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Abstract

Early human embryogenesis relies on maternal gene products accumulated during oocyte growth 

and maturation, until around day-3 post-fertilization when human zygotic genome activation 

occurs. The maternal-to-zygotic transition (MZT) is a tightly coordinated process of selective 

maternal transcript clearance and new zygotic transcript production. If MZT is disrupted, it will 

lead to developmental arrest and pregnancy loss. It is well established that microRNA (miRNA) 

mutations disrupt regulation of their target transcripts. We hypothesize that some cases of 

embryonic arrest and pregnancy loss could be explained by the mutations in the maternal genome 

that affect miRNA-target transcript pairs. To this end, we examined mutations within miRNAs or 

miRNA binding sites in the 3’ untranslated regions (3’UTR) of target transcripts. Using whole 

exome sequencing data from 178 women undergoing in vitro fertilization (IVF) procedures, we 

identified 1,197 variants in miRNA genes, including 93 single nucleotide variants (SNVs) and 19 

small insertions/deletions (INDELs) within the seed region of 100 miRNAs. Eight miRNA seed-

region variants were significantly enriched among our patients when compared to a normal 

population. Within predicted 3’UTR miRNA binding sites, we identified 7,393 SNVs and 1,488 

INDELs. Between our patients and a normal population, 52 SNVs and 30 INDELs showed 

significant association in the single variant testing, whereas 51 genes showed significant 

association in the gene-burden analysis for genes that are expressed in preimplantation embryos. 

Interestingly, we found that many genes with disrupted 3’UTR miRNA binding sites follow gene 

Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, 
subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms

To whom correspondence should be addressed: Jinchuan Xing, Department of Genetics, Human Genetics Institute of New Jersey, 
Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854. xing@biology.rutgers.edu.
*These authors contributed equally to this work

Disclosure
The authors declare no conflict of interest.

Supplementary information
Supplementary information is available at Laboratory Investigation’s website.

HHS Public Access
Author manuscript
Lab Invest. Author manuscript; available in PMC 2021 April 17.

Published in final edited form as:
Lab Invest. 2021 April ; 101(4): 503–512. doi:10.1038/s41374-020-00498-x.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



expression patterns resembling MZT. In addition, some of these variants showed dramatic allele 

frequency difference between the patient and the normal group, offering potential utility as 

biomarkers for screening patients prior to IVF procedures.
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Introduction

Infertility is a major reproductive health issue that affects nearly 8.8% of all women in the 

United States (1). Despite our advances in studying the underlying genetic factors that affect 

fertility rates, most of the studies of genetic variants focus on protein coding variants 

(reviewed in (2)). Although regulatory non-protein-coding genes and variants also likely 

contribute to embryo viability variation, few studies focus on non-coding variants.

One of the important stages during embryonic development where non-coding genes play an 

important role is the maternal-to-zygotic transition (MZT). A properly functioning 

mechanism of MZT is essential to ensure successful early development, subsequent 

implantation and development into a healthy offspring. MZT is a coordinated process of 

maternal transcript clearance and embryonic genome activation, which occurs around the 8-

cell stage in humans (3). The existence of both maternally- and zygotically-driven transcript 

clearance mechanisms are well documented to involve microRNAs (miRNAs), which are 

recognized as important regulators in these processes in many species (e.g., reviewed in (3), 

(4), (5)). For instance, selected miRNAs regulate their target DNA repair genes in human 

oocytes and blastocysts, supporting a role for miRNAs in maternal transcript clearance in 

human early embryogenesis (6). It is widely accepted that dysregulation of the MZT process 

will lead to abnormal early embryogenesis, with a likely failed implantation and/or high 

early embryonic mortality.

In this study, we explore whether non-coding variants, such as variants in miRNA genes and 

miRNA binding sites in the 3’ untranslated region (3’UTR) of target genes, could be used as 

biomarkers for infertile patients undergoing in vitro fertilization (IVF) procedures. 

Specifically, because a large proportion of failed IVF cycles can be attributed to embryonic 

aneuploidy (i.e., having a wrong number of chromosomes), we sought to understand whether 

there is a class of mutated miRNAs that is enriched among the patients producing an 

unusually high proportion of aneuploid embryos. Of note, a large number of miRNAs are 

expressed in human blastocysts (7). Among miRNAs that were differentially expressed 

between euploid and aneuploid blastocysts, all but one were depleted in compromised 

embryos (7). We thus specifically focused on variants predicted to abolish miRNA function.

To this end, we examined whole exome sequencing data from 178 women undergoing IVF. 

Production of aneuploid embryos greatly reduces a patient’s chances of implantation (fewer 

euploid embryos available for transfer) and increases the chances of miscarriage. Thus, we 

grouped our patients as either producing low or high proportions of aneuploid blastocysts 

(here, referred to as low rate group and high rate group, LRG and HRG, respectively). We 
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then identified DNA variants within miRNA genes and predicted miRNA binding sites in the 

3’UTRs of the miRNA targeting genes. To further determine if our patient cohort harbors 

variants that can be used as biomarkers to predict infertility, we compared the allele 

frequency of the identified variants between our samples and a general population. Our 

analysis revealed that several candidate genes involved in crucial steps during embryo 

development harbor non-coding variants within their 3’UTR miRNA binding sites. In 

addition, these genes largely followed the expected MZT expression dynamics during the 

preimplantation embryonic development. Therefore, variants within these genes are likely to 

result in mis-regulation of their transcript levels during MZT, which could lead to infertility 

and thus deserve further investigation.

Materials and Methods

Ethical approval and patient selection

Patient DNA samples were obtained from Reproductive Medicine Associates of New Jersey 

(RMANJ) DNA Bank. Analysis was approved by the IRB #RMA1-09-165 at Copernicus 

Group IRB and IRB #Pro2018000106 at Rutgers University.

Each patient was diagnosed with infertility but had normal hormone profiles and no 

diagnosed structural abnormalities. The IVF-derived embryos were tested for aneuploidy on 

day 5. Aneuploidy rate was calculated as previously described (8). Briefly, patients with 

self-reported “White, non Hispanic” ancestry and with a minimum four embryos tested were 

used for aneuploidy rate calculation with the formula:

(no. of aneuploid embryos)/(total no. of embryos tested)

Robust nonlinear regression analysis was applied to determine the extreme samples on both 

ends of the age spectrum. For regression analysis, R package robustbase (v. 0.92.7) and its 

implemented function nlrob() was used as follows:

nlrob(y ~ (a*agê2 + b*age + c), data = list(x = age, y = aneuploidy), start 

= list(a=1,b=1,c=1), psi = psi.bisquare)

Patients with corresponding ‘rweight’ < 0.9 were selected for whole exome sequencing 

(WES). Each patient’s age, aneuploidy rate, and group assignment are listed in Table S1.

Sequencing and read mapping

WES was performed on blood DNA samples by Novogene (Sacramento, CA, USA). 

Sequencing libraries were prepared by Novogene from one microgram of DNA using 

Agilent SureSelect Human All Exon V6 kit (Agilent Technologies, CA, USA), according to 

specifications provided by the manufacturer. Barcoded and pulled samples were subjected to 

2×150 base-pair (bp) pair-end sequencing using Illumina sequencing platform (Illumina, San 

Diego, CA, USA).
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Raw reads from each lane were then mapped separately to the human reference genome 

(version hg19) with bwa-mem (v 0.7.15, (9)) and converted to the BAM format using 

samtools (v 1.4.1, (10)):

bwa mem -K 100000000 -Y -t 14 -R ‘@RG\tID:’$id’\tPU:’$pu’\tSM:’$sample’

\tPL:ILLUMINA\tLB:’$library’\tCN:Novogene’ refgenome.fasta file_R1.fastq 

file_R2.fastq | samblaster -a --addMateTags | samtools view -b -S /dev/stdin 

> file.bam

Picard Tools (11) was used to sort the mapped reads and mark duplicate reads:

java -Xmx16g -jar picard-2.9.2.jar SortSam I=file.bam O=file.qname.bam 

SORT_ORDER=queryname

java -Xmx16g -jar picard-2.9.2.jar MarkDuplicates I=file.qname.bam 

O=file.mdups.bam M=file.mdups_metrics.txt ASSUME_SORT_ORDER=queryname 

VALIDATION_STRINGENCY=LENIENT

Finally, the alignment files for samples sequenced on multiple lanes were merged with 

samtools merge (10).

Variant calling

Target regions were extended by 50 bp on each end for variant calling. The GATK v3.8 

pipeline (GenomeAnalysisTK-3.8–0-ge9d806836) was applied following GATK best 

practices (12), (13). In short, reads were recalibrated with BaseRecalibrator, followed by 

PrintReads. HaplotypeCaller was called on 0.5 Mbp intervals, and the resulting genome 

variant call format (gVCF) files were concatenated with CatVariants. CombineGVCF was 

used to merge all the samples on a per chromosome level, followed by a joint-genotype call 

with GenotypeGVCFs. CatVariants was used again to concatenate the chromosome-based 

multi-sample variant call format (VCF) files. Single nucleotide variants (SNVs) and small 

insertions/deletions (INDELs) were then sequentially recalibrated with VariantRecalibrator 

followed by ApplyRecalibration with default settings.

Variant and sample filtering

Only variants with a PASS flag were kept in the analysis. Quality of the multi-sample VCF 

file was assessed with bcftools-1.9 stats function (available as part of SAMtools software 

package, (10)). One sample showed excess heterozygous calls and was removed with 

VCFtools (v 0.1.17, (14)). Following principal component analysis (PCA, as described in 

(8)), three samples were four standard deviations away from the mean among the patients on 

the first two principal components and were removed with VCFtools.

miRNA annotation and structure prediction

ADmiRE, a comprehensive miRNA database, was used to extract miRNA genomic locations 

(15). miRVaS was used to predict structural effects of a given miRNA variant (16). The 
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location of the variant was assigned to specific functional regions within the miRNA: flank, 

which denotes the region 100 nucleotides upstream and downstream of a miRNA gene; loop, 

indicating the terminal loop of the precursor miRNA (pre-miRNA); arm, which forms the 

hairpin of the pre-miRNA; mature, indicating mature miRNA; and seed, indicating the seed 

sequence of the mature miRNA (16). Genomic positions of annotated miRNA genes in hg19 

coordinates were downloaded for ADmiRE (ADmiRE.tab, https://github.com/nroak/

ADmiRE) and miRVaS (mirna_hg19_mirbase20.tsv). Mutations within miRNA genes in 

ADmiRE database were extracted from the VCF file using BEDtools (17):

bedtools intersect -a input.vcf -b ADmiRE.bed

Mutations within miRNA genes in miRVaS database were extracted using the miRVaS 

command:

mirvas <VCF_file> <output_file> <genome_hg19.ifas> <miRNA_Database>

miRVaS also performs pre-miRNA secondary structure prediction using RNAFold (version 

2.1.5 (18)) and denotes the most important variant with a structural impact. This is 

performed with three different prediction algorithms: Minimal Free Energy (MFE), Maximal 

Expected Accuracy (MEA), and centroid (CEN).

Association testing of miRNA seed region mutation among IVF patients and between IVF 
patients and a general population

Allele frequencies (AFs) among LRG and HRG patients were calculated for miRNA 

variants using the vcftools --freq function (14). The AFs were then compared between the 

two groups using the Fisher’s Exact test to identify variants that are significantly associated 

with either LRG or HRG (R, version 3.5.1). Multiple-testing correction on the Fisher’s 

Exact test p-values was performed with the Benjamini-Hochberg (BH) method (19).

The variant calls based on the whole-genome sequencing of non-Finnish European (NFE) 

population from the Genome Aggregation Database (gnomAD v.2.0.1; ftp.ensembl.org/pub/

data_files/homo_sapiens/GRCh37/variation_genotype/

gnomad.genomes.r2.0.1.sites.noVEP.vcf.gz) was used as the reference in the population 

comparison analysis. gnomAD aggregates whole-genome sequencing information from 

case-control studies and provides expected AF of genetic variants among human populations 

(20). The AFs were compared between the infertile patients (LRG+HRG) and NFE 

population using the Fisher’s Exact test (R, version 3.5.1), followed by multiple-testing 

correction of the p-values using the BH method. Variants that are not found within the 

gnomAD database were excluded from analysis.

Identification of miRNA target genes

DIANA mirPath (http://snf-515788.vm.okeanos.grnet.gr/) and its microT-CDS prediction 

algorithm (http://diana.imis.athena-innovation.gr/DianaTools/index.php?r=microT_CDS/
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index) was used to generate a list of microRNA-to-gene associations (21). Genes that were 

predicted to be regulated by mutated miRNAs were uploaded to DIANA mirPath as a gene 

list to be functionally characterized. Statistically significant target pathways, along with the 

associated miRNAs and genes found in each pathway, were identified by employing the 

mirPath’s empirical sampling algorithm.

Selecting functionally relevant 3’UTR variants for association testing

Variants were annotated with ANNOVAR (22) to identify 3’UTR SNVs and INDELs:

table_annovar.pl vcffile.vcf annovar/humandb/ -out myanno -buildver hg19 -

protocol refGene,gnomad_genome,snp135,avsnp150 -operation g,f,f,f -argument 

“-separate”,,, -nastring.

3’UTR miRNA binding sites were predicted by TargetScanHuman 7.2 (http://

www.targetscan.org/vert_72/). TargetScanHuman predicts miRNA binding sites by 

searching for 6–8mer 3’UTR sites matching seed regions of miRNAs (23). 3’UTR variants 

within predicted miRNA binding sites were selected using BEDtools intersection (17).

Gene expression measurements collected on zygote, 4-cell, 8-cell, compacted morula, inner 

cell mass (ICM) from early blastocyst as well as epiblast and primitive endoderm from late 

blastocyst stages (24) were used to filter out the non-expressed genes prior to association 

testing. All genes with a maximum Fragments Per Kilobase of transcript per Million mapped 

reads (FPKM) < 1 across these stages were deemed non-expressed.

The Fisher’s Exact test and the BH correction method were applied to identify 3’UTR SNVs 

and INDELs that were significantly associated with either LRG or HRG. To calculate the 

association of the variants in our patient cohort compared to gnomAD NFE population, the 

Fisher’s Exact test and the BH correction method were performed using gnomAD NFE AFs 

as controls and AFs of all patients (LRG+HRG) as cases.

Functional enrichment analysis of genes harboring variants in 3’UTR miRNA binding sites

The list of genes harboring significantly enriched 3’UTR variants that overlap miRNA 

binding sites was uploaded to the functional enrichment analysis tool WebGestalt (25) and 

DAVID 6.8 (26). WebGestalt parameters of analysis were set to “over-representation 

analysis (ORA)”, with “gene-ontology:BP” as the functional database, and “genome” as the 

reference gene list. For DAVID 6.8, the default genome-wide list of genes for Homo sapiens 
was used as the background gene list (26).

Early embryogenesis gene expression analysis

Gene expression profiles for early preimplantation embryonic stages were obtained from a 

previous study (24). Seven expression samples were provided by the study from six 

developmental stages: zygote, 4 cell, 8 cell, compacted morula, early blastocyst (ICM), and 

late blastocyst (epiblast and primitive endoderm). Pseudo count of one was added to FPKM 

values for each gene in the seven samples, and the FPKM values were log2 transformed (i.e., 
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log2(FPKM+1)) and mean centered. Hierarchical clustering of the expression data of each 

candidate gene list was performed with Pearson’s correlation coefficient as the distance 

metric using Cluster 3.0 (27) and visualized using JavaTreeView (28).

To calculate the expression level change of late embryonic stages compared to early 

embryonic stages for each gene, the mean FPKM value of the 8 cell, compacted morula, 

ICM, epiblast, and primitive endoderm samples was divided by the mean FPKM value of the 

zygote and 4 cell stage. All genes with the log2 fold-change of the two means (log2FC#1) < 

−1 were defined as following a “high-to-low” expression pattern. Similarly, the mean FPKM 

value of compacted morula, ICM, epiblast, and primitive endoderm samples was divided by 

the mean FPKM value of the zygote, 4 cell, and 8 cell samples for each gene. Genes with the 

log2 fold-change of these two means (log2FC#2) > 1 were defined as following a “low-to-

high” expression pattern. The calculated means and fold-changes are listed in Table S12. 

The number of genes that are found in each category in the whole transcriptome data was 

used as the expected values in the Fisher’s Exact test when calculating the significance of 

the enrichment of gene expression patterns in the analysis of genes with 3’UTR variants.

Results

Overview of the study

Patients undergoing IVF in combination with preimplantation genetic testing for aneuploidy 

were divided into LRG and HRG based on embryo aneuploidy rates (Table S1, see 

Methods). Using WES, a total of 449,358 SNVs and 75,510 INDELs were identified in 178 

patients (85 LRG and 93 HRG, Figure 1) and miRNA-related variants were analyzed from 

two perspectives. First, we examined variants within miRNA genes that have a potential to 

disrupt the miRNA’s binding capacity to its target sites. Second, we searched for variants 

within 3’UTRs that could reduce miRNA binding affinity and thus modify a miRNA’s 

regulatory effect.

miRNAs and their associated variants

We used ADmiRE and miRVaS to select variants that are within 100 bp of annotated miRNA 

genes. ADmiRE contains 1,878 miRNAs, whereas miRVaS contains 1,871. Most of the 

miRNA genes (1,850) were annotated in both databases. Next, we determined the number of 

miRNA genes that were fully covered by the exome sequencing. About 90% of the miRNA 

genes were fully captured by the WES target regions, according to the annotations provided 

with ADmiRE (1,670, 89.7%) and miRVaS (1,674, 90%; Figure 2A). When we considered 

100 bp flanking regions on each side of a miRNA gene, 604 (spanning 161,906 bp) and 603 

(spanning 161,641 bp) miRNAs genes listed in ADmiRE and miRVaS were fully covered by 

our data, respectively. For completeness, we included miRNA genes from both databases in 

our following analyses.

In total, 1,056 SNVs and 141 INDELs overlapped miRNA gene regions. Expanding the 

overlapping regions to include 100 bp upstream and downstream of the miRNA genes, 2,942 

SNVs and 402 INDELs overlapped miRNA genes (all variants are listed in Table S2). Of the 

266 mutated mature miRNAs, 237 (89.1%) had 1 SNV, 19 (7.1%) contained 2 SNVs, and 10 
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(3.8%) contained 3 or more SNVs. mir-8078–3p was most frequently mutated in our patient 

population (15 SNVs) with all variants identified in the gnomAD database. mir-8078–3p is 

located in a highly variable genomic region and this genomic context might contribute to the 

high number of SNVs in this miRNA. Among the 29 miRNAs that contained INDELs, 27 

(93.1%) contained a single INDEL, 1 contained 2 INDELs, and 1 contained 4 INDELs. We 

then stratified miRNA variants by miRNA regions as depicted in Figure 2B (adapted from 

(16)). In total, 93 SNVs and 19 INDELs were within the miRNA seed regions and thus most 

likely to affect the miRNA function (summarized in Figure 2C and detailed in Table S2). 

Besides seed variants, of all SNVs and INDELs in non-seed regions (labeled as mature (non 
seed), arm, loop, or flank, Figure 2C), only 152 SNVs and 18 INDELs were predicted by all 

three miRVaS prediction algorithms to have an impact on miRNA seed region (the prediction 

scores were collected in Table S2 in columns “PredictedEffect_Centroid”, 

“PredictedEffect_MEA”, and “PredictedEffect_MFE”, see Methods for detail).

Next, we applied the Fisher’s Exact test with the BH multiple-testing correction to 

determine which of the miRNA variants were significantly enriched among HRG or LRG 

patients. No variant reached a statistically significant level after adjustment for multiple 

testing. In the seed region, only one SNV had a raw p-value less than 0.05 (chr1:228284991 

C-T, p = 0.011). The SNV was enriched in LRG and within the seed region of miR-3620–5p 

(Table S2). Outside of the seed region, 2 variants in mature regions, 5 in arm regions, 1 in 

the loop, and 19 within flanking regions of miRNAs also had raw p-values less than 0.05. 

None of these variants were predicted to have an impact on miRNA seed region by all three 

algorithms implemented in miRVaS (Table S2).

Identification of genes with 3’UTR variants

We annotated the WES-derived variants and identified 10,079 SNVs and 1,901 INDELs 

within 3’UTRs of protein coding genes. TargetScanHuman (23) predicted that 7,393 SNVs 

and 1,488 INDELs were within potential miRNA binding sites (Figure 1). Using expression 

data from (24), variants in non-expressed genes (i.e., genes with a maximum FPKM value 

less than one) were removed from analysis. Using the Fisher’s Exact test, we determined the 

single-variant association for the two patient groups. In total, 43 SNVs and 10 INDELS in 

51 expressed genes showed nominal association between LRG or HRG (p < 0.05; Table S3). 

No variant reached genome-wide significance after the multiple-testing correction. To 

determine the difference in overall burden of 3’UTR variants affecting miRNA-mRNA 

interaction in each gene, we aggregated 3’UTR variants across all predicted miRNA binding 

sites in each gene and performed gene-level association tests between the two patient 

groups. Among the 4,999 genes containing 3’UTR variants that overlapped miRNA binding 

sites, 57 genes had a potential association with either LRG or HRG (Fisher’s Exact test, p < 

0.05; Table S4).

Identification of variants with different allele frequencies between the infertility patient 
group and a general population

Although our patient groups had different outcomes from one another with respect to 

embryo aneuploidy rates, all the individuals we sequenced were diagnosed with infertility. 

To determine whether AFs of miRNA-related variants in infertility patients as a whole are 
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different from a general population, we compared their sequences to 7,509 non-Finnish 

European (NFE) individuals from the gnomAD project as controls (Table S5, these variants 

are the same miRNA variants listed in Table S2, but now contrasted against gnomAD NFE 

population). Among the 93 seed-SNVs and 19 seed-INDELs in the patient group, 6 SNVs 

and 2 INDEL in 6 different miRNAs showed significant association with our patient cohort 

(BH-corrected p-value (q) < 0.05; Table 1). Next, we examined if the six miRNAs with 

mutated seed-sequences can target genes that together constitute one or more pathways. We 

used DIANA mirPath to predict target genes for the 6 miRNAs and identified 1,448 target 

genes (Table S6). The targeted genes showed statistically significant enrichments in 27 gene 

ontology (GO) biological processes. Some of the processes are important for cellular 

division processes (e.g., biosynthetic process, DNA-templated transcription; Table S7).

Within 3’UTR miRNA target binding sites, we again compared the variant AFs of the 

patient group with the gnomAD NFE population. Out of the 8,881 3’UTR variants within 

miRNA binding sites that we initially described in Table S3, 52 SNVs and 30 INDELs in 64 

expressed genes showed significant AF difference between the patient group and the control 

group after multiple testing correction (q < 0.05; Table S8). The 64 expressed genes were 

not significantly enriched in any specific GO category (Table S9). Sixty-seven of the 82 

variants (82%) were more common in our patient group compared to the control group. The 

most dramatic examples included rs35334288 (patient AF 32.9%, NFE AF 0.7%) and 

rs146607300 (patient AF 27.2%, NFE AF 0.5%), both of which have AFs more than 40 

times higher in our infertility patient group compared to NFE.

We then aggregated the 3’UTR variants to perform a gene-level association test between our 

patient cohort against gnomAD NFE. Among the 5,161 expressed genes with 3’UTR 

variants overlapping miRNA binding sites, 51 expressed genes showed significant 

association with either the gnomAD NFE group or our patient group (q < 0.05; Table S10). 

Although no GO term was significantly enriched among these 51 genes, we observed a 

nominal enrichment in biological processes such as cellular protein localization, telomere 

maintenance via semi-conservative replication, and protein localization to chromosome 

(Table S11).

Genes with 3’UTR variants within miRNA binding sites display two distinct expression 
patterns during early stages of embryonic development

Successful early embryogenesis relies on accurate transcriptome regulation. During MZT we 

expect two expression patterns to occur: an initial high level of maternally provided 

transcripts followed by their rapid degradation, and the appearance of newly transcribed 

zygotic genes that accompanies the maternal transcript clearance (Figure 3A). For genes that 

were significantly associated either with our patient group or the control group, we asked if 

their expression profiles clustered in these patterns during preimplantation stage of the 

embryogenesis.

To this end, we used the human embryo gene expression data assessed at the pre-

implantation stages of the development (see Methods for more details) and analyzed two sets 

of genes. The first set included 64 genes that showed significant association in the single-

variant analysis (Figure 3B) and the second set included 51 genes that showed significant 
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association in the burden analysis (Figure 3C). Because zygotic genome activation in human 

embryos occurs between the 4–8 cell stage of development (29), in the following analysis 

we assumed that clearance of maternal transcripts takes place right after the 4 cell stage, 

followed by the appearance of newly transcribed zygotic genes around the 8 cell stage. 

Accordingly, our candidate genes were categorized into two expression patterns: 1) a “high-

to-low” expression pattern for all genes with a log2FC#1 < −1 between the mean expression 

across the 8 cell, morula, and blastocyst stages and the mean expression across the zygote 

and 4 cell stage; and 2) a “low-to-high” expression pattern with a log2FC#2 > 1 between the 

mean expression across the morula and blastocyst stages and the mean expression across 

zygote, 4 cell, and 8 cell stages (see Methods for details). Among the 19,641 genes analyzed 

by Stirparo et al (24), 5,108 and 7,713 genes fell into the “high-to-low” and “low-to-high” 

group, respectively (Table S12). In our single variant analysis of 64 mutated genes, 25 genes 

had a “high-to-low” expression and 22 genes had a “low-to-high” expression (Figure 3B). 

The “high-to-low” category showed a significant enrichment compared to the whole 

transcriptome (Fisher’s Exact test p < 0.05). This analysis suggests that genes harboring 

significant 3’UTR variants disproportionately fall within the “high-to-low” category. Given 

their expression pattern, these transcripts are likely to be maternally provided. In our burden 

analysis, 17 and 18 out of 51 mutated genes displayed a “high-to-low” and a “low-to-high” 

expression pattern, respectively (Figure 3C). Neither category showed a significant 

enrichment compared to the whole transcriptome.

Discussion

In this report, we used whole-exome sequencing from an infertility patient cohort to perform 

association studies between miRNA gene and miRNA target binding site variants and 

infertility phenotypes. In particular, we examined whether mutated miRNAs and/or miRNA 

target binding sites affect genes that function in cellular processes important for early 

embryogenesis. Identification of genetic variants enriched within the patient group can serve 

two purposes: 1) these variants can help us understand the genetic risk factors of fertility 

problems and the underlying molecular mechanisms; 2) variants that are commonly 

observed in the patient group could serve as potential biomarkers to diagnose infertility or to 

improve the success rates of assisted reproductive technologies.

Our comparison between patients with high and low rates of aneuploidy did not identify 

statistically significant associations between non-coding variants and aneuploidy rate. Given 

the limited sample size of our groups, it is likely that the lack of association is due to the 

lack of statistical power, rather than miRNAs not engaging in biologically relevant 

processes. When considering all infertility patients together and comparing the allele 

frequency differences of miRNA variants between the patient group and a non-Finnish 

European population from the gnomAD database, we identified eight miRNA seed variants 

within six miRNAs that were significantly enriched among infertility patients. A possible 

effect of these variants could be that affected miRNAs no longer control turnover of 

maternal genes that are not compatible with the zygotic transcriptome. This effect could 

cause a failure in embryonic development, implantation or cause early miscarriage, resulting 

in an infertility diagnosis. Subsequent GO enrichment analyses of the 1,448 potential target 

genes of these six miRNAs showed that the disruption of the target genes could impact 
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biological processes such as “biosynthetic process” and “DNA-templated transcription” that 

are important for cell-cycle (Table S7).

In addition to variants in miRNA genes, we also examined variants within regions that are 

predicted to constitute potential miRNA binding sites within 3’UTRs of protein coding 

genes. Among genes that are expressed during early human embryonic development, 64 

genes that contained 3’UTR variants within miRNA binding sites showed significant 

differences in our patient group compared to the general population. Although GO analysis 

on these genes did not identify any significant term, several genes from the list perform 

functions important for early embryogenesis. One such gene is SEPT9 (Septin 9), a gene 

involved in cytoskeletal and cell-cycle control. Sept9 knockout mouse embryos demonstrate 

embryonic lethality around day 10 of gestation (30). In addition, variants such as 

rs35334288 in ELAVL3 and rs146607300 in MAP3K12 are 40 times more common in the 

infertility patient cohort compared to the control group. Such common variants in the patient 

population have the potential to serve as biomarkers for making better-informed decisions 

regarding reproductive choices.

Burden analysis of the 3’UTR variants identified a total of 51 significant genes. We observed 

interesting gene expression patterns that were shared among these genes across early stages 

of embryogenesis. Using gene expression data collected from various preimplantation stages 

of the developing embryo, we found that genes that harbor 3’UTR miRNA binding site 

variants displayed two main expression changes patterns; a “low-to-high” pattern with the 

inflection point occurring between the 8 cell and compacted morula stage; and a “high-to-

low” pattern with the expression change between the 4 and 8 cell stages (Figure 3B,C). Our 

single variant analysis revealed that our patient cohort has a disproportionately high number 

of genes with 3’UTR mutations that follow the “high-to-low” pattern of expression. Such 

disrupted maternal transcript clearance may not be compatible with zygotic genome 

activation. Functional studies are needed to determine whether the presence of these variants 

affects the clearance dynamics of maternal transcripts in early stages of embryo 

development and/or how these variants affect embryo development past the 4-cell stage. As 

such, these variants have a potential to serve as infertility biomarkers.

Although candidate genes harboring 3’UTR mutations that showed the strongest association 

with our patient group are involved in a broad range of cellular processes (Table S9, S11), it 

is difficult to directly link these processes to fertility issues. Nonetheless, several of these 

genes display relevant mouse phenotypes upon partial or complete abrogation. Searching 

MouseMine (http://www.mousemine.org/mousemine/begin.do) we found that several of our 

candidate genes were related to reproductive system phenotype, reduced female fertility, and 

embryonic or preweaning lethality (Elavl3, Pcbp2, Map3k12, Tomm22, Ano5), suggesting 

that our single variant analysis of 3’UTR variants has identified a range of candidate genes 

that could contribute to human fertility. Future functional studies of these genes and their 

associated non-coding variants are needed to elucidate their roles in embryogenesis and 

range of issues underlying infertility (e.g., quality and number of eggs retrieved).

A main limitation of our study is the relatively small patient sample size. The lack of 

significant variants in our LRG vs HRG comparison after multiple testing correction could 
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suggest that miRNAs do not play an important role in the biological mechanisms of MZT. 

However, some of our observations argue against this hypothesis. For example, when we 

compared all of our infertility patients with a normal population, many variants showed 

significant association, both within miRNAs (Table S5) and within 3’UTR miRNA binding 

sites (Table S8). In addition, we observed an interesting expression pattern for genes with 

significant variants in the 3’UTR miRNA binding sites (Figure 3B, 3C). Namely, these genes 

tend to display a “high-to-low” expression pattern during the very first stages of embryonic 

development (p < 0.05, Fisher’s Exact test). This expression pattern fits into the widely 

accepted hypothesis that maternally provided transcripts must be cleared during the MZT 

and that this likely occurs with miRNA’s help. Therefore, we believe that the lack of 

significant results is more likely due to the small sample size in our study. With regard to the 

lack of significantly enriched GO terms among the genes with mutated 3’UTR miRNA 

binding sites (Tables S9 and S11), it is likely that the maternal transcripts involved in MZT 

are responsible for many aspects of embryonic development and are not enriched in a 

particular pathway. In the future, studies with a larger patient cohort could confirm and 

strengthen the association between certain variants and aneuploidy phenotype and better 

assess the role of miRNAs in aneuploidy. Such variants could also serve as biomarkers in a 

clinical setup where they could prove useful in making better-informed decisions regarding 

reproductive choices. In summary, we present an investigation towards understanding what 

non-coding genetic variants could be contributing to female infertility.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Analysis workflow to identify candidate non-coding variants implicated in fertility.
Infertile patients were divided into LRG and HRG based on their aneuploidy rates. 

Following WES and variant identification, SNVs and INDELs that overlap miRNA seed-

sequences (left) and 3’UTR miRNA binding sites (right) were selected for analyses as 

outlined in the figure. Gene expression analysis and GO term enrichment analysis were used 

to identify candidate variants that potentially dysregulate pathways that influence fertility 

phenotype.
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Figure 2. Variants stratified by miRNA gene regions.
(A) Number of miRNA genes from miRVaS and ADmiRE databases that were covered in 

the WES experiment. (B) Diagram depicting miRNA stem-loops structure with highlighted 

distinct miRNA gene regions (adapted from (16)). In our analyses 5’ and 3’ flanks span 100 

bps on each end of the miRNA gene. (C) Number of SNVs and INDELs within distinct 

regions of miRNAs as outlined in (B) and per tool as indicated by the color legend.
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Figure 3. Genes enriched for 3’UTR variants within miRNA binding sites follow expression 
resembling maternal transcript clearance pattern.
(A) A schematic diagram of anticipated mRNA changes during early stages of human 

embryogenesis. The human preimplantation developmental stages are labeled on the x-axis, 

and the presumed RNA time courses for maternal (orange) and zygotic (blue) transcripts are 

indicated with solid lines. (B) Clustering of 64 genes with significant 3’UTR variants in the 

single variant analysis of patient vs control groups. (C) Clustering of 51 Genes with 

significant 3’UTR variants from the burden analysis of patient versus control groups. Gene 

expressions were log2(FPKM+1) transformed and mean-centered row-wise. Color scales are 

the same for B and C. Genes following a “low-to-high” expression pattern are indicated with 
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red upwards triangles. Genes following a “high-to-low” expression pattern are indicated with 

blue downwards triangles (see Methods). Dendrograms were generated by hierarchical 

clustering of the transformed expression data. Developmental stages: zygote, 4 cell, 8 cell, 

compacted morula, early blastocyst (Inner Cell Mass), and late blastocyst (Epiblast and 

Primitive Endoderm).
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