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the best-fitting parameters are similar to those found from 
identifying the models based on threshold measurements. 
This confirms the validity of the modeling approach and 
links perceptual thresholds to RT. By establishing a link 
between vestibular thresholds for self-motion and RT, we 
show for the first time that RTs to purely inertial motion 
stimuli can be used as an alternative to threshold measure-
ments for identifying self-motion perception models. This 
is advantageous, since RT tasks are less challenging for 
participants and make assessment of vestibular function 
less fatiguing. Further, our results provide strong evidence 
that the perceived timing of self-motion stimulation is 
largely influenced by the response dynamics of the vestibu-
lar sensory organs.

Keywords  Reaction time · Self-motion · Perception 
threshold · Time perception · Latency · Vestibular

Introduction

The ability to model how and when we perceive self-
motion has several important implications. Since the per-
ception of passive self-motion in the dark is mainly medi-
ated by the vestibular system (Walsh 1961; Valko et  al. 
2012), it provides a measure for vestibular function and 
has potential applications for diagnosing vestibular patients 
without the necessity to rely on oculomotor recordings 
(Merfeld et  al. 2010). In addition, self-motion perception 
models are broadly used for calibrating motion simulators 
in an effort to optimize fidelity in a virtual environment 
(Borah et  al. 1988; Telban and Cardullo 2005; Grant and 
Lee 2007). Finally, there is an ongoing debate as to whether 
the dynamics of self-motion perception correspond to the 
dynamics of motor responses to vestibular stimulation such 

Abstract  In this paper, we show that differences in reac-
tion times (RT) to self-motion depend not only on the 
duration of the profile, but also on the actual time course 
of the acceleration. We previously proposed models that 
described direction discrimination thresholds for rotational 
and translational motions based on the dynamics of the ves-
tibular sensory organs (otoliths and semi-circular canals). 
As these models have the potential to describe RT for dif-
ferent motion profiles (e.g., trapezoidal versus triangular 
acceleration profiles or varying profile durations), we vali-
dated these models by measuring RTs in human observers 
for a direction discrimination task using both translational 
and rotational motions varying in amplitude, duration and 
acceleration profile shape in a within-subjects design. In 
agreement with previous studies, amplitude and duration 
were found to affect RT, and importantly, we found an 
influence of the profile shape on RT. The models are able to 
fit the measured RTs with an accuracy of around 5 ms, and 
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as the vestibulo-ocular reflex (VOR). Both perception and 
action processes are determined by sensory signals from 
the vestibular system; however, differences in the response 
dynamics for perception and action have been reported and 
might reflect additional involvement of central processing 
(Merfeld et  al. 2004; Barnett-Cowan et  al. 2005; Merfeld 
et  al. 2005a, b; Bertolini et  al. 2011, 2012). Despite the 
importance of being able to model the perceived timing 
of self-motion, previous efforts have limited power as to 
date they have been restricted to exposing participants to  
sinusoidal acceleration profiles of different durations.

In order to assess self-motion perception in humans, we 
previously measured direction discrimination thresholds 
for both translational and rotational motions (Soyka et  al. 
2011, 2012a). Models based on the dynamics of the vestib-
ular sensory signals were introduced which are able to cap-
ture the influence of the specific motion stimulus duration 
and profile shape on thresholds (e.g., threshold differences 
between sinusoidal or triangular acceleration profiles). 
These models could also be used to describe reaction times 
(RT) for discriminating motion directions as a function of 
varying motion stimuli. The goal of the present study was 
to measure RTs for different motion profiles and verify 
whether the model is able to describe the timing of per-
ceived self-motion. To do so, model parameters obtained 
from previous threshold measurements were compared to 
estimates obtained from RT measurements in order to test 
whether the underlying dynamics are similar for threshold 
and RT measurements.

Establishing a link between thresholds and RTs through 
modeling is desirable as it could improve upon current 
methods for assessing self-motion perception. During an 
RT direction discrimination task in which the stimuli are 
above threshold, participants’ answers are mostly cor-
rect. In contrast, during threshold assessment participants 
encounter below threshold stimuli and often have to guess 
the direction of motion. Consequently, threshold tasks can 
be exhaustive and frustrating to participants. RT tasks, 
however, are perceived as being easier to perform and are 
preferred by participants. If one model can describe thresh-
olds and RTs it would then be possible to identify threshold 
and RT from either measurement.

Our models allow predicting the time it takes a self-
motion stimulus to rise above threshold. Note, however, 
that this is not the total RT. Indeed, the total RT is com-
posed of the time it takes to rise above threshold plus the 
additional time it takes to cognitively process the sen-
sory signal and the time it takes to press the response 
button. The models allow calculating the change of the 
vestibular sensory signal elicited by a motion stimulus 
and introduce a threshold for the sensory signal. The 
time it takes for a self-motion stimulus to rise above 

threshold is predicted by computing when the sensory 
(neuronal) signal overcomes the threshold. Note that this 
sensory threshold is different from thresholds reported 
in terms of motion intensity (e.g., given in terms of peak 
acceleration). One advantage of looking at the sensory 
signal is that a single threshold for the sensory signal 
leads to varying acceleration thresholds depending on 
the motion stimulus. Therefore, a single neuronal thresh-
old together with a model of the sensory dynamics can 
describe the behavior of acceleration thresholds for var-
ying motion stimuli.

The present study is unique in that we measured RTs 
for both translations and rotations using a within-subjects 
design. Previous RT studies for self-motion perception 
investigated either rotational motions (Baxter and Travis 
1938; Clark and Stewart 1962, 1974; Guedry 1974; Huang 
and Young 1981) or translational motions (Meiry 1965; 
Jones and Young 1978; Arrott et  al. 1990). To the best of 
our knowledge, this is the first study to assess the timing of 
RTs to both rotational and translational motions and to use 
the same modeling framework to describe both.

Previous efforts to model RTs to self-motion include 
Mulder (1908), who was the first to report that RTs for 
rotational motion stimuli—consisting of a step in accel-
eration—are inversely related to peak acceleration of 
the stimulus (Mulder’s Law). Thus, the product of peak 
acceleration and RT are constant. This observation was 
later explained by assuming that the cupula needs a mini-
mal amount of deflection in order to detect a rotational 
motion (van Egmond et  al. 1949; Guedry 1974). The 
deflection can be calculated with a torsion-pendulum 
model (van Egmond et al. 1949). Based on such a model, 
RTs in response to angular acceleration steps have been 
successfully described (Rodenburg et  al. 1981). A simi-
lar approach was used to describe RTs for translational 
motions as a function of the peak acceleration based on 
the deflection of the otoconia (Young and Meiry 1968; 
Jones and Young 1978). These models are similar to ours 
in the sense that stimulation of the vestibular sensors due 
to a motion stimulus is calculated, and a minimal stimula-
tion is needed in order to react to the motion. The advan-
tage of our model is that it can deal with arbitrary motion 
profiles (taking the whole frequency content of the motion 
into account), whereas previous models were partially 
restricted to steps in acceleration.

The main goal of this study is to investigate whether RTs 
can be described based on the same models previously used 
for describing threshold measurements. If so, this would 
validate the modeling approach and allow for identifying 
the model parameters with RTs instead of, or in combina-
tion with, threshold measurements which, as discussed 
above, is advantageous.
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Methods

Participants

Twenty participants (10 female) took part in the study. 
They were 20–34 years old (mean = 27 years) and reported 
no vestibular problems. The participants were paid a stand-
ard fee and signed an informed consent form prior to the 
study. The experiment was conducted in accordance with 
the requirements of the Helsinki Declaration, and all proce-
dures were reviewed and approved by the ethics committee 
of the Eberhard Karls Universität Tübingen.

Motion stimuli

To present motion stimuli to participants, we used the Max 
Planck Institute CyberMotion Simulator. Further details on 
its hardware and software specifications are available (Rob-
ocoaster, KUKA Roboter GmbH, Germany; Teufel et  al. 
2007; Robuffo Giordano et  al. 2010a, b; Barnett-Cowan 
et al. 2012a).

RTs were measured for 8 different conditions (Table 1): 
4 translations and 4 head-centered yaw rotations around 
the earth-vertical body axis. The motion direction of each 
trial was randomized and was either leftward or rightward 

rotation or translation. Three motion parameters (dura-
tion, amplitude and acceleration profile shape) were varied  
in order to test the model predictions in various condi-
tions. The profile shape was varied between conditions I–II 
(V–VI), the duration was varied between conditions II–III 
(VI–VII) and the amplitude was varied between conditions 
III–IV (VII–VIII). The conditions were chosen such that 
every parameter is varied once, while the others are kept 
constant. The acceleration profile shape was either trap-
ezoidal or triangular (Fig.  1). For the trapezoidal profile, 
the peak acceleration was reached after T/10 s, where T is 
the duration of the profile. Note that amplitudes and thresh-
olds for rotational motions are given in terms of velocity 
and not acceleration (Table  1), because the encoding of 
the semi-circular canal signal is proportional to velocity 
(Fernandez and Goldberg 1971), and therefore, rotational 
motions are usually parameterized in units of velocity. 
Previous research has made such a distinction of speaking 
about acceleration when referring to translations (Benson 
et  al. 1986; Soyka et  al. 2011) and about velocity when 
referring to rotations (Benson et  al. 1989; Grabherr et  al. 
2008; Soyka et al. 2012a).

In order to assess the actual motion of the device, 
an inertial measurement unit (IMU) consisting of three 
gyroscopes (Analog Devices ADXRS150) and one 3D 

Table 1   RTs were measured for 8 conditions: 4 translations and 4 
rotations. The profile shape, duration and amplitude were varied. The 
direction discrimination thresholds were calculated based on previous 
work (Soyka et al. 2011, 2012a). Note that the profile shape was var-

ied once per motion type (Conditions I–II and V–VI) and then kept 
constant, while the other parameters (duration and amplitude) were 
varied

Condition Type Profile Duration Amplitude Threshold Distance

I—Tra 5 s Translation Trapezoidal 5 s 0.16 m/s2 0.06 m/s2 80 cm

II—Tri 5 s Translation Triangular 5 s 0.16 m/s2 0.07 m/s2 50 cm

III—Tri 2.5 s Translation Triangular 2.5 s 0.16 m/s2 0.06 m/s2 12.5 cm

IV—Low Amp Translation Triangular 2.5 s 0.09 m/s2 0.05 m/s2 7 cm

V—Tri 5 s Rotation Triangular 5 s 17 °/s 1.6 °/s 42.5°

VI—Tra 5 s Rotation Trapezoidal 5 s 17 °/s 1.7 °/s 42.5°

VII—Tra 2.5 s Rotation Trapezoidal 2.5 s 17 °/s 1.4 °/s 21.3°

VIII—Low Amp Rotation Trapezoidal 2.5 s 10 °/s 1.4 °/s 12.5°

Fig. 1   The motion profiles 
were named after the shape 
of their acceleration and were 
either trapezoidal or triangular. 
In addition to the profile shapes, 
durations and amplitudes of 
the profiles were also varied 
in order to test their influence 
on RT
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linear accelerometer (STMicroelectronics LIS3L02AQ) 
was attached to the seat of the simulator (along the ver-
tical axis specified by the center of the head), and yaw 
velocity together with linear accelerations were measured 
at 1,000 Hz. Digital data were obtained from the sensors, 
and no further filtering was applied. We observed that the 
IMU measurements deviated from the commanded motion 
profiles. In order to test if these deviations were random or 
deterministic, we performed 40 measurements (20 leftward 
and 20 rightward) per condition and computed the average 
to reduce any random components (Fig.  2). We chose 40 
repetitions since we know from our previous work (Soyka 
et  al. 2012a) that this is a sufficient number of trials to 
reduce the influence of random vibrations. Translational 
motions exhibited deterministic high-frequency vibrations, 
whereas rotational motions had almost no vibrations. To 
some extent, this is due to the fact that accelerations were 
measured for translational motions, whereas velocities 
were measured for rotational motions and are further exam-
ined in the Discussion. Note that these vibrations are not 
random (random vibrations have been averaged out), but 
occur deterministically during every trial, and therefore, 
they are part of the motion stimulus. Random vibrations are 
not an issue (as long as the profiles are still reproduced), 
since their influence on RTs averages out over many trials. 
However, the deterministic vibrations have to be taken into 
account, and therefore, the averaged IMU measurements 
instead of the commanded motions were used as inputs 

to the model. Note that this is only possible, because our 
model can deal with arbitrary motion profiles.

Experimental procedures

Each participant was tested in all 8 conditions, and a condi-
tion lasted until 30 correct responses were given. The dura-
tion of each condition was approximately 10  min. After 
each condition, there was a 5-min break to prevent fatigue. 
The experiment was divided in 2 blocks, and 4 conditions 
were tested during each block. Between blocks, there was a 
30-min break, such that the total experiment took approxi-
mately 2.5  h. Participants were familiarized with the task 
during an initial training phase consisting of 10 trials. In 
order to counterbalance possible learning effects, the pres-
entation sequence of the conditions was randomized.

A one-interval two-alternative forced-choice task was 
used to measure RTs. Participants had to discriminate the 
direction of motion as fast as possible. In order to reduce 
the possible influence of internal response criteria and to 
get similar RTs for all participants, the stimulus amplitudes 
were above the perceptual threshold (Table 1). This resulted 
in participants answering correctly in 96 % of all trials, cor-
responding to approximately 1 erroneous answer per condi-
tion. In case they made a mistake, participants were ver-
bally informed about this and the trial was excluded from 
the analysis. Note that since the stimulus amplitudes were 
above threshold participants likely were able to indicate 

Fig. 2   An inertial measure-
ment unit was used to assess the 
motions produced by the simu-
lator. The measurements are 
overlaid with the commanded 
motions such that the cross- 
correlation between the two 
signals is maximized. It can 
be seen that on average, the 
motions are well reproduced, 
but that there are high-
frequency vibrations for the 
translational motions
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their direction of motion during the acceleration phase of 
the stimulus, not the deceleration phase, in order to make 
their decision. This is confirmed by our results (Fig.  5) 
which show that RTs occur before the deceleration phase.

Participants initiated a trial with a button press and the 
movement began after a constant one-second pause. Note 
that the duration of the pause is irrelevant for a direction 
discrimination task. Participants were translated or rotated 
either leftward or rightward, were instructed to indicate the 
direction of their motion as fast as possible by pressing one 
of two buttons and were then moved back to the starting 
position. Participants were seated in a chair with a 5-point 
harness and wore light-proof goggles. Acoustic white noise 
was played during the movements via headphones. Partici-
pants wore clothing with long sleeves and trousers, and a 
fan was directed toward the face to mask possible air move-
ment cues during simulator motion. Between translation 
trials, there was at least a 1.5-s break (or longer if the par-
ticipant did not immediately initiate the next trial through a 
button press). It was recently shown that perceptual thresh-
olds for short fore-aft motions (0.5  s) are influenced by 
prior translational motions (Crane 2012). These perceptual 
aftereffects could potentially influence the RTs. Differences 
between our previous work and the present study are that 
the intensities of motion stimuli were all above perceptual 
threshold and stimuli in the present study longer than 0.5 s. 
Since our study was not designed to test the potential influ-
ence of prior motions on RTs, future research is required 
to assess this possibility. For rotation trials, the break was 
extended to at least 6 s to avoid perceptual aftereffects (the 
feeling of a counter rotation) that can occur after rotation 
in the dark. Participants removed the blindfold during the 
6-s break in order to see that they were stationary. This 
technique is called ‘visual dumping’ and has been shown 
to shorten the time constant of the post-rotatory nystagmus, 
which is correlated with perceived rotation (Cohen et  al. 
1981; Okada et al. 1999). No participant reported feelings 
of counter rotation.

Assessing reaction times

The response buttons were connected to the IMU’s digi-
tizer and sampled with the same frequency (1,000 Hz). In 
order to calculate RTs, the IMU signal was cross-correlated 
with the commanded motion, which allows for calculat-
ing the best estimate of the actual onset of the motion. The 
difference between the motion onset and the time a button 
was pressed was taken as RT. Using this method, RT can be 
measured with an accuracy of 1 ms.

Since RT distributions are not normally distributed but 
skewed toward longer durations, mean RT is not an appro-
priate measure of RT (Fig.  3). The mode of the distribu-
tion provides a better measure, since it describes the most 

frequent RT. However, the mode depends on the bin size of 
the histogram or, alternatively, it can be calculated as the 
maximum of a specific distribution fitted to the data. It has 
been shown that a convolution of a Gaussian distribution 
and an exponential can accurately describe RT distributions 
(Ratcliff and Murdock 1976; Hockley 1984; Luce 1986). 
The convolution is called the ex-Gaussian distribution and 
can be fit to the data with maximum likelihood methods 
without the need to assume a certain bin size (Ratcliff and 
Murdock 1976). The equation for the ex-Gaussian distribu-
tion is:

where Ф is the cumulative distribution function of the nor-
malized Gaussian distribution, μ and σ describe the Gauss-
ian distribution and τ represents the time constant of the 
exponential. The Gaussian distribution is assumed to rep-
resent the decision process, whereas the exponential part 
represents the residual latency, for example, the time it 
takes for the motor action required to provide the response 
(Luce 1986). Therefore, the mean of the Gaussian distribu-
tion is not equal to the mode, but is located earlier in time, 
since after the decision additional time is required in order 
to provide the response. Since there is no a priori reason to 
prefer either the parameter μ or the mode of the best-fitting 
distribution as a measure for RT, we report and analyze 
both measures. The RTs of all participants were combined 
and fitted with an ex-Gaussian distribution using MAT-
LAB and the DISTRIB toolbox (Lacouture and Cousineau 
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Gaussian distribution (convolution of a Gaussian and an exponential 
distribution) was fit to the data. It can be seen that the distribution 
is skewed and that the mean does not represent a suitable measure. 
Instead, the parameter μ of the ex-Gaussian distribution and the mode 
are used as measures of the RT
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2008). The mean (μ) and the standard deviation (σ) of the 
Gaussian part and the time constant (τ) of the exponential 
part were estimated for each condition. The ex-Gaussian 
distribution was fit to the combined data of all participants 
instead of fitting it to the data of individual participants, as 
each participant performed only 30 trials resulting in too 
few data points for a reliable fit. Before combining the data 
of all participants, we fit ex-Gaussian distributions to indi-
vidual participants, but obtained unreasonable parameters 
showing that 30 trials are too few for a reliable fit. Fitting 
to the combined data also reduces the effect of possible 
individual differences between participants, which might 
arise from physiological differences or, on a cognitive 
level, from differences in internal response criteria.

Fitting reaction times

We previously introduced models capable of describing 
direction discrimination thresholds for arbitrary transla-
tory or rotatory motion profiles (Soyka et al. 2011, 2012a). 
These models calculate a signal akin to the change in fir-
ing rate of vestibular neurons that would be elicited by a 
motion stimulus. For the sake of simplicity, we will refer to 
this signal as the firing rate, but it should be noted that this 
signal is not a direct description of the firing rate of vestib-
ular neurons. Rather, the signal is comparable to the aver-
age dynamic response of a population of vestibular neurons 
stimulated by an inertial motion. Transfer functions whose 
structures are based on the anatomy and physiology of the 
otoliths and semi-circular canals are used to calculate the 
signal (Eq. 2):

The parameters K, τ1 and τN, are estimated based on our 
measurements, whereas the parameter τ2 is taken from 
the literature since it describes the behavior at frequencies 
higher than the ones relevant for our work. For translational 
motions, τ2  =  0.016s is used and for rotational motions 
τ2 = 0.015s. Note that this model is based on the structure 
of the peripheral vestibular sensors and assumes that cen-
tral neural processing does not alter the form of the transfer 
function. For further details about the transfer functions, 
we refer to our previous papers (Soyka et al. 2011, 2012a).

The main assumption of these models is the existence of 
a noise level intrinsic to the firing rate. In order to correctly 
perceive the direction of the motion stimulus, the change in 
firing rate has to overcome this level of noise (Fig. 4). For 
a given set of transfer function parameters, this assumption 
allows us to calculate the motion intensity required in order 
for the firing rate to overcome the noise level. This intensity 
represents the threshold prediction of the model for a given 

(2)H (s) = K ·
(1 + τN s)

(1 + τ1s)(1 + τ2s)

motion stimulus and a set of transfer function parameters. 
Note that threshold is given in terms of the peak accelera-
tion of the motion stimulus for translations or peak velocity 
for rotations. Since the noise level is unknown, it is arbi-
trarily fixed at 1 unit of ‘firing rate’, and the models include 
an additional parameter that inversely scales with the cho-
sen noise level. Given threshold measurements for several 
motion stimuli varying in duration and profile shape, the 
parameters of the transfer function can be iteratively varied 
until a set of best-fitting parameters which locally minimize 
the error between predictions and measurements is found. 
Previously, we performed such threshold measurements 
together with the identification of the best-fitting parameter 
sets (Soyka et al. 2011, 2012a).

These models can also be used to describe differences in 
RTs between varying motion stimuli. Given a set of model 
parameters, it is possible to calculate the time it takes a 
self-motion stimulus to rise above threshold (Fig. 4). How-
ever, this is not the total RT: Indeed, the total RT is com-
posed of the time it takes to rise above threshold (Tthreshold) 
plus the additional time (Tadditional) it takes to cognitively 
process the sensory signal and come to a decision about 
the direction of the motion. After that, it still takes time to 
press the response button. Assuming that on average the 
additional time, Tadditional is constant and independent of the 
motion stimulus allows calculating meaningful differences 
in measured RTs (parameter μ or mode of the RT distri-
bution) for varying motion stimuli, and thereby eliminating 
the constant factor Tadditional. Therefore, these differences 
should match differences between the calculated times 
Tthreshold. In order to obtain an optimal model fit, the follow-
ing error is defined:

where i and j denote different conditions. It is possible to 
form six errors for both translational and rotational motions 
combining the four different experimental conditions. The 
error function of the optimization procedure used to find 
the best-fitting parameters was defined as the sum of the 
squared errors for the six possible combinations. The trans-
fer function parameters K, τ1 and τN were varied until the 
error function was locally minimized within an error toler-
ance of 1 (ms)2 (‘fminsearch’ function, MATLAB, Math-
Works, MA, USA). In this way, two sets of best-fitting 
transfer function parameters were found for translational 
and rotational motions, one using the RTs based on the 
mode and another one using the RT estimates based on the 
parameter μ.

In order to be able to predict the parameter μ or the 
mode of the RT distributions, the constant Tadditional has to 
be determined and added to the model predictions Tthreshold.  
If the model is able to describe the measurements, an 

(3)errori , j =
(

RTi − RTj

)

−
(

Tthreshold,i − Tthreshold, j

)
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estimate of the constant can be obtained by taking the mean 
difference between the model predictions Tthreshold and the 
measured RTs.

Results

The maximum likelihood parameter estimates μ, σ and τ 
of the best-fitting ex-Gaussian distribution and the mode 
of the distribution are reported in Table 2 for each condi-
tion. As explained in Ratcliff and Murdock (1976), maxi-
mum likelihood estimators have specific asymptotic (large 
sample size) properties. The estimated parameters are 
normally distributed, and their variance can be obtained 
using the inverse of the Fisher information matrix (Wilks 
1962). Ratcliff and Murdock (1976) successfully used this 
approach to characterize parameter estimates for RT distri-
butions similar to those presented here, based on a sample 

size of N = 300. Since our sample size (N = 600 per con-
dition) is twice as large as theirs, it is justified to use the 
same approach in order to calculate standard deviations for 
the estimated parameters (Table 2). Since the mode is not 
obtained as part of the maximum likelihood fit there is no 
estimate of its standard deviation.

The model was fit to the measured RTs (μ and mode), 
and the resulting transfer function parameters are reported 
in Table  3 together with an estimate of the constant  
Tadditional and the transfer function parameters previously 
obtained from threshold measurements. Using the RT esti-
mates based on μ, the sum of squared errors (SSE) was 612 
(ms)2 for translational motions and 171 (ms)2 for rotational 
motions. Using the RT estimates based on the mode, the 
SSE was 619 (ms)2 for translational motions and 80 (ms)2 
for rotational motions. The resulting fit of the absolute RTs 
given by Tthreshold plus Tadditional is shown in Fig.  5. The 
mean absolute error between fit and measurements using 

Table 2   The parameters for 
the best-fitting ex-Gaussian 
distribution are given 
together with an estimate of 
their standard deviation (in 
parentheses). Additionally, 
the mode of the distribution is 
reported

Condition Translation Rotation

I II III IV V VI VII VIII

μ, RT [ms] 422 (5) 540 (9) 452 (5) 502 (8) 645 (12) 557 (9) 406 (4) 454 (5)

Mode, RT [ms] 476 617 506 567 742 638 449 501

σ [ms] 39 (4) 48 (8) 41 (4) 51 (7) 100 (9) 82 (7) 44 (3) 52 (4)

τ [ms] 173 (9) 340 (17) 144 (8) 175 (10) 177 (13) 151 (10) 82 (5) 84 (6)

Fig. 4   Left column: two differ-
ent rotational motion stimuli. 
Right column: the correspond-
ing change in firing rate in 
response to the stimuli. The 
time (Tthreshold) it takes for the 
firing rate to overcome sensory 
threshold (1 unit of the firing 
rate) can be found (see inset) 
given the transfer functions of 
the sensors. Upper and lower 
row show the differences 
between a trapezoidal (condi-
tion VI) and a triangular (condi-
tion V) acceleration profile
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the RT estimates based on μ is 5 ms for translations (5 ms 
using the mode) and 3  ms for rotations (2  ms using the 
mode).

Discussion

The main goal of this study was to investigate whether 
RTs for varying motion profiles can be described based on 
the same models previously used for describing threshold 
measurements. This would validate the modeling approach, 
link threshold measurements to RT measurements and 
thereby allow future studies to investigate self-motion 
perception through either RT or threshold measurements. 
Below we first analyze our RT findings and compare them 
to previous findings reported in the literature. Next, we dis-
cuss the model fit and compare the model parameters found 
from RT measurements to parameters found from thresh-
old measurements. Finally, the influence of vibrations of 
the simulator and the values of the constants Tadditional are 
discussed.

Analysis of reaction time distributions

Three motion parameters (profile shape, duration and 
amplitude) were varied for both translational and rotational 
motions. It can be seen from Table  2 that all parameters 
influence RTs. In order to test whether the RT distributions 
were significantly different between conditions likelihood-
ratio tests were performed (Wilks 1962). Specifically, the 

null hypothesis that a single ex-Gaussian distribution (3 
free parameters) is sufficient to describe the data was tested 
against the alternative hypothesis that two ex-Gaussian dis-
tributions (6 free parameters) provide a significantly better 
fit. The test statistic D was calculated using the following 
formula:

The test statistic D is approximately a chi-squared distri-
bution (Wilke 1938), and if χ2 is larger than 16.3 (inverse 
chi-square cumulative distribution function with 3° of 
freedom evaluated for x = 0.999), the probability p for the 
null hypothesis is smaller than p  =  0.001. For example, 
the profile shape was varied between conditions I and II 
for translations (χ2 = 460) and for V and VI for rotations 
(χ2 = 127) causing a significant change in RT. The dura-
tion was varied between conditions II–III (χ2 = 452) and 
VI–VII (χ2 = 738) and the amplitude between conditions 
III–IV (χ2 =  99) and VII–VIII (χ2 =  108) also resulting 
in significant differences. It is well known that the duration 
and the amplitude of a motion influence RT, for example, 
Mulder’s law for rotational motions (Mulder 1908), but to 
our knowledge this is the first study reporting an influence 
of the motion profile shape on RT.

Directly comparing RTs found in this study to previ-
ous studies is difficult since RTs depend on the presented 
motion profile, the task (motion detection vs direction 
discrimination) and the measure (mean vs mode or μ). 
For example, Baxter and Travis (1938) reported a mean 

(4)D = −2 ln

(

likelihood null hypothesis

likelihood alternative hypothesis

)

Table 3   Comparison between transfer function parameters found 
by fitting to RT estimates based on μ or on the mode to parameters 
found in previous direction discrimination threshold studies (Soyka 

et al. 2011, 2012a). The parameters for translational motions are simi-
lar, whereas parameters for rotational motions show differences

Translation Rotation

K [s2/m] τN [s] τ1 [s] Tadditional [ms] K [s2/°] τN [s] τ1 [s] Tadditional [ms]

Parameters for RTμ 1.91 4.78 0.33 290 2.86 0.054 3.65 287

Parameters for RTmode 2.11 4.53 0.41 339 1.01 0.006 1.04 275

Threshold studies 1.93 4.79 0.33 – 2.04 0.014 2.16 –

Fig. 5   Measured RTs (based 
on μ and the mode) are shown 
together with the best fit for 
each condition. Additionally, the 
standard deviations of the RT 
estimates based on μ are shown. 
The measurements are well 
described by the fit
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direction discrimination RT of 0.6  s for a 1.3  s rotational 
motion of 2°. Clark and Stewart (1974) reported mean 
direction discrimination RTs between 4.4 and 0.65  s for 
steps in rotational accelerations with amplitudes between 
0.75 and 15 °/s2. Huang and Young (1981) also measured 
steps in rotational accelerations with amplitudes between 
0.5 and 5 °/s2 and found mean RTs between 5 and 0.8 s. For 
horizontal translational motions, Arrott et al. (1990) found 
mean RTs between 3 and 0.7  s for steps in accelerations 
with amplitudes between 0.06 and 0.78  m/s2. Jones and 
Young (1978) investigated vertical translational motions 
and found mean RTs between 4 and 0.8 s for steps in accel-
eration with amplitudes between 0.1 and 0.6 m/s2. Note that 
these numbers are estimates since often results were only 
reported graphically. The long RTs are due to low intensity 
stimuli and cannot be compared to our findings. For the 
stronger motions, previously reported RTs are in the same 
range as our findings, although they seem slightly higher. 
This is probably due to the fact that we did not report the 
mean of the RTs, but the mode (and μ) which for skewed 
RT distributions is smaller than the mean (Fig.  3). These 
examples show that in order for RT studies to be compa-
rable, it is important to report a description of whole RT 
distributions (not just the mean) and to clearly specify the 
presented motion stimuli.

Model fit

From Fig. 5, it can be seen that the proposed model is able 
to accurately fit the RTs independent of the chosen measure 
(μ or mode). The mean absolute errors between measure-
ments and fits are remarkably low (~5  ms) reflecting the 
validity of the approach. Comparing the parameters esti-
mated based on RT measurements to the parameters pre-
viously estimated from threshold measurements (Table  3) 
shows a good match for the translational motion param-
eters. For rotational motions, the parameters differ, but 
are still within a reasonable range. Using the parameters 
obtained from RT measurements, we predicted direction 
discrimination thresholds and compared them to the pre-
viously measured thresholds (Soyka et  al. 2011, 2012a). 
The root mean square error (RMS) between predictions 
and measurements was calculated using the parameters 
obtained from threshold measurements. Threshold meas-
urements were obtained from RT using μ and obtained 
from RT measurements using the mode. For translations, it 
was found that the RMS based on RT measurements using 
μ was less than 1 % higher than the RMS based on thresh-
old measurements (the RMS based on RT measurements 
using the mode was 27 % higher than the RMS based on 
threshold measurements). For rotations, the RMS based on 
RT measurements using μ was 13 % higher than the RMS 
based on threshold measurements (the RMS based on RT 

measurements using the mode was 38  % higher than the 
RMS based on threshold measurements). This increase in 
RMS for predictions based on RT measurements (compared 
to the RMS based on fits to the threshold data) is small and 
suggests that it is indeed possible to predict the previously 
measured direction discrimination thresholds based on the 
parameters obtained from RT measurements. The param-
eters based on the measure μ provide better predictions 
than the ones based on the mode. This represents an impor-
tant finding since it indicates that the dynamics governing 
perceptual thresholds and RTs for self-motion stimuli are 
the same. This allows the use of a single model to describe 
both RTs and thresholds at the same time. Therefore, model 
parameters can be estimated based on either thresholds or 
RTs or even using a combination of both measures.

Note that for translational motions, the parameters based 
on threshold measurements were re-estimated using new 
IMU recordings of the stimuli tested in Soyka et al. (2011). 
Previously, the estimates were based on the commanded 
motion profiles and not on the IMU measurements of the 
motions. However, our motion simulator exhibits vibra-
tions, and therefore, it is important to take these vibrations 
into account by using IMU measurements as described in 
Soyka et al. (2012a).

Vibrations of the simulator

In the current study, deterministic vibrations of the simu-
lator are an issue (Fig.  2). It seems that for translational 
motions, the vibrations are higher than for rotational 
motions. Note that to some extent, this is due to the fact 
that accelerations were measured for translational motions, 
whereas velocities were measured for rotational motions, 
and therefore, the amount of vibrations due to rotational 
accelerations cannot be assessed. We decided not to show 
numerically integrated translational accelerations or differ-
entiated velocities, since digital filters suffer from numeri-
cal problems such as high-frequency noise for differentia-
tion and low-frequency drift for integration.

Ideally, there should be no vibrations of a simulator dur-
ing an experiment. In reality, there always are vibrations, 
and therefore, it is important to capture them. One advan-
tage of our model is that it can work with arbitrary motion 
profiles, and therefore, with profiles recorded with an IMU 
that measures also the vibrations of the simulator. In this 
respect, the vibrations are taken into account as best as 
possible.

The SSE represents an indicator for the quality of the 
model fit. For translational motions, the SSE is higher 
than for rotational motions revealing a weaker model fit 
for translations. One of the reasons for a weak fit might be 
the higher amount of vibrations for translational motions. 
However, overall, the model fits both translations and 
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rotations very well suggesting that the vibrations are suf-
ficiently taken into account.

Interpretation of the constants Tadditional

As discussed above, the constants Tadditional that have to be 
added to the predictions Tthreshold in order to get a descrip-
tion of either the parameter μ or the mode describing the 
RT distributions represent the time it takes to cognitively 
process sensory information and come to a decision about 
the direction of the motion. Using RT measurements based 
on the parameter μ, the constants for translations (290 ms) 
and rotations (287 ms) are rather similar. Using the mode 
instead of the parameter μ, results in clear differences 
between the constants (339 ms for translations and 275 ms 
for rotations).

We previously reported even larger differences in con-
stants that were based on modeling using the commanded 
motion profiles and not the measured IMU data (Soyka 
et al. 2012b, c). Interpreting the differences in the constants 
between translational motions and rotational motions based 
on the modeling assumptions suggests that translations 
are processed slower than rotations. A possible reason for 
slower processing of translational motions might be that 
the translation signal first has to pass through a tilt-transla-
tional disambiguation mechanism before it can be detected 
(Angelaki et  al. 1999, 2004; Merfeld et  al. 1999). How-
ever, since the constants strongly depend on the measure 
(μ vs. mode) and on the fitting methodology (commanded 
motions vs. IMU recordings as model input), no reliable 
conclusions about processing differences between trans-
lations and rotations can be drawn from the constants and 
further research is required.

Conclusions

In this work, we showed that RTs for varying motion 
stimuli can be described based on the same models used 
for fitting self-motion perception thresholds. This is an 
important finding, because it links perceptual thresholds 
to RTs and validates the proposed modeling approach for 
describing detection thresholds in our previous work. The 
model is based on the dynamics of the vestibular sensors 
and assumes a single neuronal threshold, which needs to 
be exceeded in order to detect motion. It provides a com-
mon basis to predict both RTs and thresholds for arbitrary 
motion profiles. Therefore, identifying the model based on 
either thresholds or RTs allows for inferring the dynamics 
of self-motion perception. As discussed in the introduction, 
RT measurements have some advantages over measuring 
thresholds, because they involve supra-threshold stimuli 
that are easier to respond to. This makes assessment of 

vestibular function less fatiguing for the participant and, 
therefore, decreases the variability of the responses. Note 
that due to an insufficient number of trials per partici-
pant, our analysis was performed on a group level. Further 
research is required to assess the performance of the pro-
posed methodology on an individual level.

Our modeling approach allows for an accurate descrip-
tion of RTs in response to inertial motion stimuli and has 
the potential to inform recent efforts to measure the rela-
tive perceived timing of vestibular stimulation compared 
to the other senses (Barnett-Cowan and Harris 2009, 2011; 
Barnett-Cowan et al. 2010, 2012b; Sanders et al. 2011; see 
Barnett-Cowan 2013 for a review). For example, Sand-
ers et al. (2011) performed temporal order and simultane-
ity judgments for inertial rotations paired with auditory 
cues. They corrected their measurements in order to take 
into account that a vestibular stimulus has to overcome a 
threshold to be perceived. Our model allows for an accurate 
prediction about when the sensory threshold for a vestibu-
lar stimulus is exceeded. Consequently, future research on 
the perceived timing of vestibular and non-vestibular cues 
should be guided by RT predictions based on our novel 
approach.
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