autocorrelation, maximum amplitude pairs, 
and mean absolute differences are fused. Estimation is performed iteratively, with the first iteration resulting in 
a prior signal that is used in the second pass. For details, the interested reader is referred to28.

As in the original approach, in addition to the estimated interval, a quality metric q is reported for each 
estimated interval that quantifies the level of self-similarity detected. In Fig. 1, three signal excerpts are shown: 
while the first row presents an excerpt of a signal with a mean quality of 0.2, the second row shows an excerpt 
with q̄ = 0.3 , and the last with q̄ = 0.4.

If a technology is used to detect slow changes in health status, it is often less critical to get continuous estima-
tions, but more important that the accuracy of those is sufficient for the given task. Thus, a common approach is 
to exclude data based on a quality metric, thereby creating a tradeoff between the so-called (temporal) coverage 
and the error. In the particular case of HRV estimation, measurement protocols usually require the subject to be 
as calm as possible. As motion artifacts are the main source of error, it is particularly advantageous to exclude 
segments with low quality in such a scenario. In this work, four different quality metrics were used. First, we 
used a fixed threshold of qth = 0.3 to only accept intervals with q > qth in the subsequent analysis. In addition, 
for each 5-min window, the following rules were applied:
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•	 Only if the median quality qmed of the window is above a threshold value qth,med , the window is accepted: 
qmed > qth,med

•	 Only if the quality inside the window exhibits small variability (i.e. a small relative standard deviation), the 
window is accepted: SD(q)/q < qth,var

•	 Only if the ratio of accepted intervals inside the window NOK relative to the estimated mean interval ¯BBI is 
large enough, the window is accepted: NOK/ ¯BBI > Rth,OK

The threshold values can be chosen by the user based on priorities of the application i.e. large data coverage or 
accuracy (as will be shown in the results section, Figs. 4 and 5). The overall process is visualized in Fig. 2.
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Figure 1.   Three excerpts of the PPG-signal with varying levels of mean quality q̄.

Figure 2.   Overall flow of the BBI estimation approach. The BBI-time series is estimated using an iterative 
approach28. Only if three criteria (sufficient median quality qth,median , low variation in quality qth,var , ratio of 
intervals estimated Rth,OK ) are met, the 5-min window is analyzed using the Kubios HRV analysis software.
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HRV parameters.  To calculate HRV parameters from both the reference ECG and the PPG-derived BBIs, 
the analysis software “Kubios HRV premium” by Kubios Oy, Finland, is used. Kubios allows the calculation of 
more than 30 HRV parameters30 and has beed used in more than 4500 scientific publications according to the 
manufacturer. In this study, the parameters presented in Table 1 were evaluated.

In particular, the analysis includes several time-domain parameters (SDNN, SDHR, RMSSD), frequency-
domain parameters associated with low-frequency components (LF Abs., LF Log.), frequency-domain parameters 
associated with high-frequency components (HF Abs., HF Log.), as well as relative (Poincaré SD2/SD1 , LF/HF), 
statistical (NN50, pNN50), and nonlinear (ApEn, SampEn, PC SD1,2 , DFA α1,2 ) parameters. The 5-min analysis 
window was shifted in steps of 60 seconds and HRV parameter calculation repeated. HRV parameters estimated 
with Kubios from PPG-based BBI and corresponding ECG-based reference RR-interval windows were exported 
and comparisons were performed in MATLAB.

For each 5-min window of the data of each subject, a ground-truth HRV parameter and an estimated value 
exist. For evaluation, we performed per-subject analyses (Figs. 6 and 8) as well as combined gross analyses (all 
other figures and tables). In the per-subject analysis, error metrics are calculated for each subject individually. 
This implies that the relative error is calculated by normalization with the average of the ground truth of all 
windows of that subject. In the gross analysis, all data of all subjects are aggregated. Here, the relative metrics 
are based on the average ground truth values of all windows of all subjects. Thus, the gross analysis is biased 

Table 1.   HRV parameters calculated using the “Kubios HRV Premium” software.

HRV parameter description Abbreviation

Energy expenditure EE

Training impulse TRIMP

Stress index SI

Mean of normal-to-normal (NN) intervals Mean NN

Standard deviation of NN intervals SDNN

Mean heart rate Mean HR

Standard deviation of heart rate SDHR

Minimum heart rate Min. HR

Maximum heart rate Max. HR

Root-mean-square of successive differences RMSSD

Number of interval differences > 50ms NN50

Percentage of interval differences > 50ms pNN50

Triangular index Tri. Indx

Triangular interpolation of NN intervals TINN

Poincaré SD1 PC SD1

Poincaré SD2 PC SD2

Poincaré SD2/SD1 PC SD2/SD1

Approximate Entropy ApEn

Sample entropy SampEn

Scaling exponent α1 of detrended fluctuation analysis DFA α1
Scaling exponent α2 of detrended fluctuation analysis DFA α2
Very low frequency (VLF, 0–0.04 Hz) peak frequency VLF PF

Low frequency (LF, 0.04–0.15 Hz) peak frequency LF PF

High frequency (HF, 0.15–0.4 Hz) peak frequency HF PF

VLF absolute power VLF Abs.

LF absolute power LF Abs.

HF absolute power HF Abs.

Natural logarithm of VLF absolute power VLF Log.

Natural logarithm of LF absolute power LF Log.

Natural logarithm of HF absolute power HF Log.

VLF relative power VLF Rel.

LF relative power LF Rel.

HF relative power HF Rel.

LF normalized power LF Norm.

HF normalized power HF Norm.

LF power to HF power ratio LF/HF

Parasympathetic nervous system index PNS Indx

Sympathetic nervous system index SNS Indx
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towards subjects with more accepted datapoints. By comparing gross and per-subject analysis, information about 
inter-subject variability is obtained.

To provide information on the distribution of the error, several error metrics are used. For all metrics, the 
difference of estimation and ground truth ( � = estimation − ground truth) of the respective HRV parameter 
forms the basis. The “Bias” is defined as the average of all � , i.e. it indicates over- and under-estimation in 
absolute units. The relative bias “Bias (%)” is the bias normalized by the average of the ground truth. “P05” and 
“P95” are defined as the 5th and 95th percentile of � and give an indication of the spread of the error in absolute 
units. Similarly, the standard deviation of � , “SD” is a metric for the spread of the error assuming a Gaussian 
distribution. The mean absolute error “MAE” is defined as the mean of the absolute values of � , while the root 
mean square error “RMSE” is determined by calculating the root of the mean value after squaring all individual 
� . As the RMSE is more sensitive to outliers, the comparison of MAE and RMSE gives information about their 
presence. The relative quantities “MAE (%)” and “RMSE (%)” are calculated analogously to the relative bias, with 
the selection of the normalization depending on per-subject or gross analysis as described above. Finally, we 
analyze the “Relative Error”, which is � divided by the mean of the ground truth. While “Bias (%)” is equivalent 
to the mean of “Relative Error”, we additionally provide median, 25th, and 75th percentile to obtain further 
information of the spread of the error in relative terms (Fig. 7).

Evaluation data.  The patient recordings were performed at the vascular surgery ward of Tampere Univer-
sity Hospital between April and October 2018. Inclusion criteria for the study were at least 50 years of age and 
admission to peripheral arterial bypass operation, endarterectomy, aortic surgery, or carotid surgery. Patient 
with cardiac pacemaker were excluded from the study. The study was a descriptive pilot study for gaining initial 
knowledge about the performance and suitability of new sensor technology for patient monitoring and 30 suc-
cessful patient recordings was determined as a suitable sample size. Altogether 36 patients were recruited for the 
study but seven subjects had to be discarded due to technical problems or due to short duration of the recording. 
In four cases the problem was with the reference device (poor quality ECG), in one case with the study device 
(recording had not started), and in two cases the patient was admitted to re-operation shortly after the beginning 
of the recording. Thus, the data of 29 postoperative vascular patients were included in the analysis. The subjects 
were monitored for approximately 24 h with a wrist-worn OHR prototype device manufactured by PulseOn 
Oy, Finland, Fig. 3. Long-term recordings were obtained to eliminate bias potentially arising from, for example, 
monitoring only sleeping subjects.

The PulseOn wrist device uses green color LEDs with peak wavelength of 573 nm and 25 Hz sampling rate. 
Before interval estimation, the PPG data were upsampled to 200 Hz using linear interpolation and bandpass-
filtered using a 2nd-order Butterworth bandpass-filter with a passband of 0.5 to 15 Hz.

The reference ECG was recorded with a Faros 360 five-lead Holter monitor manufactured by Bittium Biosig-
nals using 1 kHz sampling frequency. Ambu Blue sensor L-00-S electrodes were used for the ECG recording. The 
average age of the subjects was 70.6 years (SD: 8.5 years, range 50–87 years). Seven of the subjects were female. 
The subjects had undergone different vascular and endovascular procedures such as lower limb percutaneous 
transluminal angioplasty and/or stenting, abdominal aortic aneurysm endovascular repair, carotid or femoral 
artery endarterectomy, or femoropopliteal bypass surgery. Approval for this study was obtained from the Regional 
Ethical Committee of Pirkanmaa Hospital District (R17027). Informed consent was obtained from all subjects. 
The guidelines of the Declaration of Helsinki were followed in the study. The study was registered at ClinicalTri-
als.gov, identifier NCT03572751.

In this study, ECG and PPG were recorded with two independent, unconnected wearable devices. Devices 
that have independent system clocks and are not synchronized can exhibit drifts in sampling rate31. In long-
term recordings, even small drifts can amount to large offsets, which would lead to the comparison of non-
corresponding windows in this study. Thus, we adopted the same alignment process as in our previous work on 
BCG data28: The algorithm calculates a time-varying offset that minimizes the median BBI estimation error in a 
moving window with the size of 1500 beats, which corresponds to approximately 25 min. The offset-vector was 
additionally median filtered with the same filter size to remove outliers. Finally, an offset-vector is obtained that 
ensures that each window of the PPG data is compared to the matching ECG window.

Figure 3.   Optical heart rate monitoring device (prototype) used in the study. (a) top view with status LEDs, (b) 
bottom view (facing the measurement area).
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Results and discussion
Figures 4 and 5 demonstrate the effect of the threshold-parameters on the coverage of accepted 5-min windows 
and the mean absolute error of the HRV parameter SDNN, respectively.

As expected, the coverage decreases monotonically with an increase in Rth,OK , an increase in qth,median , and a 
decrease in qth,var (Fig. 4). The same general tendency holds for the estimation error. Fig. 5 shows the mean abso-
lute error for SDNN as one example. Note that the distribution of the coverage is the same for all HRV parameters, 
whereas we observed varying dependencies on the three thresholding parameters for the different error metrics 
and the different HRV parameters (not shown). In the following, a target coverage of 30% was arbitrarily set. Out 
of the several combinations of thresholds that would result in this target coverage, the following set was chosen:

•	 Rth,OK = 171.22
•	 qth,median = 0.46
•	 qth,var = 2.11

This choice of thresholds is visualized with a red dot in Figs. 4 and 5. Note that while these parameters lead to 
an average coverage of 30 %, the coverage for individual subjects may vary. Further note that this choice is fixed 
for all following calculations and arbitrary in the sense that different combinations of thresholds would also lead 
to the same average coverage of 30% as can be inferred from Fig. 4. At the same time, it would lead to different 
error levels, as can be seen in Fig. 5. As a consequence, the arbitrarily chosen parameters mark the upper bounds 
of the errors of the individual HRV parameters.

Table 2 shows the numeric comparison of 38 different HRV parameters calculated for all accepted 5-min 
windows and aggregated for all 29 (out of the original 36) patients included into the analysis (i.e. so-called “gross 
analysis”, see Sect. 2.2). In Fig. 6, per-subject results are presented as boxplots, where each datapoint presents 
results for one individual subject. Note that the graph is clipped at 100 % for better readability.

Several observations can be made from the results. For one, the (relative) RMSE tends to be significantly 
higher than the (relative) MAE for many of the parameters, indicating the tendency for large outliers in the 
estimation results. Moreover, estimation quality varies greatly from patient to patient and strongly depends 
on the parameter. While mean, maximum, and minimum heart rate can be estimated with an average relative 
error below 1.2 %, other parameters show inferior results. In particular, the patient-wise relative error in NN50 
and pNN50 has a 75th percentile at about 280 % (not shown in Fig. 6 due to clipping). For one, the nature of 
this parameter makes it relatively susceptible to outliers. For another, the population in this study group has 
extremely low NN50/pNN50 values close to zero. As can be seen in Table 2, the mean absolute error in pNN50 
is only 1.55 percentage points (which would obviously still result in an infinite error for patients with a true 
pNN50 of 0 %).

100
0

20

40

60

5

80

0.5
01

00
10

20

40

60

500

80

5
10000

Figure 4.   Influence of the threshold-parameters on the coverage. The red dot indicates the thresholds used in 
the final analysis.
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Figure 7 visualizes bias and spread of the error aggregated over all subjects and normalized by the overall 
mean of the ground truth in percent. The bias is given as median and the spread as 25th/75th percentiles. It can 
be seen that the time-domain estimations (SDNN, SDHR) and the nonlinear Poincaré SD2 have been estimated 
with only small biases. On the other hand, the components RMSSD and Poincaré SD1 exhibit a systematic 
overestimation in the range of 10 % with an interquartile range of approximately ±10% . This tendency is largely 
a result of arbitrary/sporadic large beat-to-beat interval estimation errors, which tend to affect parameters con-
taining differentiations in a more severe way. Note that the same systematic overestimation can also be seen in 
the frequency-domain parameters associated with high-frequency components.

In the frequency domain, both absolute as well as relative power are estimated with large biases and spreads. 
If comparison is performed in the logarithmic domain, however, biases/spreads are small for VLF, LF, and HF 
components ( −4± 5% , 0± 3% , 3± 7% ). As a general tendency, we observe that high-frequency associated 
parameters HF Abs. and HF Log. as well as PC SD1 and RMSSD are systematically overestimated. While these 
biases may be small in absolute numbers ( 4.86ms2 and 0.27 log, 1.71 ms and 2.42 ms, respectively), they do 
lead to a comparatively large relative bias in the range of 10 % for our patient group. Consequently, parameters 
that analyze the ratio of LF to HF components (LF/HF, PC SD2/SD1 ) show severe systematic underestimation.

Note that the per-subject analysis (Fig. 6) calculates the relative error as “average of the error of subject n 
divided by average of the ground truth of subject n”. The aggregated gross analysis, on the other hand, calculates 
“average of the error of all windows of all subjects divided by average of the ground truth of all windows of all 
subjects” (Table 2). Interesting observation can be made comparing the two: First, strong inter-individual dif-
ferences can be observed in Fig. 6 and the optical measurement clearly seems to be more suitable for certain 
individuals than for others. For the “best” 25 % of the subjects, the relative MAE of most of the HRV parameters 
is less than 10 %. Second, as the relative per-subject errors far exceed those of the gross analysis in Table 2, we 
can assume that estimation errors in subjects with very low HRV parameter values have a strong negative impact 
on the relative accuracy seen in Fig. 6.

These assumptions can be supported further by Fig. 8. Here, each ‘x’ marks the mean over all windows where 
an estimation from PPG was available (‘Estimation’, right) and the mean over all corresponding reference win-
dows obtained from ECG (‘Ground Truth’, left).

The graph shows data from 28 patients, as the coverage for one patient was zero (see also Fig. 6, rightmost col-
umn). Indeed, several patients exhibit a pNN50 of (close to) zero. Nevertheless, five patients show pNN50-values 
way above 10 % that can clearly be distinguished also in the PPG-based estimation. The same tendency holds for 
SDNN and LF Log. and, in parts, for RMSSD and HF Log., although for these parameters the aforementioned 
over-estimation of small values becomes obvious. Finally, neither LF/HF nor PC SD2/SD1 can be estimated with 
confidence due to strong and, more importantly, varying under-estimations as indicated by several crossing lines.

As can be seen in our HRV parameter estimation accuracy evaluation, from the aforementioned parameters, 
SDNN was estimated on average with 9 % and triangular index with 12 % relative MAE from the wrist device 
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Figure 5.   Influence of the threshold-parameters on the mean absolute error (MAE) of the SDNN parameter. 
The red dot indicates the thresholds used in the final analysis.
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PPG signal. The relative MAE of both DFA α1 and RMSSD parameters were approximately 17 % and the absolute 
power of LF and HF components between 16 % and 19 %. The LF/HF ratio performed the worst with 36 % rela-
tive MAE. The relative MAE of ApEn parameter was only approximately 5 %, which is partially explained by the 
distribution of the parameter values, i.e. small deviation compared with the average. Further, for the parameters 
such as triangular index and approximate entropy that are showing low biases, the increase of the estimation 
window could improve the accuracy.

Previous studies have proposed that the changes in HRV parameters caused by postoperative complications 
and deterioration of the patient status can be seen on post-operative day 1, for example, in SDNN and triangular 
index14 as well as in DFA scaling exponent α121. In21, Laitio et al. reported mean ± standard deviation of DFA α1 
of 0.85± 0.17 vs. 0.69± 0.18 for two groups of patients, “ICU Stay ≤ 48 h′′ and “ICU Stay > 48 h′′ , respectively. 
Based on the results obtained in the present study, it is uncertain whether or not these two groups could be sepa-
rated using OHR: For DFA α1 , we obtained an MAE of 0.150 and an RMSE of 0.204 across all data, which lies in 
the range of the differences between the two groups. On the other hand, Ushiyama et al. found mean ± standard 
deviation of SDNN for the “complicated” group being 48.7± 24.4ms , whereas 71.2± 19.6ms was found for the 

Table 2.   Accuracy of the estimated HRV parameters aggregated over all analyzed 5-min windows of all 
subjects.

Parameter MAE MAE (%) RMSE RMSE (%) P05 P95 Bias Bias (%) SD

EE [kcal/min] 0.0213 1.49 0.1540 7.33 − 0.0501 0.0293 0.0018 0.13 0.1540

TRIMP [kTRIMP/min] 0.1852 6.55 1.3042 10.23 0.0000 0.2963 0.0986 3.49 1.3006

SI [–] 2.2950 10.75 3.7738 16.29 − 7.9781 2.2682 − 1.4460 − 6.77 3.4860

Mean NN [ms] 1.8748 0.20 4.0133 0.42 − 1.7276 7.0315 1.1709 0.12 3.8390

SDNN [ms] 1.7143 8.94 2.8611 12.66 − 3.0127 3.7421 0.3891 2.03 2.8347

Mean HR [BPM] 0.1259 0.20 0.2646 0.41 − 0.4574 0.1544 − 0.0645 − 0.10 0.2566

SDHR [BPM] 0.1292 10.18 0.2756 18.93 − 0.2222 0.2816 0.0251 1.98 0.2745

Min. HR [BPM] 0.1884 0.31 0.5274 0.85 − 0.1429 0.6322 0.0931 0.15 0.5192

Max. HR [BPM] 0.8199 1.18 2.6971 3.83 − 3.3757 0.2343 − 0.7047 − 1.02 2.6036

RMSSD [ms] 3.5506 17.15 4.5453 18.34 − 3.4138 8.3910 2.4160 11.67 3.8504

NN50 [beats] 4.5662 28.60 8.2695 23.95 − 10.0000 14.0000 1.5054 9.43 8.1319

pNN50 [%] 1.5457 28.00 2.7441 22.59 − 2.6778 5.1406 0.7025 12.73 2.6529

Tri. Indx [–] 0.6585 12.19 0.8661 14.31 − 1.4889 1.2480 0.0289 0.54 0.8657

TINN [ms] 11.7354 12.14 22.0286 19.15 − 23.0000 24.0000 1.7424 1.80 21.9612

PC SD1 [ms] 2.5147 17.15 3.2191 18.33 − 2.4170 5.9416 1.7116 11.67 2.7266

PC SD2 [ms] 1.5550 6.94 3.4167 12.79 − 4.1039 2.3250 − 0.4611 − 2.06 3.3857

PC SD2/SD1 [–] 0.3073 18.78 0.4471 25.68 − 0.9732 0.0776 − 0.2867 − 17.52 0.3430

ApEn [–] 0.0496 4.47 0.0735 6.59 − 0.1008 0.0899 − 0.0060 − 0.54 0.0733

SampEn [–] 0.1552 8.25 0.2013 10.63 − 0.2462 0.3681 0.0634 3.37 0.1910

DFA α1 [–] 0.1502 16.99 0.2044 21.83 − 0.4356 0.1098 − 0.1164 − 13.16 0.1680

DFA α2 [–] 0.0594 13.29 0.0860 17.86 − 0.1801 0.0303 − 0.0497 − 11.12 0.0702

VLF PF [mHz] 1.5315 4.47 3.7685 10.87 − 6.6667 6.6667 0.0508 0.15 3.7684

LF PF [mHz] 9.1981 15.40 20.6890 32.38 − 23.3333 40.0000 2.5509 4.27 20.5326

HF PF [mHz] 16.7561 6.44 39.6176 14.86 − 36.6667 63.3333 3.3309 1.28 39.4802

VLF Abs. [ms2] 13.2536 19.35 36.9939 25.97 − 51.4332 5.0578 − 10.4884 − 15.31 35.4786

LF Abs. [ms2] 33.9061 15.82 208.0664 42.14 − 103.4176 31.8021 − 20.5115 − 9.57 207.0681

HF Abs. [ms2] 35.8349 18.55 63.0736 18.18 − 83.6440 68.3491 4.8635 2.52 62.8905

VLF Log. [log] 0.2509 7.80 0.4562 12.85 − 0.6521 0.2926 − 0.1318 − 4.16 0.4368

LF Log. [log] 0.2038 4.63 0.4208 9.07 − 0.4128 0.4864 0.0082 0.19 0.4208

HF Log. [log] 0.3819 8.56 0.6216 13.35 − 0.3093 1.1854 0.2692 6.04 0.5603

VLF Rel. [%] 3.4880 23.93 5.4798 29.68 − 12.0000 1.9409 − 2.8145 − 19.31 4.7021

LF Rel. [%] 6.0661 14.95 8.8321 20.03 − 18.4170 7.4994 − 3.2157 − 7.92 8.2265

HF Rel. [%] 8.2323 18.36 11.8936 23.76 − 6.6075 25.5536 6.0302 13.45 10.2524

LF Norm. [n.u.] 8.1777 16.70 11.8355 22.05 − 25.3497 7.2359 − 5.6440 − 11.52 10.4039

HF Norm. [n.u.] 8.1777 16.03 11.8355 21.31 − 7.2359 25.3497 5.6440 11.06 10.4039

LF/HF [n.u.] 0.5818 35.95 1.1213 44.10 − 2.5853 0.2765 − 0.4846 − 29.95 1.0112

PNS Indx [–] 0.1518 19.70 0.1935 20.00 − 0.1014 0.3836 0.1209 − 34.93 0.1512

SNS Indx [–] 0.3924 20.50 0.6327 25.28 − 1.3293 0.3248 − 0.2798 − 16.47 0.5675

Mean [%] 12.92 17.60 − 2.72

Median [%] 12.74 18.26 0.14
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“uncomplicated” group of digestive surgery patients, see14. Based on the observed accuracy for SDNN (1.71 ms 
MAE, 2.86 ms RMSE), we would argue that these groups could clearly be separated with the OHR technology. 
The same argument can be made for the Triangular Index ( 13.3± 6.7 “complicated” group, 19.9± 6.5 “uncom-
plicated” group14), for which we found an MAE of 0.659 and an RMSE of 0.866.

In19, the development of septic shock was most clearly predicted by RMSSD but also by absolute and normal-
ized LF power as well as HF power and LF/HF-ratio. However, median values of (as well as differences between) 
both groups were extremely low: For example, comparing “No septic shock” with “Septic shock”, the median 
values of RMSSD for both groups were 3.8 ms and 7.3 ms, respectively19. It thus remains questionable if the 
accuracy obtained in the present study with OHR (3.55 ms MAE and 4.55 ms RMSE for RMSSD) would suffice 
for this application scenario. Approximate entropy has also been found to predict the onset of atrial fibrillation 
(AFib) after coronary artery bypass grafting32. The “control patients” exhibited mean ± standard deviation values 

Figure 6.   Per-Subject analysis of the relative mean absolute error, i.e. each data point in the bar graphs 
represents one of the 29 subjects. For better readability, the graph is clipped at 100 %. The last bar on the right 
shows the distribution of the HRV coverage.

Figure 7.   Aggregated gross analysis over all subjects in terms of relative error for all parameters. The crosses 
indicate the median value. The lower bar marks the 25th percentile, the upper bar the 75th percentile.
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of 1.04± 0.05 , whereas a decreased ApEn of 0.93± 0.05 during 1 h preceding the AF onset was measured in32. 
Our observed error levels for ApEn of 0.0496 MAE/0.07354 RMSE indicate that ApEn measured with OHR could 
potentially be directly used for AFib prediction.

Although the presented study is, to the best of our knowledge, the most comprehensive one in terms of 
assessing the accuracy of HRV estimations obtained via OHR in hospitalized patients, all-encompassing state-
ments about the most reliable parameters may not be possible. Nevertheless, we believe our findings in terms of 
parameter recommendations can be summarized as follows:

•	 The time-domain parameter SDNN can be estimated with a relative error/absolute error/relative bias of 
9%/2 ms/2% and we thus recommend its use. We also recommend the Triangular Index with 12%/0.66/1%. 
The parameters RMSSD and pNN50 exhibit large relative errors in this cohort (17% and even 28%) and sys-
tematic biases in the range of 12%, but also low absolute estimation errors (4 ms and 2%). The visualization 
in Fig. 8 further suggests that patients with low and high RMSSD/pNN50 might very well be separated using 
OHR technology. Thus, we believe these parameters should be investigated further.

•	 In the frequency domain, the relative errors for LF Abs. and HF Abs. were 16% and 19%, while the corre-
sponding values for LF Log. and HF Log. were only 5% and 9%. We thus recommend the use of the logarith-
mic quantities, although one needs to analyze whether they possess the same discriminative power as the 
absolute ones. Again, Fig. 8 suggests that separation of patients would be possible.

•	 In their current implementation, the relative quantities (LF/HF, PC SD2/SD1 ) show strong relative errors (36% 
and 19%) and biases (− 30% and − 18%) and cannot be recommended without improving their estimation.

Finally, the patient cohort consisted predominantly of white caucasian subjects. Thus, the generalisability of 
results has to be validated with a more diverse group. Although we do not expect a fundamentally different out-
come in terms of parameter feasibility, overall estimation errors may be higher in subjects with darker skin tones.

Conclusion
In conclusion, the accuracy of HRV parameters estimated from the PPG signal of wrist-worn OHR monitoring 
device varies significantly between parameters and subjects. The accuracy of certain parameters, for example 
SDNN and triangular index, shown in the literature to be associated with the deterioration of the status of the 
patients during recovery from surgical intervention, could be adequate for patient monitoring. On the other 
hand, the parameters more affected by the high-frequency content of the HRV and especially the LF/HF-ratio 
should be used with caution. It should also be emphasized that the proposed data analysis method tries to dis-
card such segments of PPG signal that likely produce less reliable beat-to-beat interval data resulting the HRV 
parameters being obtained only for approximately 30% of the time. This may limit the usability of the approach 
in some applications. To further improve the applicability of wrist-worn OHR monitoring in patient surveillance 
through HRV, more robust methods for beat-to-beat interval estimation and especially methods for mitigating 
the effect of estimation uncertainty on the HRV parameter values, e.g. robust spectral estimation techniques, 
should be investigated.

Received: 5 November 2020; Accepted: 30 March 2021

Figure 8.   Comparison of ground truth and BBI-based estimation for seven selected HRV parameters. Each ‘x’ 
marks the mean over all windows where an estimation from PPG was available (Estimation) and the mean over 
all corresponding reference windows obtained from ECG (Ground Truth).
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