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T cells play a vital role in the immune responses against tumors. Costimulatory or
coinhibitory molecules regulate T cell activation. Immune checkpoint inhibitors, such as
programmed cell death protein 1 (PD-1) and programmed death ligand 1 (PD-L1) have
shown remarkable benefits in patients with various tumor, but few patients have displayed
significant immune responses against tumors after PD-1/PD-L1 immunotherapy and
many have been completely unresponsive. Thus, researchers must explore novel immune
checkpoints that trigger durable antitumor responses and improve clinical outcomes. In
this regard, other B7 family checkpoint molecules have been identified, namely PD-L2,
B7-H2, B7-H3, B7-H4 and B7-H6. The aim of the present article was to address the
expression, clinical significance and roles of B7 family molecules in lymphoma, as well as
in T and NK cell-mediated tumor immunity. B7 family checkpoints may offer novel and
immunotherapeutic strategies for patients with lymphoma.
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INTRODUCTION

T cells play important roles in antitumor immunity, and their dysfunction results in immune
evasion (1). It is unclear how tumor interact with the immune system. Immunotherapeutics that
target checkpoints have achieved remarkable clinical responses in tumor treatment. However, many
patients remain unresponsive to such therapies, suggesting that there are other mechanisms of T cell
exhaustion (2). Thus, researchers must investigate novel co-inhibitory molecules for
Abbreviations: ADC, antibody-drug conjugate; B7-H3×4-1BB bispecific antibody targeting on B7-H3 and 4-1BB; B7-H6Bi-
Ab, bispecific antibody anti-CD3 and anti-B7-H6; BiKE, bispecific killer cell engager; BiTEs, bispecific T cell engagers; CAR,
chimeric antigen receptor; cHL, classic Hodgkin lymphoma; CR, complete response; CTLA-4, cytotoxic T lymphocyte antigen
4; DLBCL, diffuse large B cell lymphoma; EBV, Epstein-Barr virus; ENKTL, extranodal NK/T cell lymphoma; FL, follicular
lymphoma; GVHD, graft-versus-host disease; HDAC, histone deacetylase; ICOS, inducible T-cell costimulator; JAK, Janus
Kinases; LMP1, Latent membrane protein-1; mAb, monoclonal antibody; MCL, mantle cell lymphoma; MM, multiple
myeloma; MRD, minimal residual disease; NHL, non Hodgkin lymphoma; NK, natural killer; ORR, overall response rate; PD-
1, programmed cell death protein-1; PD-L1, programmed death ligand-1; PD-L2, programmed death ligand-2; PMBCL,
primary mediastinal large B-cell lymphoma; scFvs, single chain fragment variables; SCT, stem cell transplantation; STAT,
signal transducer and activator of transcription; TAM, tumor associated macrophages; TLT-2, myeloid cell like transcript 2;
TNF, tumor necrosis factor.
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immunotherapy. Combining new target molecules with present
immunotherapies may offer novel strategies and improve
clinical responses.

B7 family members have received attention because they are
expressed on T cells in cases of immune evasion and
tumorigenesis. To date, ten B7 family molecules have been
identified: B7-1 (CD80), B7-2 (CD86), B7-H1 (PD-L1, CD274),
B7-DC (CD273 or PD-L2), B7-H2 (ICOSLG, CD275), B7-H3
(CD276), B7-H4 (B7S1, B7x or VTCN1), B7-H5 (VISTA, GI24,
or PD-1H), B7-H6 (NCR3LG1) and B7-H7 (HHLA2) (3). Using
the TCGA and GTEx databases, we investigated the mRNA
expression levels of B7 family proteins in lymphoma. As shown
in the heatmap showed (Figure 1), all B7 family members
reported in the literature other than B7-H5 were more highly
expressed in diffuse large B cell lymphoma (DLBCL), suggesting
that these molecules may play vital roles in lymphoma immunity,
explaining the poor effect of PD-1/PD-L1 therapy.

The expression of B7 family molecules were regulated by various
mechanisms and play important roles in lymphoma proliferation,
migration, evasion, chemoresistance and immune evasion. Blockade
of B7 family molecules released T/NK cells from the inhibitory
effects and restores antitumor immunity via promoting T/NK cell
Frontiers in Oncology | www.frontiersin.org 2
activation, proliferation and cytotoxicity, and suppressing inhibitory
immune cells and molecules. Immunotherapies targeting B7 family
members include monoclonal antibody (mAb), inhibitors,
antibody-drug conjugates (ADCs), single chain fragment variables
(scFvs), antibody-dependent cell-mediated cytotoxicity (ADCC),
bispecific T cell engagers (BiTEs) and chimeric antigen receptor
(CAR) T cell therapy (4).

The present review summarizes the research involving B7
family members in lymphoma, namely PD-L1, PD-L2, B7-H2,
B7-H3, B7-H4 and B7-H6. The surface expression of these
molecules in lymphoma is shown in in Figure 3. Further
exploration of these molecules is needed to develop effective
immunotherapies, either as monotherapy or in combination
with other antibodies.
2 PD-L1

The PD-1/PD-L1 axis is a vital checkpoint in tumor progression
and immune evasion. The binding of PD-1 to PD-L1 resulted in T
cell anergy, exhaustion, apoptosis, and reduced cytotoxicity (5). The
drug mechanisms of anti- PD-1/PD-L1 antibodies are similar. They
FIGURE 1 | mRNA expression levels of B7 family molecules in DLBCL. This heatmap shows the expression of the 10 genes of B7 family members in normal tissue
and DLBCL: normal tissue from the whole blood cells of GTEx (n = 337), DLBCL from TCGA DLBCL (n= 47). The data were obtained from UCSC Xena and were
log2 transformed and were analyzed by Mann-Whitney U test. * 0.01<P<0.05, ** 0.0001=<P<0.01, *** P<0.0001.
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destroy the immunosuppressivemicroenvironment and reactivate T
cells, allowing them to recognize and kill tumor cells by blocking the
binding of PD-L1 on tumor cells to PD-1 on T cells (6).

Anti-PD-1 antibodies have been approved for use in various solid
tumors and lymphomas (7). A multicenter, single-arm, phase II trial
of sintilimab to treat relapsed or refractory classical Hodgkin’s
lymphoma (cHL) was carried out in China and showed that the
overall response rate (ORR) was 80.4% (5, 8). Single sintilimab
therapy also revealed an anti-tumor effect in extranodal natural
killer (NK)/T cell lymphoma (ENKTL) in a phase II trial (5). The
ORRwas 67.9% and the disease control rate was 85.7% (5). Sintilimab
combined with decitabine and the histone deacetylase inhibitor
chidamide resulted in partial remission in DLBCL (9). Phase II
studies have revealed that the ORR after treatment with either
nivolumab or pembrolizumab was 66.3% and 69.0%, respectively,
in patients with relapsed or refractory cHL (5, 10, 11). The ORR of
pembrolizumab in patients with ENKTL was 78.6% (12). A recent
study reported that geptanolimab showed promising efficacy and
manageable toxicity in patients with relapsed/refractory peripheral T
cell lymphoma (13). Interestingly, patients with PD-L1 expression >
50% obtained more benefit from geptanolimab treatment, with an
ORR of 53.3% and a median progression-free survival of 6.2 months
(13). The correlations between PD-L1 expression and response to
anti-PD-1 antibodies should to be further investigated in future
clinical trials. We have summarized the finished clinical trials in
Table 1 and ongoing ones in Table 2.
Frontiers in Oncology | www.frontiersin.org 3
The efficacy and safety of anti-PD-L1 antibodies in lymphoma
patients have also been assessed in clinical trials, involving patients
with lymphoma. At present, the following anti-PD-L1 antibodies are
used in clinical practice: avelumab, durvalumab and atezolizumab.
The finished clinical trials are summarized in Table 1 and ongoing
ones inTable 2. Avelumab is a fully human IgG1mAb that selectively
blocks PD-L1 and enhances anti-tumor T-cell activity (7). A phase I
study of avelumab demonstrated that ORR and complete response
(CR) were 54.8% and 6.5%, respectively, in patients with relapse/
refractory cHL who had suffered progression following stem cell
transplantation (SCT) or SCT-ineligible (7). A phase II trial
demonstrated that the CR of avelumab was 24% and that the ORR
was 38% in patients with relapsed or refractory ENKTL (14). The
response to avelumab was strongly correlated with PD-L1 expression
in tumor tissues (14). A phase I b/2, multicenter, open-label study of
ibrutinib plus durvalumab in relapsed/refractory follicular lymphoma
(FL) or DLBCL showed ORR values of 25% among all patients, 26%
among patients with FL, and 13% among patients with germinal
center B-cell DLBCL (15). Amulticenter open-label, phase I-II trial of
patients with solid tumors or lymphomas observed that atezolizumab
was well tolerated with generally comparable exposure across
populations (16). A phase Ib study involving patients with PD-L1
+ large B-cell lymphoma demonstrated that the ORR of CD19-PD-1/
CD28-CART-cell therapy was 58.8%, and that the CRwas 41.2%. No
severe cytokine release syndrome or neurologic toxicity was reported
in that study (17).
TABLE 1 | The finished clinical trials targeting on B7 family molecules in lymphoma.

Targets Drug Trial ID Phase N Diagnosis Response Ref

PD-L1 Avelumab NCT03439501 II 21 ENKTCL CR 24%, ORR 38% (14)
PD-L1 Durvalumab NCT02401048 Ib/2 61 r/r DLBCL, r/r FL ORR 25% (15)
PD-L1 Atezolizumab NCT02541604 I/II 90 r/r solid tumors and

lymphoma
ORR 5%
SD 13%

(16)

PD-1 CD19-PD-1/CD28-CAR
T cell

NCT03258047 Ib 17 PD-L1+ LBL CR 41.2%, ORR 58.8% (17)

PD-1 Nivolumab NCT01592370 II 23 r/r HL ORR 87%, CR 17%, PFS rate 86% (18)
PD-1 Nivolumab NCT02181738 II 80 cHL ORR 66.3%, CR 8.8%, PR 57.5%, PFS 10 m (10)
PD-1 Nivolumab

Ibrutinib
NCT02329847 I/II 144 DLBCL, FL CR 61%, PR 14%, SD 3% (19)

PD-1 Pembrolizumab NCT01953692 Ib 31 r/r cHL ORR 65%, CR 16%, (20)
PD-1 Pembrolizumab NCT01953692 Ib 21 r/r PMBL, ORR 48%, CR 33% (21)
PD-1 Pembrolizumab NCT02576990 II 53 r/r PMBL, ORR 45%, CR 13% (21)
PD-1 Pembrolizumab NCT02332980 II 9 r/r DLBCL ORR 44% (22)
PD-1 Pembrolizumab NCT02453594 II 210 r/r cHL ORR 71.9%, CR 27.6%, PR 44.3%, PFS 13.7 m, DOR 16.6 m, 3

years OS 86.4%
(23)

PD-1 Pembrolizumab
R-CHOP

NCT02541565 1 33 DLBCL, FL ORR 90%, CR 77%, PFS 83% (24)

PD-1 Pembrolizumab+
Vorinostat

NCT03150329 I 30 DLBCL, PMBL, FL, cHL ORR 30%, CR 30%, DOR 6 m, PFS 59% (25)

PD-1 Camrelizumab NCT03155425 II 75 cHL CR 28%, PR 48% (26)
PD-1 Tislelizumab NCT03209973 II 70 r/r cHL PR 87.6%, CR 62.9%, ORR 87.1%, CR 62.9%, 9 m PFS=74.5%. (27)
PD-1 Nivolumab Brentuximab

Vedotin
NCT02581631 I, II 30 PMBL ORR 73%, CR 37% (28)

PD-1 Ipilimumab
Nivolumab

NCT01822509 I 28 hematologic cancer ORR 32%, PFS 1 year (29)

PD-1 Geptanolimab NCT03502629 II 102 r/r PTCL OR 40.4%, CR 14.6%, PR 25.8%, DOR 11.4 m (13)
March 2021 | Volume 11 | Article 647
cHL, classical Hodgkin Lymphoma; DLBCL, Diffuse Large B-Cell Lymphoma; ENKTCL, Extranodal Natural Killer/T-cell Lymphoma; FL, Follicular Lymphoma; LBL, large B-cell lymphoma;
m, months; N, number; PMBL, primary mediastinal lymphoma; PTCL, Peripheral T-cell Lymphoma; r/r, relapsed or refractory; PMBL, Primary Mediastinal Large B-cell Lymphoma; CR,
complete response; DOR, Duration of overall response; ORR, overall response rate; OS, overall survival; PFS, progression-free survival; PR, partial response; SD, stable disease.
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One recent study reported that high levels of plasma-soluble
PD-L1 and signal transducer and activator of transcription
(STAT) 3 were related to worse progression-free survival and
overall survival in patients with DLBCL (30). Another study
showed that vincristine induced PD-L1 expression via p-STAT3
and augmented the efficacy of PD-L1 blockade therapy by
activating effector T cells and increasing the antitumor
immune response in DLBCL (31). The expression levels of PD-
L1 on monocytes are increased in patients with NK/T-cell
lymphoma and constitute a novel predictor of prognosis (32).
More clinical trials involving anti-PD-1/PD-L1 antibodies are
currently ongoing in patients with lymphoma.
3 PD-L2

Programmed death ligand-2 (PD-L2), is a PD-1 receptor. It is
mainly expressed in dendritic cells, macrophages, mast cells and
B cells, as well as in hematological malignancies, including
multiple myeloma (MM), acute leukemia and chronic
lymphocytic leukemia (33). However, it has little or no
significant effect on prognosis in these diseases (33).

It is reported that PD-L2 was expressed on the surface of
malignant cells in 65-100% patients with cHL and 54% of
pa t i en t s w i th nodu l a r l ymphocy t e p r edominan t
Hodgkin’s lymphoma. Abnormality in chromosome 9p24.1,
which encodes PD-L1 and PD-L2 protein and Janus kinase 2, is
Frontiers in Oncology | www.frontiersin.org 4
the main cause of PD-L1 and PD-L2 overexpression (34).
Chromosomal rearrangement of PD-L2 is associated with
abnormal overexpression in malignant cells of mycosis fungoides
(35). BCL6 is a key negative regulator of PD-L1 and PD-L2 in
germinal center B cells. It directly binds to the promoter region of
PD-L1 and intron 2 of PD-L2 to inhibit its transcription and
maintain the size of follicular T cells during the development of
germinal center (36). The IL-27/STAT3 signaling pathway induces
PD-L1 and PD-L2 expression in infiltrating macrophages of
lymphoma (37). PD-L1 and PD-L2 is highly expressed in
Epstein-Barr virus (EBV)-positive lymphomas, including DLBCL,
extranodal NK/T-cell lymphoma, aggressive NK cell leukemia and
T-cell lymphoproliferative diseases (38). Latent membrane protein-
1 (LMP1) induced the expression of PD-L1 and PD-L2. Cristino
et al. reported that when LMP1 was activated, PD-L1 and PD-L2
expression was significantly increased during the transformation of
B cells from the late germinal center to early and late activated B
cells. Moreover, microRNA-BHRF1-2-5p plays a regulatory role in
LMP1 driven PD-L1 and PD-L2 amplification (39). So further
identification of microRNAs that target immune checkpoints allow
RNA-based therapy. The regulatory mechanisms of PD-L1 and PD-
L2 expression and their function are summarized in Figure 2.

cHL prevents immune damage by regulating the interaction
between PD-1 and PD-L2 (40). Genetic changes in PD-L2 are rare
in non-Hodgkin lymphoma (NHL), in which the expression of PD-
L2 protein in non- malignant cells in the tumor microenvironment
is higher than that in tumor cells (41). Next-generation sequencing
TABLE 2 | The ongoing clinical trials targeting on B7 family molecules.

Targets Drug Disease Phase Status Trial ID

PD-L1 Durvalumab
lenalidomide

NKTCL II Not yet recruiting NCT03054532

PD-L1 Durvalumab
Rituximab
Acalabrutinib

PCNSL I Not yet recruiting NCT04688151

PD-L1 Acalabrutinib
Durvalumab

PCNSL
SCNSL

I Not yet recruiting NCT04462328

PD-L1 Atezolizumab DLBCL Recruiting NCT03850028
PD-L1 Atezolizumab

Rituximab
Gemcitabine
Oxaliplatin

r/r DLBCL II Active, not recruiting NCT03422523

PD-L1 Atezolizumab CTCL,SS II Active, not recruiting NCT03357224
PD-L1 Avelumab r/r ENKTCL II Active, not recruiting NCT03439501
PD-L1 Avelumab Advanced HL II Recruiting NCT03617666
PD-L1 Avelumab PTCL II Active, not recruiting NCT03046953
B7-H3 B7-H3 CAR T DIPG, DMG, r/r CNS tumors I Recruiting NCT04185038
B7-H3 B7-H3 CAR T r/r Glioblastoma II Recruiting NCT04077866
B7-H3 B7-H3 CAR T r/r solid tumors I Recruiting NCT04483778
B7-H3 4SCAR-276 solid tumors I/II Recruiting NCT04432649
B7-H3 B7-H3 CAR T, Fludarabine, Cyclophosphamide Epithelial Ovarian Cancer I Not recruiting NCT04670068
B7-H3 MGA271 Prostate Cancer II Active, not recruiting NCT02923180
B7-H3 Enoblituzumab, Retifanlimab, Tebotelimab Head and neck caner II Not recruiting NCT04634825
B7-H3 MGC018 Advanced solid tumors I Recruiting NCT03729596
B7-H3 MGD009 Advanced solid tumors I Active, not recruiting NCT02923180
B7-H4 FPA150 Advanced solid tumors I Active, not recruiting NCT03406949
B7-H6 BI 765049

BI 754091
Advanced solid tumors I Not recruiting NCT04752215
March 2
021 | Volume 11 |
CNS, central nervous system; CTCL, cutaneous T‐cell lymphoma; DIPG, diffuse intrinsic pontine glioma; DMG, diffuse midline glioma; DLBCL, diffuse large B-cell lymphoma; ENKTCL,
extranodal natural killer/T-cell lymphoma; HL, Hodgkin Lymphoma; PCNSL, primary central nervous system lymphoma; PTCL, Peripheral T-cell Lymphoma; r/r, relapsed or refractory;
SCNSL, secondary central nervous system lymphoma; SS, Sezary syndrome.
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and multivariate analysis has shown that the differential expression
of PD-1 and PD-L2 genes in Th-1/Th-2 status guarantees the
prognosis of primary central nervous system lymphoma (42). PD-
L2 RNA in situ hybridization was a sensitive, specific and practical
marker to identify primary mediastinal large B-cell lymphoma
(PMBCL) (43).

The expression of PD-L2 is correlated with favorable prognosis
in patients with DLBCL. Moreover, the high expression levels of
PD-L2 are related to low expression of PD-1 and upregulation of
CD80 in CD4/CD8 T cells. In addition, fluorescent in situ
hybridization has shown that changes in the PD-L2 gene were
related to the survival rate and gene expression profile of patients
(44). However, other studies have reported that PD-L2 expression is
associated with poor disease-free survival and overall survival in
DLBCL (45). DLBCL with Janus kinases (JAK) 2/PD-L2
amplification shows PMBCL like replication number changes and
poor prognosis (46). PD-L2 replication or amplification has been
found in the malignant B cells of 64% of patients with T-cell/
histiocyte rich large B-cell lymphoma (47). High expression levels of
PD-L2 are associated with poor prognosis in FL, while low
expression levels are positively correlated with 24-month disease-
free survival (48). PD-L2 must be further explored in the future,
especially in clinical trials.
Frontiers in Oncology | www.frontiersin.org 5
4 B7-H2

B7-H2 binds to inducible T-cell costimulator (ICOS) and augments
Th1 and Th2 function by inducing effector cytokine secretion (49).
Few studies have evaluated B7-H2 in hematological tumors,
although one found that it is highly expressed in FL B cells that it
induced the generation of ICOS+ regulatory T cells, inhibiting the
function of conventional T cells (50). In one murine lymphoma
model, miR21 is a serum oncogenic biomarker. miR21 indicated
that the sensitivity of B cell lymphoma sensitivity to ABT-199
through the ICOS and ICOS ligand signal involved interaction
between Treg cells and endothelial cells (51).
5 B7-H3

B7-H3 is extensively expressed in various tumors, tumor-
infiltrating dendritic cells, and macrophages (52). The exact
receptor of B7-H3 remains unclear. Previous studies have
reported that myeloid cell-like transcript 2 (TLT-2) binds to
B7-H3. However, others found that B7-H3 and TLT2 did not
bind to each other (53, 54). A circulating soluble isoform of B7-
H3 also exists in serum and other body fluids (55).
FIGURE 2 | The regulatory mechanisms and function of PD-L1/PD-L2 in lymphoma.
March 2021 | Volume 11 | Article 647526
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Most studies have demonstrated that B7-H3 inhibited T cell
function and promoted tumor progression, and one reported
that B7-H3 is overexpressed in patients with mantle cell
lymphoma (MCL) and cell lines, and that miR-506 negatively
regulates the expression of B7-H3, inhibiting cell growth,
invasion and migration in MCL. These effects were reversed by
the restoration of B7-H3 expression (56). B7-H3 silencing by
RNAi suppressed tumor progression and augmented
chemosensitivity to chemotherapeutic drugs in U937 cells and
MCL cells (57, 58). B7-H3 was correlated with progression-free
survival and overall survival time of patients with MM (59, 60).
LncRNA NEAT1 sponged miR-214 to induce M2 macrophage
polarization by regulating B7-H3, and promoted MM
progression through JAK2/STAT3 signaling pathway (59). B7-
H3 promoted MM cell survival and growth via ROS/Src/c-Cbl
signaling pathway (60).

The B7-H3 checkpoint may serve as a promising and novel
target for immunotherapy against tumors. B7-H3 inhibition
resulted in reduced growth of multiple tumors and enhanced
antitumor immunity via NK and CD8+ T cells (52). Combining
blockades of B7-H3 and PD-1 led to further augmented
therapeutic effects on late-stage tumors (52). B7-H3-targeted
CAR-T cells showed significant antitumor activity against
hematologic malignancies and solid tumors (61). B7-H3 was
highly and homogeneously expressed in extranodal nasal NK/T
cell lymphoma cell lines. A new anti-B7-H3/CD3 BiTE antibody
Frontiers in Oncology | www.frontiersin.org 6
and B7-H3-redirected CAR-T cells have been constructed. They
effectively target and kill NKTCL cells and inhibited the growth
of tumors (62). A B7-H3-redirected CAR based on scFvs from
mAb 376.96 demonstrated strong cytotoxicity and cytokine
production against target anaplastic large cell lymphoma cells
in vitro and promptly eradicated tumor cells in mouse
xenografts. In addition, B7-H3 CAR-T cells show growth
capacity and a memory phenotype after stimulation using
repeated antigen (63). A bispecific antibody targeting B7-H3
and 4-1BB (B7-H3×4-1BB) has been developed. B7-H3×4-1BB
showed antitumor activity in mice and promoted CD8 T cell
proliferation and cytokine secretion. B7-H3×4-1BB combined
with PD-1 blockade synergistically suppressed tumor growth and
increased terminally differentiated CD8 T cells (64). B7-H3
CAR-T cells effectively suppressed tumor growth, both in vitro
and in vivo. B7-H3 CAR and B7-H3/CD16 bispecific killer cell
engager (BiKE) have also been generated. B7-H3/CD16 BiKE has
been shown to trigger NK cell activity via CD16 signaling,
enhanced NK cell activation and improved antitumor efficacy
in vitro and in vivo (65). The regulatory mechanisms and
therapies targeting B7-H3 are summarized in Figure 3. The
ongoing clinical trials are summarized in Table 2.

Thus, B7-H3 inhibitors may be an effective and safe
therapeutic agent against tumors as monotherapy and in
combination with other therapeutic agents. Further studies
need to be carried out in preclinical and clinical studies.
FIGURE 3 | The regulatory mechanisms and therapies targeting B7-H3.
March 2021 | Volume 11 | Article 647526
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6 B7-H4

B7-H4 negatively modulates T cell immunity and promotes
tumor progression (66). The receptor for B7-H4 has not been
identified (67). It has been reported that B7-H4 is induced by IL-
6, IL-10 and tumor associated macrophages (TAM) and that it
protects NHL cells from T cell-mediated killing by secreting IL-6
and IL-10 (68). In another study, B7-H4 augmented the
differentiation of mouse leukemia-initiating cells by deleting
the phosphatase and tensin homolog in the Akt/RCOR2/
RUNX1 signaling pathway (69). In cancer cells, B7-H4 is
upregulated by hypoxia via hypoxia-inducible factor-1a and
promotes tumor cell growth (70).

It has been demonstrated that B7-H4 is overexpressed in
EBV-positive DLBCL and that it inhibits apoptosis via ERK1/2
and Akt signaling pathways (71). Moreover, B7-H4 appears to
play a critical role in prognosis while PD-L1 expression
weakened (72). One investigation found that B7-H4
engagement in EBV-positive lymphomas inhibited tumor cell
proliferation and regulated cell cycle arrest at the G0-G1 phase
via down-regulation of the Akt signaling pathway (73). Thus, B7-
H4 presents as a new potential target for EBV-positive
lymphoma immunotherapy. In another study, B7-H4
overexpression in myeloid cells from human cancers was
related to CD8+ T cell dysfunction (74). The combination of
B7-H4 and PD-1 blockade demonstrated synergic effects and
enhanced anti-tumor immune responses (74). Therefore,
targeting the B7-H4 co-inhibitory pathway may augment the
therapeutic effect of current anti-PD-1 therapy to treat cancers.
Frontiers in Oncology | www.frontiersin.org 7
Recently, it was reported that inhibition of B7-H4 glycosylation
recovered antitumor immunity in immune-cold breast cancers
(75). Combined with other therapies, this provides a potential
insight into new therapeutic strategies. In a study on graft-
versus-host disease (GVHD), B7-H4 inhibited T cell function
and its expression was increased in GVHD target organs and
donor T cells early after bone marrow transplantation (76). The
same investigation found that rapid mortality in B7-H4-/-

recipients was correlated with increased T cell proliferation,
activation, cytokine secretion, and homing in GVHD target
tissues (76). Further studies are needed to explore the function
of B7-H4 in activated donor T cells, which may offer novel
insights and lead to new strategies for the modulating of GVHD.
The potential of B7-H4 targeted immunotherapy to treat solid
tumors is now being investigated in clinical trials but the results
have not yet been reported (67). The same therapy should be
further explored in the treatment of lymphoma in preclinical and
clinical studies. The regulatory mechanisms and therapies
targeting B7-H4 are summarized in Figure 4. The ongoing
clinical trials are summarized in Table 2.
7 B7-H6

B7-H6, which is selectively expressed on the tumor cell surface, is
a ligand for NKp30, which may be a promising target for novel
cancer immunotherapy strategies and has been investigated in
CAR-T therapy and novel immunoligands (77). NKp30 induces
efficient NK cell-mediated antitumor immune responses
FIGURE 4 | The regulatory mechanisms and therapies targeting B7-H4.
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triggered by B7-H6 (78). In a recent study, incorporation of
affinity-matured B7-H6 into NKp30 therapy enhanced
NK cell-mediated tumor cell killing and significantly
increased proinflammatory cytokine release of bispecific
immunoligands (79).

The expression and regulation of B7-H6 have been explored.
In one study, B7-H6 in its soluble and in soluble forms, was
induced at the surface of proinflammatory monocytes and
neutrophi l s by l igands of to l l - l ike receptors and
proinflammatory cytokines including interleukin-1b and tumor
necrosis factor (TNF) a (80). In another investigation,
metalloproteases induced B7-H6 release from the tumor cell
surface and treatment with metalloprotease inhibitors resulted in
both increased surface levels of B7-H6 and augmented NK cell-
mediated tumor cell lysis (81). Promoter analyses demonstrated
that the proto-oncogene Myc induced B7-H6 expression in
tumor cells (78). In one study, suppression of c-Myc or N-Myc
markedly reduced the expression levels of B7-H6, and both
mRNA and surface protein expression of B7-H6 was reduced
by histone deacetylase (HDAC) inhibitors and small interfering
RNA-mediated knockdown of HDAC 2 or 3 (82). In another
study, B7-H6 downregulation was related to reduced B7-H6
reporter activity and histone acetylation at the B7-H6
promoter (82). Treatment with cisplatin and 5-fluorouracil
chemotherapy, radiotherapy, non-lethal heat shock, and TNF-
a therapy- induced B7-H6 expression in tumors and enhanced
tumor sensitivity to NK cell cytotoxicity (83).

In primary lymphoma tissues, B7-H6 mRNA levels are
increased and related to HDAC3 expression (82). HDAC
Frontiers in Oncology | www.frontiersin.org 8
inhibitors reduces B7-H6 expression and NKp30-dependent
efficient functions of NK cells. The mRNA levels of c-Myc are
significantly correlated with B7-H6 expression, and inhibition of
c-Myc damaged NKp30-mediated degranulation of NK cells
(78). In B cell NHL, B7-H6 knockdown suppressed tumor
progression and enhanced chemosensitivity. Downstream
target investigation has indicated that STAT3 pathway is
involved in B7-H6 knockdown-mediated antitumor immunity
(84). B7-H6 is overexpressed in DLBCL, T-lymphoblastic
lymphoma and lymph node reactive hyperplasia tissues
promoting cell growth, migration,and invasion through the
Ras/MEK/ERK signaling pathway (85).

The combination of recombinant immunoligands
ULBP2:7D8 and B7-H6:7D8 increases NK cell-mediated
ADCC in lymphoma (86). Moreover, bispecific antibody
anti-CD3 and anti-B7-H6 (B7-H6Bi-Ab) armed T cells
showed significant cytotoxicity induction in B7-H6
positive hematological tumor cells via the production of
granzyme B and perforin (1). In addition, B7-H6Bi-Ab armed
T cells secreted more T cell-derived cytokines and expressed
much higher level of the activation marker CD69 (1). Another
study demonstrated that B7H6-specific BiTEs directed T cells to
mediate cytolysis and IFN-g production against tumors (87). In
vivo, B7-H6-specific BiTE significantly increases the survival of
lymphoma-bearing mice via perforin and IFN-g secretion.
Moreover, BiTE protein reduces tumor burden in melanoma
and ovarian cancer-bearing mice. Therefore, combining
therapeutic antibodies may provide a promising insight to
further enhance the efficacy of antibody therapy. This strategy
FIGURE 5 | The regulatory mechanisms and therapies targeting B7-H6.
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may be especially encouraging for eradicating minimal residual
disease cells after transplantation. The regulatory mechanisms
and therapies targeting B7-H36 are summarized in Figure 5. The
ongoing clinical trials are summarized in Table 2. Taken
together, B7-H6 may be a promising immunotherapy target for
hematological and solid tumors. Further explorations of B7-H6
targeted immunotherapy should be carried out in the preclinical
and clinical studies.
CONCLUSION

In summary, B7 family members may provide novel strategies to
inhibit or kill tumors by triggering antitumor immune responses.
Blocking the PD-L1/PD-1 pathway has generated therapeutic
success in human tumors. However, PD-L1/PD-1 have a low
response rate. Therefore, researchers must combine novel
checkpoint inhibitors with PD-L1/PD-1 inhibitors, or used them
in monotherapy. The B7 family member pathways represent novel
immunosuppressive mechanisms in tumor immunity, as well as a
potential target for immunotherapy. Additional studies, involving
immunoregulatory mechanisms and clinical trials are needed for
further exploration. In the future, immunotherapy based on
Frontiers in Oncology | www.frontiersin.org 9
combined B7 family members may represent a promising
strategy for treating hematologic malignancies.
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