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Targeting small molecules to appropriate subcellular compartments is a way to increase 
their selectivity and effectiveness while minimizing side effects. This can be accomplished 
either by stably incorporating specific “homing” properties into the structure of the active 
principle, or by attaching to it a targeting moiety via a labile linker, i.e., by producing 
a “targeting pro-drug.” Mitochondria are a recognized therapeutic target in oncology, 
and blocking the population of the potassium channel Kv1.3 residing in the inner mito-
chondrial membrane (mtKv1.3) has been shown to cause apoptosis of cancerous cells 
expressing it. These concepts have led us to devise novel, mitochondria-targeted, mem-
brane-permeant drug candidates containing the furocoumarin (psoralenic) ring system 
and the triphenylphosphonium (TPP) lipophilic cation. The strategy has proven effective 
in various cancer models, including pancreatic ductal adenocarcinoma, melanoma, and 
glioblastoma, stimulating us to devise further novel molecules to extend and diversify 
the range of available drugs of this type. New compounds were synthesized and tested 
in vitro; one of them—a prodrug in which the coumarinic moiety and the TPP group are 
linked by a bridge comprising a labile carbonate bond system—proved quite effective in 
in vitro cytotoxicity assays. Selective death induction is attributed to inhibition of mtKv1.3. 
This results in oxidative stress, which is fatal for the already-stressed malignant cells. 
This compound may thus be a candidate drug for the mtKv1.3-targeting therapeutic 
approach.

Keywords: Kv1.3, mitochondria-targeting, cancer, triphenylphosphonium, psoralens, pancreatic duct 
adenocarcinoma

inTrODUcTiOn

In therapeutic oncology, the ultimate goal is to cause the death of all cancerous and cancer stem cells 
while inflicting negligible damage to healthy cells and organs. Several strategies have been adopted 
in an effort to achieve this difficult result. One is to selectively hit only the unwanted cells with an 
effective death-inducing treatment. Examples of this approach include focused radiation therapy, 
the many attempts at delivering drugs selectively to tumoral cells, and immunotherapy. Another 
is aiming a drug at a molecular target which is expressed specifically by cancer cells and/or whose 
function is more cogently needed by cancer cells than by healthy ones, including of course malfunc-
tioning oncogenes. An example may be the development of small molecule inhibitors of deregulated 
oncogenic kinases. A third one may be to exploit an intrinsic characteristic of cancer cells, such as 
increased aerobic glycolysis (the Warburg effect) or their rapid growth and the associated redox stress 
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FigUre 1 | Chemical structures of the compounds studied in this work and 
their precursors.

2

Mattarei et al. Mito-Targeted Furocoumarins as Anti-Cancer Agents

Frontiers in Oncology | www.frontiersin.org April 2018 | Volume 8 | Article 122

they experience (1). This latter feature is of particular interest for 
this paper. An elevated production of ROS is a characteristic of 
rapidly proliferating cells (2). In cancerous cells, it is induced by 
various mechanisms (1). For example, K-ras hyperactivity has 
been reported to lead to suppression of respiratory chain (RC) 
complex-I, ROS generation, mitochondrial dysfunction, and 
switch to glycolytic metabolism (3, 4). Tumor suppressor p53 
on the other hand acts via Bcl-2 family proteins to reduce mito-
chondrial ROS, and its loss or malfunction may thus lead to an 
increase in their production (5, 6). In fact, anti-apoptotic proteins 
of the Bcl-2 family, such as Bcl-XL and Bcl-w, reportedly increase 
mt ROS production. They do this by binding and neutralizing 
Bax, which reduces ROS by interacting with complex I (7, 8).

This stressed state can be exploited to induce cell death (1, 
9–11). Excessive ROS can cause cell death by processes such as 
apoptosis (12) [mediated, for example, by redox-sensitive apopto-
sis signal-regulating kinase family members (13)], necrosis (14), 
and ferroptosis (15). An oxidative stress exceeding the “death 
threshold” can be achieved either by weakening the cellular 
antioxidant defenses which keep it within “safe” limits (16)—for 
example, by inhibiting a member of the peroxiredoxin system 
(17, 18)—or by increasing it. In turn, this latter option can be 
achieved either by using drugs which are themselves redox-active 
[e.g., Q-7BTPI (19)], or by stimulating the cells’ ROS-producing 
apparatuses, such as the mitochondrial RC [e.g., Ref. (20)].

Given their key role in cancer metabolism, progression, and 
survival (9, 21–26) and in apoptosis, mitochondria are a focus 
of anti-cancer chemotherapy (27–29). Of relevance here, mito-
chondrial ion channels are potential targets of strategies aiming to 
stress cancer cells to death. They influence mitochondrial mem-
brane potential ΔΨ, ROS production, volume, and ion homeo-
stasis (30). Pharmacological manipulation of mitochondrial ion 
channels can lead to cell death bypassing the upstream players 
of intrinsic apoptosis (p53 status, Bax/Bak/Bcl-2 expression and 
alterations of cytosolic signaling pathways) (31).

In particular, our group has uncovered (32, 33) a crucial role 
of mitochondrial potassium-selective channel mtKv1.3 blockage 
by pro-apoptotic Bax in the apoptotic death of cells expressing 
mtKv1.3, which include many cancer cell lines (34). The other 
finding this line of research descends from is the observation 
(35) that 5-(4-phenylbutoxy)psoralen (Psora-4) (Figure  1), a 
membrane-permeant molecule, blocked Kv1.3 with an EC50 of 
3 nM. A derivative, PAP-1, was less effective but more selective for 
Kv1.3 vs Kv1.5, which is also often expressed in the mitochondria 
of cancer cells. We used these compounds to show that pharma-
cological inhibition of mtKv1.3 could cause the same outcome as 
inhibition by Bax, i.e., death by apoptosis (36, 37). This outcome is 
currently understood to result from the following chain of events: 
stopping the depolarizing K+ influx causes inner mitochondrial 
membrane (IMM) hyperpolarization, with ensuing increased 
ROS level, activation of the mitochondrial permeability transition 
pore, mitochondrial swelling, loss of transmembrane potential, 
loss of cytochrome c, and further ROS release (36).

5-(4-phenylbutoxy)psoralen and PAP-1, however, had only 
a modest effect on cancerous cells when used at pharmacologi-
cally meaningful concentrations. To improve their effectiveness 
we sought to target the drugs to the IMM and mitochondrial 

matrix. The most effective and popular strategy for mitochon-
drial targeting relies on conjugating the drug to a lipophilic, 
membrane-permeant cation, most often triphenylphosphonium 
(TPP) (38–41). Various drugs based on this design and produc-
ing cytotoxic oxidative stress in cancerous cells have already 
been produced: mitochondria-targeted vitamin E succinate 
(MitoVES) (42–44), a construct interacting with RC complex-
II; MitoMets (45, 46), metformin derivatives inhibiting RC 
complex I and inducing ROS production; MitoTam (47), based 
on tamoxifen and likewise acting via RC complex-I; mitochon-
driotropic derivatives of the polyphenols resveratrol (20, 48) and 
quercetin (19, 49), also causing deadly redox stress in cultured 
cells via the RC or concentration-enhanced autoxidation, 
respectively. We thus synthesized two TPP-comprising PAP-1 
derivatives, PAPTP and PCARBTP, both of which turned out 
to be promising chemotherapeutic agents, selectively eliminat-
ing cancerous cells in vitro and in in vivo oncological models, 
including orthotopic melanoma and pancreatic ductal adeno-
carcinoma (PDAC) (50). These compounds caused the death of 
pathological cells independently of the expression levels of key 
pro- or anti-apoptosis proteins, such as Bax, Bak, Bcl-2, or p53. 
Importantly, they had no significant impact on healthy tissues 
and cells, including the immune system of mice and humans 
(50). The structure of PCARBTP combines two concepts: mito-
chondrial targeting, conferred by TPP, and prodrug function, 
provided by the carbamate link connecting the two parts of the 
molecule, PAP-1 and TPP. Since the carbamate group is hydro-
lyzed over several minutes in a physiological environment, this 
device allows the delivery of the essentially unmodified active 
agent to mitochondria.

Given the promising results, we have extended the search for 
anti-tumoral agents combining the Kv1.3-inhibiting furocou-
marin structure and the mitochondriotropic TPP group.
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MaTerials anD MeThODs

chemistry
Details of the synthetic procedures used in this study are provided 
in the Supplementary Material.

cell lines
B16F10 cells (ATCC) were grown in Minimum Essential Media 
(MEM, Thermo Fisher Scientific) supplemented with 10  mM 
HEPES buffer (pH 7.4), 10% (v/v) fetal bovine serum (FBS), 
100 U/mL penicillin G, 0.1 mg/mL streptomycin, and 1% non-
essential amino acids (100× solution; Thermo Fisher Scientific). 
Lymphocytes (Jurkat, CTLL-2, and K562) were grown in RPMI 
1640 (Thermo Fisher Scientific), supplemented as MEM. Medium 
for CTLL-2 was further supplemented with four units/mL/day of 
mouse interleukin-2 (IL-2). A panel of pancreatic cancer cell lines 
(51) was used: BxPC3, AsPC1, Capan-1, and PANC-1. BxPC3 
derived from the body of the pancreas of a patient with adeno-
carcinoma. These cells are not prone to give metastasis and they 
are poorly differentiated. The other three lines were originally 
obtained from metastases (AsPC-1, Capan-1) or have consider-
able metastatic potential (PANC-1). All were provided by ATCC. 
AsPC1 and BxPC3 were cultured in RPMI-1640 supplemented 
with 10% FBS “GOLD” (PAA Laboratories/GE Healthcare 
Life Sciences), 1  mM GlutaMAX, and 1  mM sodium pyruvate 
(Thermo Fisher Scientific). PANC-1 were cultured in DMEM 
(4.5 g/L d-glucose) supplemented with 10% FBS “GOLD”, 1 mM 
GlutaMAX and 1 mM sodium pyruvate. Capan-1 cells were grown 
in IMEM supplemented with 20% FBS “GOLD,” 1 mM GlutaMAX, 
and 1 mM sodium pyruvate. The HPV16-E6E7—immortalized 
human pancreatic duct epithelial cells (HPDE), kindly provided 
by Dr. Ming-Sound Tsao (Ontario Cancer Institute, Toronto, ON, 
Canada) (52) were used as a model for benign pancreatic ductal 
epithelium. The complete HPDE growth medium was a mixture 
of 50% RPMI 1640, supplemented with 10% FCS and 1  mM 
GlutaMAX, and 50% keratinocyte medium SFM (Thermo Fisher 
Scientific) supplemented with 0.025% bovine pituitary extract, 
2.5 mg/L epidermal growth factor (Thermo Fisher Scientific).

cell Viability and cell Death assays
For cell growth/viability MTT assays we used a protocol previously 
described (36, 50). Briefly, cells were seeded (5–10 ×  103 cells/
well) in standard 96-well plates and allowed to grow in medium 
(200  µL) for 24  h to ensure attachment. The growth medium 
was then replaced in the dark with a medium that contained the 
desired compound (from a stock solution in DMSO) at the final 
concentration. The final concentration of DMSO was 0.1% or 
lower in all cases (including controls). To inhibit multiple drug 
resistance (MDR) “pumps,” where indicated we used non-toxic 
concentrations of cyclosporine H (CSH) (1  µM; Sequoia) and 
Probenecid (100 µM; Sigma Aldrich) in the case of CTLL-2 cells, 
and of CSH only (4 µM) for the other cell lines. After incubation 
for 24 h, CellTiter 96 AQUEOUS One solution (Promega, Italy) 
was added to each well as indicated by the supplier. Absorbance 
was measured at 490 nm to detect formazan formation using a 
Packard Spectra Count 96-well plate reader.

For cell death assays of non-adherent cells, cells were incubated 
with the test substances for 24  h, washed in HBSS, and resus-
pended in DMEM without serum and Phenol Red and incubated 
for 30 min at 37°C in the dark with Annexin-V FLUOS (Roche) 
(1  µL/200  μL sample). DMSO concentration was <0.1% in all 
cases. Flow cytometry analysis was carried out after the labeling 
period with a Becton Dickinson FACS Canto II flow cytometer 
and data were processed by quadrant statistics using BD VISTA 
software.

Downregulation of Kv1.3 expression by 
sirna
The sequences for the siRNA targeting human Kv1.3 were coupled 
to Alexa Fluo 555 (Hs_KCNA3_1 Flexi tube siRNA for Kv1.3 and 
All-star negative control siRNA as scramble/control; Qiagen). 
Jurkat cells were transfected by electroporation, as previously 
reported (36). After 48  h from transfection, cells were treated 
for 24  h with the various compounds as indicated. Cell death 
was then evaluated by the binding of fluorescein isothiocyanate 
(FITC)-labeled Annexin-V and FACS analysis.

Mitochondrial Morphology, Membrane 
Potential, and rOs Production
Mitochondrial morphology was studied in melanoma B16F10 
cells. 1  ×  105 cells were seeded in a 6-well plate with 2  mL of 
complete medium. After 24 h medium was replaced with 1 mL 
HBSS supplemented with 500  nM Mitotracker green (Thermo 
Scientific). Cells were incubated at 37°C in the dark for 20 min 
and then the mitochondrial network was observed by confocal 
microscopy using a Leica DMI6000 fluorescence microscope 
with confocal settings (Leica Microsystem, Wetzalar, Germany).

Mitochondrial membrane potential and ROS production were 
measured in leukemic Jurkat T cells. 5 × 105 cells were resuspended 
in 300 µL of HBSS supplemented either with 20 nM TMRM or 
1 µM MitoSOX. Cells were incubated for 20 min at 37°C in the 
dark. Then, cells were diluted by the addition of further 1.2 mL 
of HBSS and analyzed by FACS (FACSanto II, Beckton Dickson).

Western Blot
Kv1.3 protein expression was assessed after transfection with 
control (“scramble”) and anti-Kv1.3 siRNA. Jurkat cells from 
parallel siRNA experiments were lysed overnight refrigeration at 
−80°C in lysis buffer (25 mM Tris pH 7.8 + 2.5 mM EDTA + 10% 
glycerol + 1% NP-40 + 2 mM DTT). After thawing, debris was 
centrifuged off at 20,000 × g for 10 min at 4°C. Supernatants were 
collected and protein concentration was determined using the 
BCA method in a 96-well plate (200 μL total volume for each well) 
incubating at 37°C in the dark for 30 min. Absorbance at 540 nm 
was measured by a Packard Spectra Count 96-well plate reader. 
Proteins were separated by SDS-PAGE in a 10% polyacryla-
mide gel. After separation by electrophoresis, gels were blotted 
overnight at 4°C onto polyvinylidene fluoride membranes and 
then membranes were blocked with a 10% solution of defatted 
milk and were incubated with the following primary antibodies 
overnight at 4°C: anti-Kv1.3 (1:200, rabbit polyclonal, Alomone 
Labs APC-101); anti-GAPDH (1:1,000, mouse monoclonal, 
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FigUre 3 | PCTP is specific in inducing cell death by Kv1.3 inhibition. (a) 
Jurkat T lymphocytes and leukemic K562 cells were treated for 24 h with 
PAP-1, PCTP, or PCARBTP at the indicated concentrations with or without 
the addition of 4 µM cyclosporine H as multidrug resistance pumps 
inhibitor. Cell death by apoptosis was then determined by incubation with 
fluorescein isothiocyanate-labeled annexin-V for 20 min at 37°C in the 
dark. Annexin-V positive cells were measured by FACS analysis (n = 3; 
***p < 0.001 vs control). (B) Jurkat cells were either transfected with a 
control siRNA (Scramble) or siRNA against Kv1.3 (siRNA) and after 48 h 
from the transfection they were treated as in (a) with PAP-1 and PCTP 
(n = 3; ***p < 0.001 vs control). Insert: Kv1.3 downregulation was 
assessed by Western blot after siRNA transfection. A representative image 
is shown of three independent observations. GAPDH was used as loading 
control.

FigUre 2 | PCTP selectively eliminates Kv1.3-expressing cells. Murine 
lymphocyte CTLL-2 cells were transfected either with the empty vector 
(CTLL-2 pJK) or with the expression vector for Kv1.3 (CTLL-2 Kv1.3). Cell 
viability was assessed by MTT assay after 24 h of incubation with Psora-4, 
P5TP (a), PAP-1, or PCTP (B) at different concentrations either without or 
with the addition of 1 µM cyclosporine H and 100 µM probenecid as 
multidrug resistance pumps inhibitors. DMSO 10% was used as positive 
control, since it is toxic at this concentration. Results are reported as mean 
percentage of viable cells normalized with respect to untreated cells (n = 3; 
***p < 0.001).
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Millipore MAB374). After washing, the membranes were devel-
oped using corresponding anti-mouse or anti-rabbit secondary 
antibodies (Calbiochem). The antibody signal was detected with 
enhanced chemiluminescence substrate (SuperSignal West Pico 
Chemiluminescent Substrate, Thermo Scientific).

statistics
Statistical significance of the effects was assessed by paired t-test 
or two-way ANOVA analysis.

resUlTs anD DiscUssiOn

One of the concepts we tested was to minimize the changes to the 
structure of the “parent” drug, Psora-4, while still turning it into 

a mitochondria-targeted drug. Thus, we simply substituted the 
distal phenyl ring with the TPP group (P5TP, Figure 1).

A second approach was that of attaching a mitochondria-
targeting group to PAP-1. This strategy had proved successful 
when attaching the TPP moiety via a stable bond system or via a 
labile linker comprising a carbamate group (50). We thus tested 
another labile “joint,” the carbonate group, producing PCTP 
(Figure 1).

The rationale for the preparation of these new derivatives was 
based on previous studies which underlined the importance of 
not altering the planar furocoumarin system. The modification 
at position five of the psoralen scaffold did not affect the ability of 

https://www.frontiersin.org/Oncology/
https://www.frontiersin.org
https://www.frontiersin.org/oncology/archive


FigUre 4 | PCTP reduces the viability of Kv1.3-expressing cells.  
(a) Mouse melanoma B16F10 cells were treated either with PAP-1, PCTP, 
or PCARBTP for 24 h, with or without 4 µM cyclosporine H (CSH) as 
multidrug resistance pumps inhibitor. Results are reported as mean 
percentage of viable cells normalized with respect to untreated cells (n = 3; 
*p < 0.05; ***p < 0.001, vs control). (B,c) Four human pancreatic ductal 
adenocarcinoma cell lines (Bx-PC3, PANC-1, As-PC1, CAPAN-1) and a 
non tumoral human pancreatic duct epithelial line (HPDE, used as a 
negative control) were treated for 24 h with PAP-1 (B), PCTP (c), or 
PCARBTP (D), both in absence or presence of 4 µM CSH. Mean 
percentage of viable cells normalized with respect to untreated cells (n = 3; 
***p < 0.001 vs control).
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the molecule to block the potassium cation inside the cavity of the 
channel as proposed by Zimin and coworkers (53).

For both derivatives the synthesis started with the natural 
compound bergapten (5-methoxypsoralen) and utilized the key 
intermediate PSBI (Figure S1 in Supplementary Material). The 
conversion of bergapten to PSBI was achieved by demethylation 
to bergaptol (2) promoted by BBr3, followed by alkylation with 
1-bromo-4-chlorobutane to obtain the chloro-intermediate 3 and 
substitution of chloride with iodide via the Finkelstein reaction. 
Details are provided in Supplementary Material.

PCTP underwent a slow hydrolysis in DMEM, at pH 7.4 and 
37°C, yielding PAP-OH and 4-TPP-butan-1-ol iodide with a t1/2 
of about 17 h (data not shown).

The new derivatives were first screened for their cytotoxic 
activity on murine CTLL-2 lymphocytes. These cells do not 
express Kv1.3, and were either transfected with an empty vector 
to provide a control (CTLL-2/pJK) or stably transfected with an 
expression vector for Kv1.3 (CTLL-2/Kv1.3) (54) (Figure 2). Cell 
survival was assessed with the MTT assay. P5TP did not represent 
an improvement over Psora-4 or PAP-1 (Figure 2A). On the other 
hand, PCTP proved remarkably effective and exhibited selectivity 
toward cells expressing Kv1.3: while viability of CTLL-2/Kv1.3 
cells decreased in a dose-dependent manner, that of CTLL-2/pJK 
cells was only slightly affected (Figure 2B).

Since MDR pumps may play a crucial role in extruding drugs 
from cells, MTT assays were also performed in the presence of 
MDR inhibitors (cyclosporin H and probenecid). In this specific 
case, MDR inhibition sensitized CTLL-2/Kv1.3 cells to Psora-4 
and PAP-1, as previously reported (36), while there were no 
differences in the activity observed with PCTP. This observation 
suggests that the positively charged compound may escape MDR 
action due to a rapid “electrophoretic” transport through the 
plasma membrane, due to the negative-inside electrical potential 
difference. This has been already proposed for mitoVES. Contrary 
to VES, mitoVES was not a substrate for the ABCA1 pump in 
non-small cell lung carcinoma H1299 cells (55).

We then tested PCTP on two human leukemic cell lines: 
Jurkat leukemia T  cells and K562 chronic myelogenous 
leukemia cells (Figure  3A). Cell death was determined by 
Annexin-V-FITC staining and FACS analysis. As expected, 
PCTP induced apoptosis only in Kv1.3-expressing Jurkat cells 
(54), while it was quite ineffective in killing K562 cells, which 
lack Kv1.3 (34, 56).

To further demonstrate Kv1.3 involvement in apoptosis induc-
tion by PCTP, Jurkat cells were transiently transfected with siRNA 
targeting Kv1.3 to reduce its expression (36). These cells have the 
peculiarity that they express only Kv1.3 among the potassium 
channels of the Kv family (54). Experiments confirmed that Kv1.3 
expression is crucial for cell death induction by PCTP, since Kv1.3 
silencing protected the cells from death (Figure 3B).

We proceeded testing PCTP also with other Kv1.3-expressing 
cancer cell lines. We took advantage of a mouse B16F10 melanoma 
cell line (Figure 4A), which also expresses Kv1.3 in mitochondria, 
as we have shown before (36). In this case the presence of MDR 
inhibitors was crucial, as already observed with PAP-1. Nevertheless, 
PCTP is more powerful than the precursor in triggering cell death.
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FigUre 5 | PCTP induces mitochondrial swelling, decrease in membrane 
potential, and increase in ROS production in Kv1.3-expressing cells. (a) 
Mitochondrial morphology was observed in B16F10 cells after staining the 
mitochondrial network by incubation for 20 min at 37°C with 500 nM 
Mitotracker green. The effects on mitochondria have been observed by 
confocal microscopy after 30 min of incubation either with or without 10 µM 
PCTP. The images are representative of three independent experiments 
(n = 3; Bars = 15 µm). (B) Mitochondrial membrane potential was measured 
by FACS analysis of TMRM fluorescence in leukemic Jurkat T cells. Values 
are reported as percentage of the initial fluorescence (n = 3; ***p < 0.001 
with respect to untreated, all other conditions). (c) Mitochondrial ROS 
production was measured by FACS analysis of the increase in the 
fluorescence of MitoSOX in leukemic Jurkat T cells. Values are reported as 
percentage of the initial fluorescence (n = 3; ***p < 0.001 with respect to 
untreated, all other conditions).
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in p53, to express variable but robust levels of Bcl2-family 
anti-apoptotic proteins and to be largely resistant to standard 
chemotherapeutics (57–59). Most of them (with exception 
of Bx PC-3 cells) are also mutated in K-ras (57). These cell 
lines provide an in vitro model of one of the most feared and 
untreatable human cancers, for which a viable pharmacological 
approach is much needed.

Interestingly, also in this case PCTP proved remarkably effec-
tive in inducing cell death (Figure 4C) while its precursor, PAP-1, 
was essentially inactive (Figure 4B). Cytotoxicity varied some-
what from cell line to cell line (Figure 4C). PCTP was confirmed 
to induce apoptosis (not shown). These results again show that 
mitochondriotropic mitoKv1.3 inhibitors can overcome chem-
oresistance, exerting their cytotoxic effects despite alterations of 
the cellular anti-apoptotic apparatus.

We investigated the impact of PCTP on the mitochondria of 
intact cells. To monitor morphological changes we used B16F10 cells 
labeled with the permanent mitochondrial marker MitoTracker 
Green (Figure 5A). The exemplary images in Figure 5A show that the 
mitochondrial network underwent fragmentation. Mitochondrial 
fission has been firmly associated with the process of apoptosis 
(60–62). Mitochondrial depolarization (TMRM staining), and ROS 
generation (MitoSOX™ Red staining) were observed using Jurkat 
cells in FACS experiments (Figures 5B,C, respectively).

These observations are fully coherent with the mechanistic 
model deduced from the data obtained studying apoptosis (32) and 
using PAPTP to induce it (50): the initial event is channel inhibi-
tion, with consequent production of ROS. In turn, ROS promote 
the onset of the permeability transition, resulting in mitochondrial 
depolarization and further ROS release. The effects of PCTP on 
cancerous cells in  vitro are comparable to those of PAPT and 
PCARBTP [Figures  4 and 5; (50)]. PCTP might conceivably 
even outperform these latter compounds in  vivo, depending on 
factors such as pharmacokinetics and the rate of hydrolysis of the 
carbonate bond system. The mitochondrial effects suggest that the 
compound might have significant undesirable effects on healthy 
cells. It is, however, of relevance that non-tumoral, fast-growing, 
Kv1.3-expressing HPDE (51, 63) were not affected by PCTP 
(Figure 4C), as was the case also for PCARBTP (Figure 4D). While 
in vivo work is needed to investigate this crucial point, this observa-
tion suggests that PCTP might resemble PAPTP and PCARBTP in 
acting specifically on cancerous cells, sparing others.

cOnclUsiOn

After PCARB, we have identified another mitochondriotropic 
prodrug of PAP-OH, PCTP, with marked pro-apoptotic effects on 
Kv1.3-expressing cancerous cells, including four PDAC lines. As is 
also the case for other mitochondriotropic psoralenic derivatives, 
its administration in vitro causes mitochondrial dysfunction and 
ROS generation. The results definitely warrant further testing in 
in vivo oncological models.
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