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Abstract

Memory is a ubiquitous phenomenon in biological systems in which the present system state is not entirely determined by
the current conditions but also depends on the time evolutionary path of the system. Specifically, many memorial
phenomena are characterized by chemical memory reactions that may fire under particular system conditions. These
conditional chemical reactions contradict to the extant stochastic approaches for modeling chemical kinetics and have
increasingly posed significant challenges to mathematical modeling and computer simulation. To tackle the challenge, I
proposed a novel theory consisting of the memory chemical master equations and memory stochastic simulation algorithm.
A stochastic model for single-gene expression was proposed to illustrate the key function of memory reactions in inducing
bursting dynamics of gene expression that has been observed in experiments recently. The importance of memory
reactions has been further validated by the stochastic model of the p53-MDM2 core module. Simulations showed that
memory reactions is a major mechanism for realizing both sustained oscillations of p53 protein numbers in single cells and
damped oscillations over a population of cells. These successful applications of the memory modeling framework suggested
that this innovative theory is an effective and powerful tool to study memory process and conditional chemical reactions in
a wide range of complex biological systems.
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Introduction

Recent experimental studies in single cells have shown that gene

expression is governed by stochastic process [1,2,3]. Randomness

in transcription and translation leads to cell-to-cell variations at

both message RNA (mRNA) and protein levels. Following the

observation of translational bursts [4,5], single-cell studies

demonstrated that gene transcription also occurred in bursts of

multiple transcripts separated by relatively long periods of

transcriptional inactivity [6,7,8]. The length of inactivity windows

varies widely for different genes, from a few minutes in prokaryotic

cells to approximately a few hours in eukaryotic cells [6,9]. In

addition, varying numbers of gene expression pulses were observed

in identical cells that were exposed to the same experimental

conditions. The plausible mechanisms underlying transcriptional

bursts include stochastic events of chromatin remodeling, existence

of pre-initiation complexes, and competition of transcription

factories [10,11,12]. However, such stochastic expression events

also have certain deterministic properties. For example, the length

and amplitude of these bursts are fairly constant in experiments

using different extra-cellular stimulations [7]. Although the

evidence of transcriptional bursting continues to accumulate, the

mechanisms for inducing the bursts are still not fully understood.

There are a variety of modeling approaches to describe the

bursting dynamics of gene expression. Early research works used

the Poisson process to generate burst events in transcription and

translation instantly [13,14]. Similar approaches, which are called

the random telegraph model, have also been used to provide

insightful information regarding the importance of promoter

activity [6,14,15,16,17,18]. Another stochastic model assumed that

genes switched slowly between active and inactive states and

mRNA synthesis occurs only during the active stage [1]. In

addition, a more general model was designed to study the effect of

process that can give rise to ‘‘gestation’’ and ‘‘senescence’’ period

of mRNA birth and decay [19]. Recently, a stochastic model was

developed to study the stochastic bursting including agent-like

actions in which the slow bursting of the GAL1 gene was

explained by a production of an agent-like inhibitor after the

induction process causes a refractory state in the promoter [20].

However, recent experimental studies of mRNA distributions have

provided strong evidence for transcriptional noise beyond what

can be described by a simple Poisson process [21]. Therefore more

realistic stochastic models are indispensable to investigate the

dynamics of burst events accurately.

The stochastic simulation algorithm (SSA) represents an

essentially exact procedure for numerically simulating the time

evolution of a well-stirred reaction system [22]. This simulation

method has been extended to study chemical systems with time-

dependent and non-Markov processes [23]. To investigate the

function of noise in slow reactions and multiple step chemical

reactions, the delay stochastic simulation algorithm (delay-SSA)

was proposed to incorporate time delay, intrinsic noise, and

discreteness associated with chemical kinetic systems into a single

framework [24,25]. The delay-SSA was extended to describe

chemical events that have multiple delays and that the time delays
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may be distributed (i.e. random variables) [26]. In recent years,

this effective modelling framework has been widely used to

describe the complex dynamics of biological systems, including

genetic regulatory networks and cell signalling pathways

[27,28,29,30,31]. In addition, effective numerical methods have

been proposed to accelerate stochastic simulations for biological

systems with time delay [32]. When using time delay to represent

multiple step reactions, it was assumed that the intermediate

products of small step reactions did not involve in any other

reactions of the system. However, if the intermediate products

involve in certain specific chemical reactions and play important

roles during the delay time period, we regard these chemical

reactions have certain memory property. Thus more sophisticated

modeling schemes are needed to describe the chemical reactions

having complex properties.

Memory is a ubiquitous phenomenon in biological systems

[33,34,35]. In psychology, memory is an organism’s ability to

store, retain, and recall information and experiences. In addition

to the conventional function of the brain, memory has been used

in systems biology recently to investigate the ability of small

systems to store information. For example, cellular memory has

been used to describe the ability of biological systems to maintain

sustained response to a transient stimulus as well as two or more

discrete stable states [36,37,38]. In addition, molecular memory

has been proposed to describe chemical events consisting of several

small step reactions [19]. The common characteristics of the

memory phenomena is that the present system state is not entirely

determined by current conditions but also depends on the past

history of the system [33]. Thus the firing of certain chemical

reactions in a memory system is conditional to the past system

states and past chemical events. These conditional chemical

reactions defy the fundamental assumption of chemical kinetics

and have not been addressed before by using mathematical

modeling approaches. To tackle the challenge, this work develops

a novel modeling and simulation framework to describe biological

systems with memory. Using the p53-MDM2 core circuit as the

model system, we illustrate the roles of memory reactions in

generating bursting events in gene expression.

Methods

Chemical memory reaction
This work first proposed a novel theory to model biological

systems with chemical memory reactions. Chemical reactions in

the system are classified into (non-memory) reactions and memory

reactions; and each category contains elementary reactions and

delayed reactions. Defined as chemical reaction firing in the path

of a molecular memory event, memory reaction may occur during

particular time-periods and/or under specific system conditions.

An example of the memory events is the refractory time period

during which an organ or cell is incapable of repeating a particular

action. In gene expression, one of the refractory states is the

chromatin epigenetic process, such as silencing by DNA methyl-

ation and structural changes in chromatin [39,40]. Since silencing

molecules are recruited by an autocatalytic mechanism, this can

lead to a long periods of reactivation, as exemplified by the ON/

OFF switching in the epigenetic silencing by Sir3 [41] and a

refractory period of transcriptional inactivation close to 3 h in

mammalians [42].

During the time period of transcriptional activation, both the

transcriptional factor (TF) and RNA polymerase (RNAP) can bind

to the corresponding promoter site, which has been modeled by

the following elementary reactions

Elementary reaction : DNAzTF
h1

DNA-TF ð1Þ

Elementary reaction : DNA� TFzRNAP
k2

DNA� TF�RNAP
ð2Þ

These reactions have been widely used in the stochastic models for

studying gene expression. However, experimental observations

suggested that, during the refractory period, the transcriptional

activators could gain access to silenced chromatin but that RNAP

and TATA-binding protein (TBP) are excluded [43,44]. Therefore

reaction (Eq. 1) may fire but reaction (Eq. 2) be unable to fire

during the silencing time period. A new reaction is needed to

realize the event in the refractory period. Such reaction is defined

as memory reaction in this work. The time period during which

memory reactions may fire is termed as the memory time period.

The length of a memory time period may be either a constant or a

random variable with an associated probability distribution. The

probability distribution used in this work is either the exponential

distribution or Gaussian distribution. Thus a memory reaction has

a corresponding non-memory reaction in the non-memory time

period. However, certain non-memory reactions such as (Eq. 2)

may not be capable of firing during the memory time period.

To realize the firing capacity of different types of reactions, we

introduced memory species that exist only in the memory time

period. A chemical species is a normal species (Sj) during the non-

memory time period and may be a memory species M(Sj) in the

memory time period. For a memory reaction, at least one reactant

and one product should be memory species; however, it is not

necessary to define all species involving in a memory reaction as

memory species. For example, the memory reaction for TF

binding to the promoter site is represented by

Memory reaction : M(DNA)zTF
k3

M(DNA-TF), ð3Þ

where M(DNA) and M(DNA-TF) are memory species of DNA

and DNA-TF, respectively. Thus the propensity functions of both

memory reactions and non-memory reactions can be calculated

simultaneously. Like the non-memory reaction, the memory

reaction is also subject to stochastically distributed times between

reaction instances. The time between reaction instances of both

non-memory reaction and memory reaction can be determined in

the same framework of the SSA.

Memory reactions normally are able to fire after a specific

reaction occurs (e.g. the disassociation of RNAP from the

promoter sites after the synthesis of the first transcript in a

transcription cycle). This specific reaction is called the trigger

reaction and its firing represents the start of a memory time period.

Note that one trigger reaction may lead to two or more memory

reaction time periods. When a trigger reaction fires, the finishing

time points of the memory time periods are determined. The index

of the memory reaction and finishing time point are stored in a

queue structure that also saves the index and manifesting time

point of delayed reactions.

A key issue in describing memory reaction is the transition

between memory and non-memory species at the beginning and

end of a memory time period. The firing of a trigger reaction

transfers the normal species to the corresponding memory species.

When a memory time period finishes, memory species should be

transferred back to the normal species. Since memory species may

Modeling of Memory Reactions
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involve in a number of memory reactions, the memory species

may be free molecules M(Si), component of complexes including

memory species (i.e. M(Si)Sj ), or compound of imaginary

intermediate complex of delayed memory reactions. According

to all the molecular complexes that contain the memory species, a

number of transferring reactions should be defined for a memory

reaction. When the memory time period finishes, these transfer-

ring reactions will be used to transfer the memory species back to

the non-memory species.

Memory stochastic simulation algorithm
The problem we are interested in is to simulate a well-stirred

mixture of N(§1) molecular species fS1, . . . ,SNg that chemically

interact, inside some fixed volume V at a constant temperature,

through M reactions (R1, . . . ,RM ), which include m1 non-

memory reactions, m2 non-memory delayed reactions, m3

memory reactions, and m4 delayed memory reactions

(M~m1zm2zm3zm4). The system state is denoted as

X(t):fx1(t), . . . xN (t)gT, where xi(t) is the copy number of

species Si which is either a non-memory or memory species. We

define a stoichiometric vector vj for either a non-memory or

memory elementary reaction, consuming (vj) and manifest (uj)

stoichiometric vectors for a non-memory or memory delayed

reaction, as well as a number of stoichiometric vectors (vjk) for

transferring a memory species back to the corresponding normal

species. For each reaction channel, a propensity function aj(X) is

defined and aj(X)dt represents the probability of this reaction will

fire inside V in the next infinitesimal time interval ½t,tzdt�. The

memory stochastic simulation algorithm (memory-SSA) is given

below.

Step 1. Set initial molecular numbers at t~0, and an empty

queue structure L for storing the information of delayed and

memory reactions.

Step 2. Calculate propensity functions aj(X), j~1, . . . ,M, and

a0(x)~
PM

j~1 aj(X).

Step 3. Generate a uniform random number r1[U(0,1) and

determine the waiting time of the next reaction d~{ln(r1)=a0.

Step 4. Compare d with the least time dmin in the queue

structure L to check whether there are delayed or memory

reactions that are scheduled to finish within ½t,tzd).

Step 5. IF dminvd
IF (dmin is associated with a non-memory or memory delayed

reaction Rj )

X(tzdmin)~X(t)zuj : ð4Þ

ELSE (dmin is associated with the finish of a memory time

period)

Find all the compounds with copy number Ck that include the

memory species and use the corresponding stoichiometric vectors

to update the system,

X(tzdmin)~X(t)z
X

j

vjkCk ð5Þ

ELSE:

Determine the index j of the next reaction by a uniform random

number r2[U(0,1)

Xj{1

k~1

ak(X)vr2a0(X)ƒ
Xj

k~1

ak(X) ð6Þ

and update the system state by

X(tzd)~X(t)zvj : ð7Þ

If Rj is a reaction with time delay tj , add the index j and

updating time tzdztj to the queue structure L.

If Rj is a trigger reaction, add the memory index j and finishing

time tzdzmj into the queue structure. Here mj is the length of the

memory time period.

Step 6. Go to Step 2.

To establish the theoretical foundation of the memory-SSA, we

developed the memory chemical master equation and memory

chemical Langevin equation. The memory chemical master

equation include as special cases the delay chemical master

equations [45] if memory reaction is not included in the system

and the chemical master equation [46] if the chemical system

comprises the elementary reactions only (see Supporting Informa-

tion S1).

Results

Stochastic model for single-gene expression
To demonstrate the power of the proposed theory, a stochastic

model with memory reactions was designed for single-gene

expression for realizing the bursting expression dynamics (Fig. 1).

The multitude of steps leading to an active transcription complex

is represented by two major processes. First, a DNA with an

unoccupied promoter site, to which RNAP is unable to bind, is

activated by the binding of a TF to a specific response element in

the promoter region. Then the TF acts as a platform to recruit the

gene-specific regulators, represented by RNAP, to the local

promoter region to form the pre-initiation complex, from which

transcription can start. Once a successful preinitiation complex has

been formed, reinitiation occurs with much higher probability.

The activated transcription start site allows for the competitive

binding of a number of RNAP molecules and multiple initiation

events occur during one transcription cycle. The production of

mRNA molecules per DNA template increased to a peak synthesis

rate and then decayed rapidly because of an abrupt cessation of

initiation [47]. Once a gene turns off, it takes quite a long time for

the gene to be reactivated again, and no transcription occurs

during this time period. Thus two memory time periods were

designed to describe the continuous transcription and gene

inactivity windows.

The transcription memory window was characterized by the

memory complex M(DNA-TF) of the TF-DNA complex. The

trigger reaction of this memory process of the first initiation of

transcription

DNA-TF-RNAP?M(DNA-TF)zRNAPzIS(mRNA) ð8Þ

where IS(mRNA) is the imaginary intermediate species to

represent mRNA. The complex M(DNA-TF) recruits RNAP

relatively faster than DNA-TF owing to the larger rate of

transcription re-initiation; and the stability of the transcription

pre-initiation complex leads to a burst of transcript production

from the stable complex [6]. The end of the memory window for
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transcription is the start of the memory window of gene inactivity

that was branded by the memory species M(DNA) of DNA (Eq. 3).

In the inactivity window, the memory species M(DNA) can recruit

TF to the operator site; however, it was assumed that the complex

M(DNA)-TF cannot recruit RNAP and thus transcription was

excluded from the gene inactivity window. This assumption is

supported by experimental observations showing slow multistep

sequential initiation mechanism for gene expression [47] and the

relatively small numbers of multi-protein components of the

transcriptional machinery [48]. The list of all chemical reactions

was given in the Supporting Information S1 and detailed

information of rate constants was provided in STable 1.

Fig. 2 gives simulations of the proposed model using the same

rate constants but the lengths of memory windows follow different

distributions. Here we are particularly interested in the exponen-

tial distribution that has been used to generate the waiting times

between two consecutive gene expression cycles. When the lengths

of memory windows are constant in Fig. 2A, 2B and 2C, the

disparity between the number of transcripts synthesized in

different bursts is not large. However, the variation of mRNA

copy numbers in different expression cycles is large in Fig. 2E if the

lengths of memory windows follow the exponential distributions.

The large variation of the transcript numbers leads to large

variation in protein copy numbers in Fig. 2F. We also used the

Gaussian random variables to generate samples for the length of

memory windows. Simulations in Figure 2G, 2H and 2I suggested

that the variation of mRNA copy numbers in different expression

cycles is larger than that using constant lengths of memory

windows but smaller than that when the length of memory

windows follows the exponential distribution.

To find the factors determining the frequency of transcription

cycles, simulation results were obtained by using different TF

numbers but a fixed RNAP number (Figs. 3A and 3B). When the

lengths of memory time periods follow the exponential distribu-

tions, the averaged bursting number in Fig. 3B is slightly larger

than or equal to that in Fig. 3A where the lengths of memory time

periods are constants. When the TF numbers are not large

(ƒ100), both the averaged bursting number and standard

deviation in Fig. 3A and 3B are very close to each other.

However, if the TF number is large (§2000), the standard

deviation of the simulations using the exponential distributions is

much larger than that obtained from simulations with constant

length of memory time periods. We further simulated the

stochastic model using a fixed number of TFs, but different

RNAP numbers together with different binding rate constants of

RNAP molecules to the DNA-TF complex (Fig. 3C and 3D).

Simulation results in Fig. 3 suggested that the probability to form

the initiation complex is strongly correlated with the frequency of

transcription. In the proposed model, TF and RNAP are two

symbolic species to represent the transcriptional machinery and

promoter factors. Thus these results are in good agreement with

the experimental observations showing that the factors initiating

gene transcription are the primary regulatory mechanisms to

determine the frequency of transcriptional cycles [49].

One of the major results derived from a stochastic model of the

single-gene network is that the noise in protein abundance is anti-

proportional to the averaged protein copy number [19]. Thus an

important question is whether this theoretical finding derived from

a simpler stochastic model still holds when more detailed dynamics

of gene expression is considered in this work. To answer this

question, we calculated noise in protein abundance based on

stochastic simulations with different TF numbers. The simulated

noise in protein abundance derived from 10,000 simulations for

each TF number was plotted against the averaged protein

numbers. When the lengths of memory windows are constant,

Fig. 4 shows that the simulated noise is larger than but

proportional to the theoretical prediction in [19]. Furthermore,

the simulated noise is even larger if the lengths of memory

windows follow the exponential distributions. Thus our simulation

results are in good agreement with the theoretical finding. It is

reasonable to expect that the noise in protein abundance is larger

if more random resources are considered.

Stochastic model of the p53-MDM2 core module
The success in realizing the bursting gene expression stimulated

us to go one step further to examine the mechanisms regulating

the p53 core module (Fig. 5). Under normal unstressed conditions

the negative regulation of MDM2 keeps p53 activity at low levels;

but under various stress conditions, upstream mediators such as

ATM and Chk2 kinases are activated and induce post-transla-

tional modification on p53 and MDM2 [50]. These modifications

lead to stabilization of p53 and an increase in p53 activity.

Experimental studies in populations of cultured cells showed that

p53 and MDM2 undergo damped oscillatory behavior following

Figure 1. Regulatory network of a single gene. Regulatory mechanisms of gene expression include: binding of TF to a promoter site of the DNA;
recruitment of RNAP to the promoter region to form the pre-initiation complex; binding of a number of RNAP molecules leading to multiple
transcription re-initiations during a time period of gene activation, which is realized by the transcription memory window; gene inactivity period
during which RNAP molecule is unable to bind to the promoter region, which is characterized as the second memory window.
doi:10.1371/journal.pone.0052029.g001
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DNA damage caused by gamma irradiation [51]. However, the

protein dynamics observed in single cells was similar to digital

clock behavior [9,52]. Although mathematical models have been

designed to simulate the network dynamics either at population

level [50,51,53,54] or at single-cell level [50,52,55], it is still a

challenge to realize experimental observations in single cells and

population of cells simultaneously [56].

To tackle this challenge, a stochastic model with memory

reactions (see Supporting Information S1) was designed to describe

the dynamics of the p53 core circuit using rate constants estimated

from experimental data that were given in STable 2. The

transcription process of MDM2 follows the same assumptions in

Fig. 1. We used two memory reactions to represent the gene

activation and inactivation windows. Following experimental

observations, it was assumed that the expression of gene MDM2

is activated continuously over a period of ,1 h and then an

inactivated window of ,5.5 h follows [9]. Using the activity of

ATM kinase as the upstream signal [50], Fig. 6 gives simulated

protein numbers of p53 and MDM2 that were activated by the

upstream signal with different pulse numbers. Simulations

precisely realized experimentally measured p53 and MDM2

molecular numbers [57]. The sustained upstream signal main-

tained continuous oscillations of p53 activity that led to the

corresponding expression cycles of gene MDM2. Simulations

suggested that the feedback regulations between p53 and MDM2

are not sufficient to continue the expression oscillations. The p53

activities gradually return to the basal levels after one expression

cycle if the upstream signal ceases. When the p53 activity is below

a threshold value, the TF activity is not adequate to stimulate

another expression cycle of gene MDM2. Although the decrease of

MDM2 activity contributes to the accumulation of p53 proteins,

this negative regulation is not critical for the increase of the p53

transcriptional activity.

We have demonstrated that the proposed gene activation

window play a key role in inducing gene expression bursts with

fairly constant width and height at the single cell level. The next

question is whether the proposed stochastic model can realize the

damped oscillations observed at population level. To answer this

question, stochastic simulations were obtained by using different

pulse numbers of the upstream signal in different simulations.

According to simulations in Figs. 6B and 6E, it was assumed that

the pulse number of the upstream signal was equal to the p53 pulse

number. Thus the fraction of cells with different pulse numbers of

the upstream signal in Fig. 7A is the same as that of the p53 pulse

numbers which was estimated from Fig. 3 in [9]. Simulations in

Figs. 7B and 7C successfully realized the damped oscillations of

p53 and MDM2 protein levels that were compatible to

experimental observations [51]. The height of oscillations at

population level is proportional to the dose of gamma radiation.

Simulations suggested that a higher radiation dose induced a

larger fraction of cells showing more pulses of p53 activity, which

led to the higher expression levels of gene MDM2 at population

level in Figure 7C.

Figure 2. Stochastic simulations of single-gene expression using the same rate constants. (A) Gene On/Off states; (B) mRNA numbers; (C)
protein numbers. Two simulations when the lengths of memory windows are constants (length of transcription window l1~10 min and length of
gene inactivity window l2~50 min). (D) Gene On/Off states; (E) mRNA numbers; (F) protein numbers. Two simulations when the lengths of memory
windows follow the exponential distributions with mean li . (G) Gene On/Off states; (H) mRNA numbers; (I) protein numbers. Two simulations when
the lengths of memory windows follow the Gaussian distributions N(li ,s

2) with s~0:2:
doi:10.1371/journal.pone.0052029.g002

Modeling of Memory Reactions
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Discussion

This work proposed the concept of memory reaction to describe

conditional chemical reactions that occur in the path of memory

events. The proposed memory-SSA represents an innovative

strategy to use a reduced model to describe nonlinear dynamics.

To demonstrate the power of the proposed theory, we developed a

stochastic model of single-gene expression. Numerical simulations

suggested that memory reactions for realizing gene activation/

inactivation windows play a major role in generating bursting

dynamics of gene expression. The function of memory reactions

has been further supported by realizing the oscillatory activities of

the p53 core module in single cells. Simulations suggested that

memory process is a key mechanism to generate sustained

oscillations of protein levels in single cells and damped oscillations

in population of cells. These successful applications suggested that

the proposed theory is an effective tool to realize conditional

chemical reactions in a wide range of complex biological system.

Time delay is a modeling technique to realize slow reactions or

simplify multiple small step reactions [24,25]. It is emphasized that

the difference between the delayed reaction and the proposed

memory reaction is substantial. First, the firing of delayed

reactions depends on the competition with other reactions in the

system. However, the occurrence of memory reactions is

conditional to the path of memory events, though simultaneously

Figure 3. Averaged bursting numbers under various conditions. The averaged bursting number per simulation based on different numbers
of TF but a fixed number of RNAP with either constant lengths of memory windows in (A) or lengths following the exponential distributions in (B).
Rate constant are the same as those in Figure 2. The averaged bursting number per simulation based on different numbers of RNAP but a fixed TF
number with the binding rate of RNAP to DNA as k~0:021 in (C) or k~0:0021 in (D). The corresponding rate constant in Figure 2 is k~0:21 (solid
line: mean; dash-line: mean+std).
doi:10.1371/journal.pone.0052029.g003

Figure 4. Simulated noise in protein abundance. Noise in protein
abundance (sp=vpw) derived from stochastic simulations with
different TF numbers (solid-line: lengths of memory windows are
constant; dash-line: lengths of windows follow the exponential
distributions; dash-dot line: theoretical prediction from a simpler
stochastic model in [19]).
doi:10.1371/journal.pone.0052029.g004

Modeling of Memory Reactions
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Figure 5. The p53-MDM2 core module. P53 protein is activated by the upstream signal (represented by ATM kinase) and form tetramers as the
TFs. p53 positively regulates gene MDM2 by activating its transcription, whereas MDM2 negatively regulates p53 by promoting its ubiquitination and
degradation. Regulatory mechanisms for the expression of gene MDM2 follow the same assumptions in Figure 1, which are characterized by the two
memory windows for the continuous transcription and inactivity time periods of gene MDM2.
doi:10.1371/journal.pone.0052029.g005

Figure 6. Stochastic simulations of the p53-MDM2 core module. The upstream signal represented by the ATM kinase activities (measured
from Fig. 1 in [50]) has two pulses in (A) or four pulses in (D). Five simulations of the p53 copy numbers based on two pulses (B) and four pulses (E) of
the upstream signal; and the corresponding MDM2 copy numbers in five simulations induced by two pulses (C) and four pulses (F) of p53 activities.
doi:10.1371/journal.pone.0052029.g006

Modeling of Memory Reactions
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the firing of memory reactions also depends on the competition

with other reactions if it is within the memory time period. In

addition, the key feature of delayed reaction is the time difference

between the firing of a chemical reaction and manifest of its

products. However, the products of a memory reaction are

generated immediately after its firing. In this work we also

proposed the delayed memory reaction if the reaction is

conditional to the path of memory events as well as there is delay

between the firing of the chemical reaction and manifest of its

products. Furthermore, molecules involving in delayed reactions

are static during the delayed time period because they are reserved

for the product manifest in a future time point; however, molecules

involving in memory reactions are dynamic since they involve in

other reactions in the memory window. Thus the memory and

time delay are two distinct features of chemical reactions, though

these two types of reactions are connected to a fixed length of time

period.

Regarding the necessary of memory reactions, one may argue

that the memory phenomena may be simply realized by using

additional species and additional chemical reactions within the

classic SSA framework. If this modeling scheme were implemented

without using memory reactions, the competitive nature of the

elementary stochastic chemical reactions would cause that the time

period of a particular biological/cellular event does not follow the

distribution observed in experiments. For example, the rapid re-

initiation rate of transcription should be matched by a large

termination rate of gene expression, namely the rate of TF

disassociating from the DNA promoter site. In this case the exit

strategy of gene expression is realized by the competitive reaction

of TF disassociation. However, our simulation results suggested

that it is difficult to use this strategy to realize the relatively

constant time periods of gene expression that were observed in

experiments. In this work we proposed the memory reaction to

realize such refractory states that exist only in a particular time

period. The key feature of the memory reaction is the exit strategy

for determining the length of memory time period and for defining

exit reactions for transferring memory species to the normal

species. There are two time periods that are associated with

memory reactions, namely the waiting time for the firing of a

memory reaction and the memory time period during which

memory reactions are capable of firing. Although the waiting time

of memory reaction still follows an exponential distribution, the

length of a memory time period can be defined as a constant or a

random variable following a particular distribution, such as the

Gaussian or exponential distribution. By properly defining the

length of memory time period, we have successfully realized the

stochastic dynamics of biological networks that also have certain

deterministic feature. Therefore, the proposed memory reaction

represents a quantum step towards the development of sophisti-

cated modeling methodologies to explore the regulatory mecha-

nisms of complex biological systems.

Although different modeling approaches have been proposed to

realize noisy process in gene expression [58,59,60], recent

experimental observations suggested that the expression dynamics

has certain deterministic properties including the relatively

constant heights and durations of expression bursts. These

stochastic events may be regulated by complex networks that are

still not fully understood; or the underlying mechanisms may be

too complex to be represented by reduced mathematical models.

These mechanisms may include the chromatin modification and

chromatin looping formation, the spatio-temporal dynamics of

protein movement, as well as the intrinsically cyclic association of

transcriptional factors and their co-factors. It may not be practical

to use competitive chemical reactions in the SSA or delay-SSA

framework to represent these stochastic events with deterministic

properties. To this end, the proposed memory reaction provides a

powerful tool to describe the complex regulatory mechanisms by

using reduced mathematical models. In addition, it is expected

that memory reaction will be used as a mechanism to realize the

robustness property of biological systems [61,62].

The gene activation and inactivation windows realized by

memory reaction provided novel insight into the origin of the

repeated pulses in the p53-MDM2 core module. In particular, the

stable time periods of gene activation play a major role in

generating bursting dynamics with constant width and height of

protein activity oscillations. A striking simulation result is that the

oscillatory upstream signal is the key stimulus to maintain

oscillatory dynamics of the p53 core module. In contract, the

feedback regulations between p53 and MDM2 are not sufficient to

maintain the oscillations of the p53 activity. This result is well

compatible with the recent experimental observations showing

that p53 induction is mediated by the damage-activated regulators

[50,63]. Since a number of important regulatory mechanisms were

excluded from the proposed stochastic model, including protein

spatial distributions, regulation of other proteins such as MDMX,

and feedback regulations between the upstream signals, more

sophisticated models are needed to provide accurate simulations

and testable predictions.

Figure 7. Damped oscillation of the p53 module in a
population of cells. (A) Fractions of cells showing different pulse
numbers of ATM activity when cells were irradiated by different gamma
doses. The averaged copy numbers of p53 (B) and MDM2 (C) based on
1000 simulations. (Solid-line: gamma dose 10 Gy, dash-dot-line: 2.5 Gy,
and dash-line: 0.3 Gy).
doi:10.1371/journal.pone.0052029.g007
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