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Background: Lung cancer is the leading cause of cancer-related mortality, and accurate
prediction of patient survival can aid treatment planning and potentially improve
outcomes. In this study, we proposed an automated system capable of lung
segmentation and survival prediction using graph convolution neural network (GCN)
with CT data in non-small cell lung cancer (NSCLC) patients.

Methods: In this retrospective study, we segmented 10 parts of the lung CT images and
built individual lung graphs as inputs to train a GCN model to predict 5-year overall
survival. A Cox proportional-hazard model, a set of machine learning (ML) models, a
convolutional neural network based on tumor (Tumor-CNN), and the current TNM staging
system were used as comparison.

Findings: A total of 1,705 patients (main cohort) and 125 patients (external validation cohort)
with lung cancer (stages I and II) were included. The GCNmodel was significantly predictive of
5-year overall survival with an AUC of 0.732 (p < 0.0001). The model stratified patients into
low- and high-risk groups, which were associated with overall survival (HR = 5.41; 95% CI:,
2.32–10.14; p < 0.0001). On external validation dataset, our GCN model achieved the AUC
score of 0.678 (95% CI: 0.564–0.792; p < 0.0001).

Interpretation: The proposed GCN model outperformed all ML, Tumor-CNN, and TNM
staging models. This study demonstrated the value of utilizing medical imaging graph
structure data, resulting in a robust and effective model for the prediction of survival in
early-stage lung cancer.

Keywords: lung cancer, graph convolutional networks, cox proportional-hazards, survival prediction, lung
graph model
July 2022 | Volume 12 | Article 8681861

https://www.frontiersin.org/articles/10.3389/fonc.2022.868186/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.868186/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.868186/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.868186/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:varv@hku.hk
mailto:qidou@cuhk.edu.hk
https://doi.org/10.3389/fonc.2022.868186
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2022.868186
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2022.868186&domain=pdf&date_stamp=2022-07-13


Lian et al. Imaging-Based Deep Lung Survival Model
INTRODUCTION

Lung cancer is the leading cause of cancer-related mortality
around the world, accounting for more than 1.80 million deaths
in 2020 (1). It is commonly accepted that early detection and
treatment improve patients’ outcomes (2). Although medical
imaging technologies such as computed tomography (CT) scan
have made significant advances in recent years, accurate
diagnosis, particularly of early lung cancer on CT images, and
corresponding individual survival prediction remains a
challenge. In recent years, using machine learning and deep
learning approaches have recently become a promising tool for
helping radiologists and physicians improve detection and
prognostication (3, 4).

For example, Jin et al. (5) used the convolution neural network
(CNN) as a classifier in their computer-aided diagnosis method to
detect lung pulmonary nodules on CT images, achieving an
accuracy of 84.6% and sensitivity of 82.5% on the Lung Image
Database Consortium image collection (LIDC-IDRI). Sangamithraa
et al. (6) applied a K-mean learning algorithm for clustering-based
segmentation and a back propagation network for classification to
achieve an accuracy of 90.7% on their own dataset. Besides, She et al.
(7) applied deep learning models with radiomic features as input
and achieved a C-index of 0.7 for survival prediction after surgery.
While the approaches described above achieved a good level of
prediction performance for nodule detection and prognosis, their
models have the following limitations. First, the majority of studies
used small patient numbers, which resulted in the respective models
only performing well on specific datasets, thus limiting
generalizability. Second, most of the previous research used strict
criteria for their input images; for example, some pre-trained
models performed well only on contrast-enhanced CT, although
there was a considerable amount of non-contrast CT being used in
practice. Additionally, a substantial number of current machine
learning models with radiomic features required expert radiologists
to manually segment tumors (8–11), which is time consuming, and
the relevant findings heavily relied on radiologists’ experience.
Moreover, the majority of the models was constructed using
pixels that focused exclusively on the tumor, without reference to
surrounding structures or patient-specific clinical data, despite the
fact that they may also contain disease-related information. In
clinical practice, clinicians use that additional information to
make treatment decisions and risk stratify patients for more
accurate treatment and prognosis (12). In essence, these
additional features are analogous to “domain knowledge,” which
has been underutilized in prior research.

Graph convolutional neural network (GCN) (13) is an
emerging technique used to tackle data with graph structures,
owing to its effectiveness to model relationships across different
factors. In graph, nodes are regarded as different entities, while
edges present the relationship between each pair of nodes. This
approach is unique in that it is able to elegantly incorporate
connections from various features. In recent years, graph
presentation has been widely used, for instance, social network
analysis, language translation, and point cloud, also in the
medical field such as vascular segmentation (14) and airway
segmentation (15) due to the fact that some organs and systems
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within the human body are inherently based on graph or
network structures (e.g., vascular structures such as retinal
vessels) (16, 17). Lungs also inherently have graph structures
(18) if we regard every lung lobe as nodes connected by the
airway which can be regarded as edges. In theory, the
relationship between different parts of the lungs can be
modeled and GCN can be applied on lung CT images to tackle
clinical problems.

In this study, we developed a graph representation to
summarize information of stage I and II lung cancer patients
and to forecast their 5-year overall survival rates using CT and
clinical data. This study demonstrated the utility of applying
medical domain knowledge to create graph structure data and
making predictions with state-of-the-art graph convolutional
neural network models, which provided a robust and effective
model for early stage lung cancer survival prediction.
MATERIALS AND METHODS

Data Description
The Institutional Review Board of Shanghai Pulmonary Hospital
has approved this retrospective study protocol and waived the
requirement for informed consent for all included patients. The
main cohort of the study included consecutive patients who
underwent surgery for early stage non-small cell lung cancer
(NSCLC) from January 2011 to December 2013. The inclusion
criteria were as follows: (I) pathologically confirmed stage (I) and
(II) NSCLC, (II) availability of preoperative thin-section CT image
data, and (III) complete follow-up of survival data. Patients
receiving neoadjuvant therapy were excluded. An external
validation set of 125 patients who met our criteria were also
retrieved from the NSCLC Radiogenomics (19) dataset (please
refer to original reference for related data information). We only
used the one single CT image when patient was diagnosed as
NSCLC. Both contract and non-contrast CT were included.

Scanning Parameters
The CT scans were performed using Somatom Definition AS+
(Siemens Medical Systems, Germany) and iCT256 (Philips
Medical Systems, Netherlands). Detailed scanning parameters
can be found in Supplementary Material I. Intravenous contrast
was given according to institutional clinical practice. Relevant
clinical data were manually extracted from medical records. The
follow-up data were acquired from outpatient records and
telephone interviews. Overall survival (OS) was defined as the
time interval between the date of surgery and the date of
mortality or the last follow-up. Recurrence-free survival (RFS)
was measured from the time of surgery to the date of recurrence
or death or last follow-up (more details can be found at
Supplementary Material II).

Lung CT images Segmentation
Lung CT segmentation is a necessary first step in analyzing the
pulmonary structures, and it has been regarded as a necessary
prerequisite for accurate CT image analysis tasks (20). Before
segmentation, every CT data were preprocessed with slice
July 2022 | Volume 12 | Article 868186
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thickness of 1 mm and matrix of 512×512 mm, following
normalization. Several image segmentation approaches were
adopted in this project to ensure accurate preparation for the
graph modeling and analysis. The 3D airways were segmented
using an adaptation of the region-growing method (21), where we
randomly picked a seed point from non-background region in the
CT image, and neighbor pixels were examined until the borders.
The generated airway segments was then skeletonized with a
skeleton algorithm (22) to obtain the main structure of the
airways. We then applied a searching algorithm to find the four
most important points, namely, the root point, the center point, the
left point, and the right point (see SupplementaryMaterial III), and
segmented a bounding box of 64×64×64 from the original CT to
represent themainpropertiesof the correspondingareaof the tissue
around the airway. Furthermore, for each patient, a public pre-
trained UNet (23) model called lung mask (24) was adapted to
segment the five lung lobes. In the last step, tumor image was
cropped with the bounding box from CT by using the
corresponding annotation information provided by radiologists.
For each patient, this resulted in images for 10 separate lung
structures, namely, five lung lobes, four airway landmarks, and
one tumor segment (Figure 1).

Graph Building and Graph Convolutional
Neural Network Architecture
The very first step in this study is to buildmeaningful structure of the
lung graphs, particularly defining the vertices and their connections.
Touse thenatural structureof the lung,weconsidered the fourairway
landmarks andfive lung lobe segments asnodes in eachgraph, andall
nodes were connected in their natural ways. To emphasize the
Frontiers in Oncology | www.frontiersin.org 3
significance of the tumor, we added a tumor node to each patient’s
lung graph, and the tumor node was connected to their
corresponding lobes in which the tumor was located. For example,
if the tumor was detected on the left upper lobe, the tumor node will
be connected to the left upper lobe node. EachCTweremodeled as a
10-node graph for further analysis.

For each patient node, a feature vector should be defined to
represent the corresponding properties. In this study, we used
the pre-trained MedicalNet (25) to get the relevant image
features, followed by an average pooling layer to reduce the
dimension space to one dimension (1D). The MedicalNet is a
collection of ResNet (26) models that have been pre-trained on a
variety of large medical datasets and have demonstrated
exceptional performance on medical deep learning tasks such
as organ segmentation and nodule detection. To keep the feature
vectors simpler and more representative, a linear ridge transform
method was used to lower the dimension of each node’s feature
vector from 1,024 to 96 as the final feature vectors on patients’
lung graphs (Figure 2).

The goal of GCN is to learn the graph or node embedding using
the node’s neighborhood information with a neural network.
Recently, an inductive framework called GraphSage (27), which
allows updating node features by sampling and aggregating
information from the neighboring nodes, achieved promising
performance among various graph neural network topologies on
networks. Thisnetworkwasdeemedhighly suitable forour study, as
our lung CT graph was designed to emphasize the interaction
within different parts of a patient’s lung structure. Therefore, we
designed a survival prediction graph neural network predictor
composed of SageConv blocks, a mean-readout layer, and a fully
A B D EC

FIGURE 1 | Examples of airway and lung lobes segmentation. (A) Patient raw CT scan; (B) Airway segments produced by region-growing algorithm; (C) lung lobes
segments, 3D; (D) Lung lobes segments, x-axial 2D; (E) Lung lobes segments, z-axial 2D.
July 2022 | Volume 12 | Article 868186
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connected layer. This model will output a survival label for each
patient graph. In detail, the SageConv block consists of aGraphSage
Convolution layer with a long short-term memory (LSTM)
aggregator, a ReLu activation layer, a dropout layer, and a layer
normalization function, which are all efficiently extracting the
diagnosis knowledge from the patient graph. The entire model
was trained on two GPU nodes in parallel, with a total training
epoch of 100. We set a reduced learning rate method to find the
optimal training with an initialization value of 0.01 and a minimal
value of 0.00001 in order to train the model effectively. In addition,
to avoid overfitting when training the model, a weight decay
function with value of 0.00005 was added. In order to get the
best-performed graph structure, we tested the number of layers of
SageConv blocks from 1 to 4, and only the best-performed model
was reported.

Experiment Design and Statistical Analysis
To demonstrate the performance of the GCN model on lung
cancer survival prediction, a set of experiments were
implemented on our dataset. The whole patient cohort was
randomly split as training, validation, and testing sets with a
ratio of 75% (1278), 12.5% (213), and 12.5% (214) stratified for
survival, keeping the survival rate almost equal when splitting the
dataset, and there was no significant difference in age and sex
among each subset (Table 1). We evaluated the performance of
the lung graph model by using the area under the receiver
operating characteristics (AUC) score, sensitivity, specificity,
and precision scores. In order to put emphasis on the model
and not to miss the true positive cases, we also added F2 score
(28) as one of the metrics. All relevant results can be found in
Supplementary Table S1. Wilcoxon rank sums tests were
performed to compare performance with baseline model.

In order to see the performance of this graph presentation
method with both current clinical assessment and novel deep
learning methods, we selected the standard clinical model (TNM
staging), commonly used clinical Cox proportional-hazard
model, traditional machine learning methods, along with a
state-of-the-art deep learning model to make comparison:
Frontiers in Oncology | www.frontiersin.org 4
1) TNM staging model: using T, N, and M information to
make prediction (baseline model I);

2) a Cox proportional-hazard model: using the clinical
features (patient sex, age, tumors size, tumors staging, and
histology information) as input (baseline model II);

3) a set of machine learning (ML) models: using 103 tumors
radiomic features as input (baseline model III), with only the best
performer used as the baseline model to be compared;

(4) Tumor-CNN: using individual’s tumor segments as input
for a ResNet-50 deep neural network.

All models were trained and tested on the same dataset to
predict an individual patient’s 5-year overall survival, and the
best results were reported in comparison to GCN model. We
further implemented the survival analysis with Kaplan–Meier
estimates for low- and high-risk patients based on the scores
predicted by the best three performing models on the testing set,
along with a log-rank test. Hazard ratio of our GCN biomarker
was calculated by a Cox proportional-hazard model. Finally, a
subanalysis was implemented to evaluate the GCN model’s
performance for predicting overall survival and relapse-free
survival on stage I and II patients dataset separately.

All experiments were performed using Python 3.7. The statistics
analysis was implemented with the package of Pandas (version
1.3.0) and statistics (version 3.4). Radiomic features were calculated
with the PyRadimics package (version 3.0.1). Themachine learning
models were implemented with the library of Scikit-Learn (version
0.24). Both the Cox regression and the Kaplan–Meier curve were
calculated by using the Lifelines package (version 0.26.03). The
whole GCN structure was implemented using Deep Graph Library
(version 0.6.1) and PyTorch (version 1.8.0).
RESULTS

Patient Information Statistics
A total of 1,705 NSCLC patients were included in the main
cohort. There were 1,010 men (59.2%) and 695 women (40.8%)
with a median age of 61 years (range: 55–66 years). The median
FIGURE 2 | The pipeline of building patients’ lung graph building.
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follow-up time is 70.9 months. Of these, 145 patients (8.5%)
received sub-total lobectomy, 1,472 patients (86.3%) underwent
lobectomy, 66 patients (3.9%) received bi-lobectomy, 21 patients
(1.2%) underwent pneumonectomy, and one patient received
sub-total lobectomy of one lobe plus total lobectomy of another
lobe. Tumors were most commonly located in the upper lobe
[419 left upper lobe (LUL), 24.6%, and 565 right upper lobe
(RUL), 33.1%]. A total of 1,235 tumors (72.4%) were diagnosed
as adenocarcinoma, and 391 tumors (22.9%) were squamous cell
carcinoma. The distribution of pathological stages was as follows:
stage IA in 791 patients (46.4%), stage IB in 607 patients (35.6%),
stage IIA in 133 patients (7.8%), and stage IIB in 174 patients
(10.2%). In the whole main cohort, the 3-year OS and RFS were
98.4% and 81.1%, respectively, and the 5-year OS and RFS were
78.2% and 74.2%, respectively.

There were 33 (26.4%) female and 92 (73.6%) male patients in
the external validation dataset, with a median age of 69 (range,
43–87 years). Tumors in the upper lobe were also the most
common [41 at right upper lobe (RUL), 32.8%, and 32 at left
upper lobe (LUL), 25.6%]. There were 97 patients with
adenocarcinoma and 26 with squamous cell carcinoma among
them. The pathological stages were distributed as follows: stage
IA in 40 patients (32.0%), stage IB in 23 patients (18.4%), stage
IIA in 45 patients (36.0%), and stage IIB in 17 patients (13.6%).
The RFS was 74.4%, while the 5-year OS was 63.2%. Table 1
provides the rest of the patient’s detailed information.

Model Evaluation
As shown in Table 2, the Cox modeling and ML radiomic feature
baseline models showed poor performance on the testing set. The
best performing ML radiomic model was from the decision tree
Frontiers in Oncology | www.frontiersin.org 5
(DT) model, while other ML models such as SVM, linear
classification, K-means, LASSO, and KNN methods had worse
performance than the DT predictor. The Tumor-CNN model
had a significantly improved performance (AUC=0.614; 95% CI:
0.519–0.710; p < 0.05) compared with the two baseline models,
although the TNM method performed better (AUC=0.633; 95%
CI: 0.539–0.728; p < 0.005). The GCN model achieved the
highest AUC score of 0.732 (95% CI: 0.643–0.821; p < 0.0001)
among all models in survival prediction for early-stage lung
cancer. On external validation dataset, our GCN model achieved
the AUC score of 0.678 (95% CI: 0.564–0.792; p < 0.0001).

For survival analysis, both GCN the cancer staging system
and Tumor-CNN shared a similar trend and, based on Kaplan–
Meir analysis, were able to demonstrate significant separation of
high- and low-risk groups (Figure 3), while the p-value of the log
rank sums test suggested that GCN has a stronger separation
ability compared with the others. Comparable results were found
in the prediction of 5-year survival outcomes with the hazard
ratios, respectively, for GCN (HR = 5.41; 95% CI: 2.32–10.14;
p=0.000014), and TNM (HR = 3.85; 95% CI: 1.91–
7.02; p=0.00015).

For the stage I dataset (n=179) analysis, as per Figure 4, our
GCN model achieved a clear separation of low- and high-risk
groups in 5-year overall survival prediction (p < 0.0001) and
relapse-free survival prediction (p < 0.0001), with AUC of 0.728
(CI: 0.618–0.839) and 0.660 (CI: 0.555–0.757) separately.
Referencing stage II (n=55), the model showed slightly weaker
performance of separation for 5-year overall survival (AUC =
0.647, CI: 0.461–0.834, p = 0.132) comparing with stage I dataset,
while better performance for relapse-free survival prediction
(AUC = 0.702, CI: 0.532–0.877, p < 0.01) was achieved.
TABLE 1 | Feature distribution in the total patient cohorts, training and validation cohorts, and the test cohorts.

Patients Characteristics
(n = 1,705)

TRAIN and VAL
(n = 1,492)

Test (n = 213) EXTERNAL (n= 125)

Feature Content Mean, SD, 95% CI/Count and percentage (%)

Age Age 60.6, 8.8,
(CI: 60.2- 61.0)

60.6, 8.7,
(CI: 60.1- 61.0)

60.7, 9.5,
(CI: 59.4- 62.0)

69.0, 8.90,
(CI: 67.4- 70.5)

Sex Female No. (%);
Male No. (%)

695 (33.3);
1010 (66.7)

602 (33.3);
890 (66.7)

93 (33.3);
120 (66.7)

33 (26.4);
92 (73.6)

Resection Sublobar Resection No. (%);
Lobectomy No. (%);
Bilobectomy No. (%);
Pneumonectomy No. (%)

146 (8.6);
1472 (86.3);
66 (3.9);
21 (1.2)

123 (8.2);
1,292 (86.6);
59 (3.95);
18 (1.2)

23 (10.8);
180 (84.5);
7 (3.3);
3 (1.4)

/

Histology Adenocarcinoma No. (%);
Squamous Cell Carcinoma No. (%);
Others No. (%)

1,235 (72.4);
391 (22.9);
79 (4.6)

1,072 (71.4);
351 (23.5);
69 (4.6)

163 (76.5);
40 (18.8);
10 (4.7)

97 (77.6);
26 (20.8);
2 (1.6)

Tumor Size Tumor Size 2.66, 1.37,
(CI: 2.60- 2.73)

2.68, 1.38,
(CI: 2.61- 2.75)

2.55, 1.25,
(CI: 2.38-2.71)

/

pTNM stage Stage I No. (%);
Stage II No. (%)

1,398 (82.0);
306 (18.0)

1,219 (81.7);
273 (18.3)

179 (84.0);
34 (16.0)

63 (50.4);
62 (49.6)

RFS Status RFS No. (survival %) 1,243 (72.9) 1,089 (73.0) 154 (72.3) 93 (74.4)
RFS Month RFS Month 57.6, 24,4,

(CI: 56.4- 58.7)
57.5, 24.5,

(CI: 56.2- 58.7)
58.4, 23.4,

(CI: 55.2- 61.5)
/

OS Status OS No. (survival %) 1,333 (78.2) 1,166 (78.2) 167 (78.4) 79 (63.2)
OS Month OS Month 62.5, 19.8,

(CI: 61.6- 63.5)
62.4, 19.9,

(CI: 61.4- 63.4)
63.4, 18.4,

(CI: 60.9- 65.9)
/
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DISCUSSION

Prediction of survival of early-stage lung cancer patients remains a
challenging task. In this paper, we proposed a graph-basedmethod
to represent a patient’s lungCT images andapplied the state-of-the-
art graph convolutional neural network to improve 5-year survival
predictions for individual patients. In previous studies, especially
for some small size cohorts, the radiomic feature methods (our
baseline models) were commonly used. The results in this study
showed that when applied to a large patient cohort in which CTs
were collected from multiple data sources, this radiomic feature
method demonstrated poor performance, which may be due to the
heterogeneity in image acquisition, reconstruction methods, or
effects of post-processing.

Deep learning approaches have demonstrated impressive
performance in recent years in medical fields such as
automatic segmentation and diagnostic task such as lung
nodule detection. Due to the fact that deep learning models are
generally robust and can be applied to a wide variety of scenarios
once properly trained with enough data, it has been previously
applied to the task of survival prediction. In this project, we
applied a ResNet-50 deep neural network, which took tumor
Frontiers in Oncology | www.frontiersin.org 6
segments (Tumor-CNN model) as input resulting in an AUC
score of 0.6144. When analyzing the Tumor-CNN model’s
performance from the medical perspective, we demonstrated
that tumors contained the majority of prognostic information,
yet adjacent non-tumor regions and their interactions with each
other may have an effect on an individual patient’s survival. This
hypothesis was based on our intuition that tumors spread from
the primary sites via lymphatic drainage, hematogenous (via the
vascular supply) or directly to the surrounding lungs (29). We
therefore reasoned that such regional information can potentially
be mapped via a graph representation method to represent the
entire lung as input with an emphasis on the tumors as an
additional node on an individual patient’s basis. Moreover, the
best performance achieved by our GCN model demonstrated
that using a relational data representation method can help
improve the performance when compared to traditional deep
learning models. To this end, our model demonstrated best
accuracy in identifying high-risk patients, particularly on stage
I patient group, demonstrating that features generated by GCN
can find the survival-relevant information from early-stage
patients’ CT image. The RFS Kaplan–Meier analysis revealed
that the GCN approach also contained information that related
FIGURE 3 | Performance of GCN, TNM and Tumor-CNN models on testing dataset.
TABLE 2 | Performance for each model based on AUC scores and the Wilcoxon rank-sum tests.

ML models AUC scores (95% CI) p-values

CPH Model 0.549
(0.454–0.645)

.45

DT-radiomics 0.572
(0.476–0.668)

.33

Tumor-CNN 0.614
(0.519–0.710)

.02

TNM 0.633
(0.539–0.728)

.002

GCN 0.732
(0.643–0.821)

< 0.0001
July 2022 | Volume 12 | Artic
le 868186
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to disease relapse, and combining that information from both of
the above two aspects to analyze individual’s survival result likely
contributes to improve performance.

On reviewing the whole process of our graph survival
predictor formulation, all the steps were fully automated and
could be easily applied to prospective patients in the future.
Unlike radiomic approach, there was no need to specifically
segment the tumors with our proposed method. By including
regional information in graph structures likely contributes to
improved prediction performance.

The results from our study have the following strengths. First,
our dataset is large and has incorporated images from one large
volume center with a standardized acquisition method, including
contrast and non-contrast CT scans. Our model was found to be
more generalizable as a result of training based on this large
dataset with reasonable performance on external validation set.
Second, our model’s whole procedure was fully automated. For
example, segmenting the lung and airway took only a few
seconds to obtain accurate results, which would allow ease of
clinical translation. Finally, we conducted a series of experiments
comparing our graph model to traditional model, widely used
radiomic approaches and the most cutting-edge deep learning
models, which supported our conclusion that the GCN models
can outperform other conventional methods. We acknowledge,
however, that due to differences in input features between these
Frontiers in Oncology | www.frontiersin.org 7
different models, comparison of performance may not be a
fair one.

There are a few limitations in our study. First, while we
achieved the best performance with the graph neural network, we
did not investigate the model’s ability to discover new features,
but it was apparent from our results that graph models have
greater potential for future development due to their input of
relational graph structures. Second, we used only CT images as
input in this experiment because we have yet to develop a
method for incorporating imaging data with demographic data
such as age and gender information, which may improve the
model’s performance. Some future work is being planned to
improve the performance of our models. More anatomically
relevant information could be incorporated into the graphs. For
example, one could consider edge weight based on the location of
the tumors for individual patients and create some other lung
graph structures to better represent patients’ survival
information. Furthermore, we intend to combine whole-slide
imaging data from lung patients with CT data to better represent
disease information in the future.

In this study, we presented a graph presentation model for
describing CT data from early stage lung cancer patients and
predicting their 5-year overall survival. Numerous experiments
were conducted to compare our GCN model to traditional
clinical model based on TNM staging, commonly used
B

A

FIGURE 4 | (A). Stage I Analysis: Performances of GCN models on OS prediction and RFS prediction separately; (B). Stage II Analysis: Performances of GCN
models on OS prediction and RFS prediction separately.
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radiomic feature approaches, and state-of-the-art deep learning
methods. We demonstrated that our graph methods performed
significantly better compared with other existing models.
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