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Aim: SARS-CoV-2, an emerging betacoronavirus, is the causative agent of COVID-19. Currently, there are
few specific and selective antiviral drugs for the treatment and vaccines to prevent contagion. However,
their long-term effects can be revealed after several years, and new drugs for COVID-19 should continue
to be investigated. Materials & methods: In the first step of our study we identified, through a gene
expression analysis, several drugs that could act on the biological pathways altered in COVID-19. In the
second step, we performed a docking simulation to test the properties of the identified drugs to target
SARS-CoV-2. Results: The drugs that showed a higher binding affinity are bardoxolone (-8.78 kcal/mol),
irinotecan (-8.40 kcal/mol) and pyrotinib (-8.40 kcal/mol). Conclusion: We suggested some drugs that
could be efficient in treating COVID-19.
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A state of global health emergency has been declared by WHO for COVID-19. The causative agent is SARS-CoV-2,
which like SARS-CoV and MERS-CoV, belongs to the betacoronavirus genus [1].

The most functionally relevant proteins in SARS-CoV-2 are the spike glycoprotein and 3CL main protease.
The spike protein binds to a host cell membrane and allows the entry of the virus into the host cell. It has been
described that SARS-CoV entrance is mediated by angiotensin-converting enzyme 2 (ACE2) that is particularly
overexpressed by epithelial cells in oral mucosa and intestine [1].

Previous studies have shown that the interaction between the spike glycoprotein and ACE2 has a key role in
SARS pathogenesis. Thus, initially, these two proteins have been proposed as possible and promising drug targets.
However, anti-viral agents targeting ACE2 and spike glycoprotein did not proceed clinically due to significant side
effects [2,3].

Several studies also demonstrated the potential of the 3CL main protease as a promising drug target [4,5]. 3CL
main protease is responsible for the regulation of the polyproteins that are translated from the viral RNA [6]. The
inhibition of this enzyme could block the replication processes of the virus, which makes it a potential target for
drug discovery. Recently x-ray crystal structure of the 3CL main protease was determined providing an excellent
basis for structure-based drug discovery [7]. To date, no effective SARS-CoV-3CL inhibitor has been proposed yet
to treat COVID-19.

In order to identify new potential targets to block COVID-19 disease, in silico drug discovery approaches have
been demonstrated to be effective, efficient and cost saving and can follow two main strategies. The first strategy is
based on the analysis of gene expression profiles of patients affected by COVID-19, to identify new potential drug
targets acting on molecular mechanisms altered by SARS-CoV-2. Several studies based on this approach allowed
researchers to discovery candidate drugs for different viruses, such as SARS-CoV-2, MERS-CoV, Ebola and Zika
virus [8–11]. The second strategy is to test existing drugs with a virtual screening approach based on the study of the
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Figure 1. Workflow of the proposed approach. A computational pipeline based on gene expression data analysis,
molecular docking and molecular dynamic simulation was adopted for in silico drug discovery.

3D structures of the target protein. This approach, called molecular docking, can predict how drug candidates bind
to a receptor of known 3D structure [12], generating a score (binding energy value) that defines the binding affinities
between ligand and target protein. There have been successful applications that demonstrated how molecular
docking is becoming a powerful tool in the discovery of drug candidates [13,14]. However, most of these studies
tested the drugs without considering the effect of drugs on genes deregulated as effect of diseases [1,15]. Indeed, the
novelty of the present study is the combination of gene expression analyses with molecular docking and dynamic
simulation. In our study, the selection of a gene as therapeutic target was performed via a gene expression analysis
and, since the optimal target was identified, the known interactions between drugs and targets were investigated
through the study of their binding energies using molecular docking and simulation studies. To our knowledge
there are no studies in the literature that integrate these two techniques in COVID-19. Currently, published works
screened a library of drugs or molecules against SARS-CoV-2, but without a prior selection based on drugs that
could regulate genes altered in COVID-19 as obtained from a gene expression analysis [16–18]. Other studies utilized
quantitative structure–activity relationship (such as [19]) or binding energies [20] without considering COVID-19
affected cascades of genes. The gene expression profiles altered by COVID-19 supported the docking results and
offered a new perspective for subsequent studies.

Although docking programs are fast and easy to use, they are affected by too low accuracy and stability.
Indeed, several studies reported that binding free energies based on molecular dynamic simulations are much more
reliable [21].

In this study, we proposed a bioinformatic approach based on molecular docking, molecular dynamic simulations
and gene expression profiles of COVID-19 to be used in silico to test existing drugs as therapies against COVID-19.

Materials & methods
In the first step of our study we identified, through a gene expression analysis, several drugs that could act on
the biological pathways altered by COVID-19. In particular, we selected differentially expressed genes between
COVID-19 and healthy samples, obtained from two published datasets. In the second step, we performed a docking
simulation in order to test the properties of these drugs to target the 3CL main protease of SARS-CoV-2. Figure 1
shows the workflow of the proposed approach.

Gene expression data
We analyzed the gene expression levels of COVID-19 positive and negative patients from two Gene Expression
Omnibus (GEO) datasets: GSE150316 and GSE147507.
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Specifically, we selected five negative-control samples of lung tissues and 16 COVID-19-positive lung samples
from GSE150316; and two lung biopsies from COVID-19-negative controls and two lung biopsies from post-
mortem COVID-19-positive patients from GSE147507.

We defined differentially expressed genes between COVID-19-negative and -positive samples if the genes have
an absolute value of log fold change >0.5 and adjusted p-value < 0.05. Pre-processing and differential expression
analyses were performed with the Bioconductor package TCGAbiolinks [22].

Drug interactions & overrepresentation analysis
Matador and DGIdb databases were used to identify the interactions between the drug and protein [23,24].

We performed a Fisher’s test to verify if there is an overrepresentation of drug targets in the list of differentially
expressed genes. We considered drugs acting on the differentially expressed genes if FDR <0.05. P-values were
adjusted with Benjamini–Hochberg procedure for multiple testing correction [25].

Molecular modeling
We performed molecular docking studies in order to identify potential agents with antiviral properties against
COVID-19. Molecular modeling was performed with AutodockTools 1.5.6 [26].

Drugs considered in the overrepresentation analysis were selected and PubChem database was used to extract 3D
structure of the selected drugs [27]. Discovery studio was used to prepare ligand (drugs) and generate Protein Data
Bank (PDB) format [28]. PDB format is a standard representation for molecular structure data originated from x-ray
diffraction.

The crystal structure of COVID-19 main protease in complex with an inhibitor N3 was extracted from PDB (IDs:
6LU7). PDB ID 6LU7 consists of two chains: chain A and chain C. The chain C, representing the complex-bound
inhibitor to the protein receptor molecule, was removed. During the pre-processing step of protein polar hydrogen
atoms were added and water molecules were removed.

Molecular docking identifies the amino acids that interact between the selected protein and drugs. Minimum
energy binding of the ligand with the receptor was considered. Binding energy is described as a decreasing of the
overall energy of the complex when a drug is associated with a target protein. Binding energy also defines the ligand
binding affinity.

Protein–ligand interaction profiler was used to visualize the binding interactions of the selected drugs with 3D
model of protease of COVID-19 [29].

Molecular dynamics
The investigated main protease of SARS-CoV-2 and screened molecules resulting from molecular docking were
subjected to molecular dynamic simulation. The results obtained through the molecular docking were extended,
as molecular dynamics are considered a more solid analysis for molecular study of ligand recognition.

Molecular dynamic simulations of the main protease of SARS-CoV-2 with screened molecules were performed
using BIOVIA Discovery Studio Client (Dassault Systémes, Vélizy-Villacoublay, France) [30]. Molecular dynamics
simulations were carried out using the standard dynamics cascade protocol in four steps: minimization, heating,
equilibration run, and production run. We set simulation time (ps) parameters to 20 and 200 in equilibration and
production step, respectively. For the other parameters, we used the default values.

Minimization of the 3D structures to get the most stable confirmations of the complexes was performed using
the default algorithms: the steepest descent algorithm and the adopted basis NR algorithm.

After the minimization step, all the complexes were subjected to gradual heating using the default values.
In the equilibration phase, the system was stabilized at a target temperature, as the energy has to be distributed

appropriately among all systems.
Furthermore, complexes were subjected to the production run at constant temperature, using constant-volume

ensemble (NVT). The results of this step are stored in the simulation trajectory.
The average binding energy was calculated for equilibrated molecular dynamic trajectory. Trajectory file contains

100 conformations. The binding energy was calculated by:

�Gbind = �Gcomplex − �Gprotein − �Gligand (Eq. 1)

where �Gcomplex, �Gprotein and �Gligand are the total free energy of protein–ligand complex, protein and ligand
in solvent, respectively.

future science group 10.2217/fvl-2020-0392



Research Article Cava, Bertoli & Castiglioni

Pharmacokinetics parameters
Lipinski’s rule is an algorithm consisting of a set of rules to be considered for the design and development of a
drug [30]. It is based on four criteria which must be respected: molecular mass should be less than 500 daltons; the
drug should not have more than five hydrogen bond donors in its skeleton; the drug should not have more than five
hydrogen bond acceptors in its skeleton; and the fat solubility of the molecule expressed by the partition coefficient
must be less than 5. In summary, Lipinski’s rule considers two main concepts: absorption (drug candidate should
be better absorbed if small in size) and permeation (drug candidate should better pass through the cell membranes
if it is not too hydrophilic). We used the SwissADME tool to verify if the selected drugs respect the above-reported
criteria [30]. We used ChEBI database to download mol file for the selected drugs [31]. Mol file, a commonly used
chemical structure file format is used as input for SwissADME tool.

Results
Gene expression analysis
We obtained 198 differentially expressed genes from GSE150316 and 2670 genes from GSE147507. We found
47 genes that are differentially expressed in both datasets.

We then identified 38 drugs (FDR <0.0211) that have an overrepresentation of gene targets in the list of 47
differentially expressed genes. Some of these drugs showed an antiviral property against different viral diseases
such as bardoxolone, irinotecan, olaparib, inosine and anthraquinone. The mechanism of action of these drugs
are different such as inhibition of protein kinase, inhibition of epidermal growth factor receptor and induction of
apoptosis.

27 out of 38 drugs were tested for docking analysis and are depicted in the Table 1. The 3D structure of Hemay-
022, lapuleucel-T, T-DM1, ertumaxomab, seribantumab, onartuzumab, depatuxizumab mafodotin, MDX-210,
MM-302, trodusquemine and margetuximab are not available from PubCHEM.

Docking studies
In order to identify potential drugs for treating COVID-19 patients, a molecular docking analysis was performed
on the 27 drugs revealed by the differential expression analysis.

The results from the SARS-CoV-2 3CL main protease are reported in Table 2. 12 out of 27 drugs obtained a
binding energy less than -7 kcal/mol (AZD-8055, olaparib, irinotecan, tyrphostin AG 879, topotecan hydrochlo-
ride, MP-412, S-222611, allitinib, 7-ethyl-10-hydroxy-camptothecin, falnidamol, pyrotinib and bardoxolone). The
study revealed no violation of Lipinski’s rule for these drugs. Tyrphostin AG 879, MP-412, S-222611, allitinib,
pyrotinib, bardoxolone are not available in ChEBI.

The best binding energy values were obtained for bardoxolone (-8.78 kcal/mol), irinotecan (-8.40 kcal/mol) and
pyrotinib (-8.40 kcal/mol). Figure 2 shows the protein–ligand complex for bardoxolone, irinotecan and pyrotinib.

Bardoxolone has four types of interactions with protein residues: van der Waals, hydrogen bonds (conventional
and carbon hydrogen bonds), alkyl and pi–alkyl interactions. In particular, the residues LEU282 and LYS5 form
alkyl interactions with aromatic ring of the molecule. Moreover, the residue GLN127 interacts with a hydrogen
bond with the cyano group of the molecule.

Irinotecan interacts with protein structure through van der Waals, hydrogen bonds, alkyl, pi-alkyl interactions,
pi-sigma and pi-pi stacked. The residue TYR126 forms pi-pi stacked and alkyl interactions with aromatic ring of
the molecule. Hydroxyl group interacts with GLU288.

Pyrotinib interacts with protein structure through van der Waals, hydrogen bonds, halogen, pi-pi stacked and
alkyl interactions. In particular, chloro of the ligand interacts with the residue THR111 through halogen interaction
and with the residue ASN151 through hydrogen interaction. PHE294 forms pi-pi stacked interactions with the
aromatic rings of the molecule.

Supplementary File 1 shows the binding site predictions for each of the 27 drugs against SARS-CoV-2 3CL
main protease.

Molecular dynamic simulation
COVID-19 main protease (PDB IDs: 6LU7) in complex with the top three (bardoxolone, irinotecan and pyrotinib)
docked ligands have been selected to compute dynamic properties through molecular dynamic simulations. The
calculated binding energies are presented in Table 3. All three ligands obtained negative binding energies. Pyrotinib
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Table 1. Drugs enriched with differentially-expressed gene targets.
Drug Structure Target gene Mechanism

1 AZD-8055 ERBB2, MAPKAP1 mTOR inhibitor

2 Olaparib PARP1, ERBB2 Inhibitor of the nuclear enzyme poly(ADP-ribose)
polymerase

3 Irinotecan ERBB2, TOP1MT Inhibitor of topoisomerase I activity

4 Niacinamide PARP1 Inhibitor of poly(ADP-ribose) polymerases

future science group 10.2217/fvl-2020-0392
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Table 1. Drugs enriched with differentially-expressed gene targets (cont.).
Drug Structure Target gene Mechanism

5 Heptanoate PARP1 Plant metabolite

6 Iniparib PARP1 Potential cytotoxic activity

7 Tyrphostin AG 879 ERBB2 Inhibitor of tyrosine kinase

8 Irbinitinib ERBB2 Inhibitor of the human epidermal growth factor
receptor tyrosine kinase ErbB-2

9 Inosine PARP1 Purine nucleoside

10.2217/fvl-2020-0392 Future Virol. (Epub ahead of print) future science group
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Table 1. Drugs enriched with differentially-expressed gene targets (cont.).
Drug Structure Target gene Mechanism

10 Anthraquinone ERBB2 Polycyclic aromatic hydrocarbon derived from
anthracene or phthalic anhydride

11 Doxorubicin GADD45A, ERBB2 Inhibitor of protein synthesis

12 Omtriptolide Sodium NFKB1 Inhibitor of topoisomerase II

13 Topotecan Hydrochloride TOP1MT Inhibitor of topoisomerase

future science group 10.2217/fvl-2020-0392
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Table 1. Drugs enriched with differentially-expressed gene targets (cont.).
Drug Structure Target gene Mechanism

14 TAK-285 ERBB2 Inhibitor of epidermal growth factor receptor

15 Mubritinib ERBB2 Protein kinase inhibitor

16 MP-412 ERBB2 Protein kinase inhibitor

17 Canertinib ERBB2 Protein kinase inhibitor

10.2217/fvl-2020-0392 Future Virol. (Epub ahead of print) future science group
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Table 1. Drugs enriched with differentially-expressed gene targets (cont.).
Drug Structure Target gene Mechanism

18 INSM-18 ERBB2 Inhibitor of two receptor tyrosine kinases, the
insulin-like growth factor receptor and the
c-erbB2/HER2/neu receptor

19 S-222611 ERBB2 Protein kinase inhibitor

20 Allitinib ERBB2 Inhibitor of the epidermal growth factor
receptor 1 and human epidermal receptor 2

21 7-Ethyl-10-Hydroxy-
Camptothecin

TOP1MT Apoptosis inducer

22 Talazoparib Tosylate PARP1 Inhibitor of the nuclear enzyme poly(ADP-ribose)
polymerase

future science group 10.2217/fvl-2020-0392
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Table 1. Drugs enriched with differentially-expressed gene targets (cont.).
Drug Structure Target gene Mechanism

23 Varlitinib ERBB2 Inhibitor of the epidermal growth factor
receptor 1 and human epidermal receptor 2

24 Falnidamol ERBB2 Epidermal growth factor receptor inhibitor

25 Pyrotinib ERBB2 Inhibitor of the epidermal growth factor
receptor 1 and human epidermal receptor 2

26 CP-724714 ERBB2 Inhibitor of human epidermal receptor 2

27 Bardoxolone NFKB1 Apoptosis inducer

exhibited the lowest binding energy (-291 kcal/mol). Irinotecan achieved a binding energy of -240 kcal/mol and
bardoxolone of -160 kcal/mol.

Discussion
Previous studies demonstrated the emergent ability of mesenchymal stem cells (MSCs), and adipose-derived
mesenchymal stem cells (AD-MSCs) as antiviral agents in patients with COVID-19 having properties of im-
munomodulation, regeneration and repair and antimicrobial [32–35]. MSC-based treatments have been reported in
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Table 2. Docking study results for SARS-CoV-2 3CL main protease.
Drug Binding energy (kcal/mol)

AZD-8055 -7.5

Olaparib -7.39

Irinotecan -8.4

Niacinamide -4.43

Heptanoate -4.19

Iniparib -6.28

Tyrphostin AG 879 -7.67

Irbinitinib -6.6

Inosine -4.58

Anthraquinone -6.2

Doxorubicin -6.14

Omtriptolide sodium -6.62

Topotecan hydrochloride -7.4

TAK-285 -5.43

Mubritinib -6.51

MP-412 -7.93

Canertinib -6.04

INSM-18 -6.05

S-222611 -7.15

Allitinib -7.1

7-ethyl-10-hydroxy-camptothecin -7.07

Talazoparib tosylate -6.43

Varlitinib -6.2

Falnidamol -7.64

Pyrotinib -8.4

CP-724714 -6.43

Bardoxolone -8.78

Table 3. Binding energies based on molecular dynamic simulations for three drugs: bardoxolone, irinotecan and
pyrotinib.
Ligands � G kcal/mol

Bardoxolone -160,887 ± 5,877

Irinotecan -240,473 ± 12,521

Pyrotinib -291,571 ± 15,627

several autoimmune disorders successfully, but they have not still been led to a standard therapy [36]. Indeed, the
US FDA did not approve MSCs for the treatment of COVID-19 because of limited data studied [36].

To date, FDA has approved five therapies for COVID-19: remdesivir, sotrovimab, combination of bamlanivimab
and etesevimab, combination of casirivimab and imdevimab and COVID-19 convalescent plasma [37].

Remdesivir was one of the first antiviral drugs used in COVID-19 treatment and was authorised in over 50
countries [36]. It is an adenosine nucleotide analogue and inhibits the viral RNA-dependent RNA polymerase
blocking the virus replication [38].

Sotrovimab is a recombinant human monoclonal antibody that binds to spike protein of SARS-CoV-2 and acts
by avoiding the virus’ entry into human cells [39].

Bamlanivimab and etesevimab, monoclonal antibodies, were approved by FDA to be administered together for
the treatment of COVID-19. They are specifically directed against different but overlapping sites of the spike
protein of SARS-CoV-2 stopping its binding to the human ACE2 receptor [40]. Similarly, the combination of two
recombinant human monoclonal antibodies, casirivimab, and imdevimab, was reported for use in the treatment

future science group 10.2217/fvl-2020-0392
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Figure 2. Interaction diagram of three drugs (bardoxolone, irinotecan and pyrotinib) with the main protease of SARS-CoV-2. The figure
shows detailed information about protein residues, involved amino acid and type of interactions.

of COVID-19 [41]. Convalescent plasma (CP), obtained from plasma derived from healthy donors recovered from
COVID-19, contains virus-specific antibodies that could provide passive immunity in infected patients [42].

Despite the current standard therapy for COVID-19, new drugs should continue to be investigated as, the
long-term effects of drugs and vaccines will be revealed in several years. In addition, recent studies demonstrated
that a minimal variation in the sequence of SARS-CoV-2 could lead to modifications in the viral proteins making
the vaccines or drugs ineffective [43].

To date, no mutations have been identified on 3CL main protease rendering it an appealing target for novel
antiviral drugs [44]. Indeed, another innovative aspect of our computational approach is the focus on 3CL main
protease that could help in identifying its inhibitors [45].

In this study, we proposed a novel computational approach integrating gene expression analysis and molecular
docking to test in silico existing drugs against 3CL main protease of SARS-CoV-2.

In the first step of the study, we analyzed gene expression profiles of COVID-19 patients from two published
GEO datasets. We identified 47 common differentially-expressed genes in COVID-19 patients compared with
healthy subjects, and we verified the overrepresentation of these genes in the list of drug targets. We obtained 38
drugs as potential promising treatment for COVID-19 patients.

As the 3D structure for several drugs was not available, 27 out of 38 drugs were tested for docking analysis.
Docking results suggested three potential protease inhibitors namely bardoxolone (binding energy: -8.78 kcal/mol),
irinotecan (binding energy: -8.40 kcal/mol) and pyrotinib (binding energy: -8.40 kcal/mol). However, the best
binding energy was obtained by bardoxolone. Based on differential expression and overrepresentation analysis,
bardoxolone appears to be the best drug for treating COVID-19 patients. However, as 12 out of 27 drugs obtained
a binding energy less than -7 kcal/mol (AZD-8055, olaparib, irinotecan, tyrphostin AG 879, topotecan hydrochlo-
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ride, MP-412, S-222611, allitinib, 7-ethyl-10-hydroxy-camptothecin, falnidamol, pyrotinib and bardoxolone),
these drugs can all be considered potential protease inhibitor ligands.

Bardoxolone was suggested as drug with novel potent antiviral properties against hepatitis B and C viruses in
human hepatocyte cell culture systems and herpesvirus [46,47]. Bardoxolone could act as an agonist of activator of
NRF2 impairing viral replication [46,47]. NRF2 induces HO-1 that was shown to suppress genome replication in
hepatitis B and C. High NRF2 activity suggests the role of NRF2 as cellular defence against the progression of the
infection. Indeed, several studies reported that the cells with a high level of NRF2 are less likely to progress the
infection. NRF2 activity was also associated with a decreasing virus production in rotavirus [48].

Irinotecan (CPT-11) is a semisynthetic plant alkaloid derived from camptothecin and acts as an anticancer due to
its ability to inhibit topoisomerase I during S phase; it is used to treat various cancers (i.e. colorectal cancer, pancreatic
cancer, etc.), but its side effects limits its use. Nevertheless, it has been demonstrated in in vitro experiments to be
effective in blocking herpes simplex virus-1 replication and lytic oncolysis [49]. Several nanoparticle- or lipid-based
formulations have been developed to be used in different viral infectious disease, such as hepatitis A or influenza [50]

carriers it is necessary to control the possible reactivation of the virus to avoid the development of impaired liver
function or liver cancer. About 20% or HBV carriers developed reactivation [51]. In these subjects, irinotecan is
used as a palliative treatment for advanced colorectal cancer, and its combination with lamivudine that inhibits
HBV reverse transcription, could be helpful in controlling the virus reactivation [51].

Pyrotinib (Irene) is an anti-HER2 therapeutic target drug. This drug acts by covalently binding to ATP bind-
ing sites of the kinase domain: in this way the drug inhibits the formation of homo/heterodimer and auto-
phosphorylation of HER family, blocking the signaling of the downstream pathway (RAS/RAF/MEK/MAPK,
PI3K/AKT) and stopping the cells in G1. With its mechanism of action, this drug is effective on metastatic breast
cancer [52]. Being an irreversible tyrosine kinase inhibitor, it blocks signal transduction through the erythroblastic
leukemia viral oncogene homolog (erbB) receptors. Although no publication is present in the literature regarding
the possible use of pyrotinib as antiviral agent, it is possible that this molecule interferes with viral entry by inhibiting
tyrosine kinase activity of surface receptor. Indeed, it has been already reported that tyrosine kinase activity of Abl
protein is necessary for the viral spike S-induced syncytia formation prior to the hemifusion step during infectious
bronchitis virus (IBV) infection [53]. Moreover, the authors demonstrated that Abl inhibitor drugs are able to block
IBV infection process.

Another promising drug against COVID-19 patients that achieved a binding energy of -7.39 kcal/mol is
olaparib. It is utilized in current clinical use as poly adenosine diphosphate-ribose polymerase (PARP) inhibitors.
PARP/ARTD enzymes are involved in a wide range of cellular processes such as antiviral response. PARP inhibitors
have been shown to be effective in several models of acute respiratory distress syndrome [54]. Furthermore, a
consequence of SARS-CoV-2 infection can be inflammatory response flaring out of control induced by IL-1 and
IL-6. PARP inhibitors can reduce the expression of IL-1 and IL-6 decreasing the inflammatory response [55].

In conclusion, we proposed several existing drugs with antiviral activity that, alone or in combination, could be
considered as drugs against COVID-19. However, it is vital to better understand the clinicopathological features
of COVID-19 to design treatment plans leading to favorable outcomes in SARS-CoV-2 infected patients [56,57].

Although our work is the first study on the integration of gene expression, molecular docking and dynamic
simulation in COVID-19 to our knowledge, it presents some limitations. Indeed, further docking and dynamic
simulation studies are needed to validate the inhibitory effects of these drugs against COVID-19 using reference
molecules as gold standard.

Conclusion
In this study we have demonstrated that an in silico approach, based on integration of gene expression analysis of
COVID-19-specific genes and molecular docking of therapeutic drugs on target proteins, revealed a new antiviral
use of existing drugs on the basis of the interaction between each drug and specific domains on SARS-CoV-2 viral
proteins. Dynamic simulation studies confirmed the promising role of three drugs: bardoxolone, irinotecan and
pyrotinib.
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Summary points

• SARS-CoV-2 3CL main protease as a promising drug target.
• Gene expression profiles investigated the differentially-expressed genes in COVID-19 patients.
• The best drugs were chosen for their known interactions with genes altered by COVID-19.
• Molecular docking and dynamic simulation analyses were applied on the best drugs.

Supplementary data

To view the supplementary data that accompany this paper please visit the journal website at:
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